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Abstrcat

We study in this research the concept of
linear operators and some important
definitions ,facts about it . Also we
consider the relation between linear
operators and functionals ,we offer some
examples about linear functionals



1.Section one

(Introduction)



1.Introduction

In mathematics,an operator is generally
a mapping or function that acts on elements of aspaceto
produce elements of another space (possibly and sometimes
required to be the same space). There is no general definition of
an operator, but the term 1is often wused in place
of function when the domainis a set of functions or other
structured objects. Also, the domain of an operator is often
difficult to be explicitly characterized (for example in the case of
an integral operator), and may be extended to related objects
(an operator that acts on functions may act also on differential
equations whose solutions are functions that satisfy the
equation).

The most basic operators arelinear maps, which act
on vector spaces. Linear operators refer to linear maps whose
domain and range are the same space, for example R" to R"
. Such operators often preserve properties, such as continuity.
For example, differentiation and indefinite  integration are
linear operators; operators that are built from them are
called differential operators, integral operators or integro-
differential operators. Operator is also used for denoting the
symbol of a mathematical operation. This is related with the
meaning of "operator" in computer programming.

The purpose of this first set of research about linear operator
theory is

to provide the basics regarding the mathematical key features of
operators from definitions and basic result about it.



2.section two

(Basic definition and results)



2. Basic definition and results

Definition 2.1 (Vector space) [1]:-

A vector space (or linear space) over a field K is a nonempty set
X of elements x, y, ... (called vectors) together with two
algebraic operations. These operations are called vector
addition and multiplication of vectors by scalars, that is, by
elements of K.

Vector addition associates with every ordered pair (x, y) of
vectors a vector x + y, called the sum of x and y, in such a way
that the following properties hold.! Vector addition is
commutative and associative, that is, for all vectors we have

furthermore, there exists a vector 0, called the zero vector, and
for every vector x there exists a vector -x, such that for all
vectors we

Have

Multiplication by scalars associates with every vector x and
scalar a a vector ax (also written xa), called the product of a
and x, in such a way that for all vectors x, y and scalars a, we
have

G C15)) S (5)

1X=X

and the distributive laws



A(X+Y)=0X+AY ...o...... (6)

(a0 + B)X =X + BXewrerrerenneen (7)
Note 2.2 :-

From the definition we see that vector addition is a mapping
XxX—X, whereas multiplication by scalars is a mapping
KxX—X. K s called the scalar field (or coefficient field) of the
vector space X, and X is called a real vector space if K = R (the
field of real numbers), and a complex vector space if K = C (the
field of complex numbers ).

Example 2.3 [4]:-

(1) Space R». This is of n-dimensional Euclidean space
Rr it is obtained if we take the set of all ordered n-tuples of
real numbers, written'

X=($1, -, ¢n) y=1, s ) oo (8)

etc,and we now see that this is a real vector space with the two
algebraic operations defined in the usal fashion

(2) Function space C[a, b]. As a set X we take the set of
all real-valued functions x, y, ... which are functions of an
independent real variable t and are defined and
continuous on a given closed interval J = [a, b]. Choosing
the metric defined



d(x,y) = r?ea]x lx(€) —y(@®)].oevveeennnn. 9)

where max denotes the maximum,the set of all these functions
forms a real leder space with the algebraic operations defined
in the usaluay

(x+y)(D)=x(t)+y(1)
(ax)(t)=0x(t) , aeR.

Definition Y.4 [3]:-

A subspace of a vector space X is a nonempty subset Y of X such
that for all Y1, Y2 €Y and all scalars «a, fwe have a y: +By= €Y.
Hence Y is itself a vector space, the two algebraic operations
being those induced from X. A special subspace of X is the
improper subspace Y = X. Every other subspace of X (#{0}) is
called proper. Another special subspace of any vector space X is
Y={o}.

Definition ¥Y.5 [2]:-

A linear combination of vectors X1. ... , Xm of a vector space X
is an expression of the form

a1 X1 + axy + -+ A Xy -....(10)

where the coefficients «; ..., a,,are any scalars. For any
nonempty subset Mc X the set of all linear combinations of
vectors of M is called the span of M, written span M.

Obviously, this is a subspace Yof X, and we say that Y is
spanned or generated by M.

Definition Y.6



(Linear independence, linear dependence):- Linear
independence and dependence of a given set M of vectors

Xi. ..., Xr (r 2 1) in a vector space X are defined by means of
the equation

Where a; -, a, are scalars. Clearly, equation (11) holds for a; =
a, = ... = a, = 0. If this is the only r-tuple of scalars for which
(11) holds, the set M is said to be linearly independent. M is said
to be linearly dependent if M is not linearly independent, that
is, if (11) also holds for some r-tuple of scalars, not all zero. An
arbitrary subset M of X is said to be linearly independent if
every nonempty finite subset of M is linearly independent. M is
said to he linearly dependent if M is not linearly independent. e

Definition Y.7

(Finite and infinite dimensional vector spaces):- A vector space
X is said to be finite dimensional if there is a positive integer n
such that X contains a linearly independent set of n vectors
whereas any set of n+ 1 or more vectors of X is linearly
dependent. n is called the dimension of X, written n = dim X.
By definition, X = {0} is finite dimensional and dim X = 0. If X
is not finite dimensional, it is said to be infinite dimensional.

Theorem 2.8 (Dimension of a subspace). Let X be an n-
dimensional vector space. Then any proper subspace Y of X has
dimension less than n-

Proof.

If n = 0, then X = {0} and has no proper subspace. If dim Y=0,
then Y={0}, and X+Y implies dim X=1. Clearly, dimY = dim X

8



= n. If dim Y were n, then Y would have a basis of n elements,
which would also be a basis for X since dim X = n, sothat X =Y.
This shows that any linearly independent set of vectors in Y
must have fewer than n elements, and dim Y < n.

Definition Y.9 [5]:-

(Normed space, Banach space):- A normed space X is a vector
space with a norm defined on it, A Banach space is a complete
normed space (complete in the metric defined by the norm; see
(1), below). Here a norm on a (real or complex) vector space X
is a real-valued function on X whose value at an x €X is denoted

by

[b:¢ (read "norm of x")

and which has the properties

(N1) IxlIZ0

(N2) Ixll=0 & X=0

(N3) Il axll=| a| IIxI

(N4) IXHYISUXNHNY v (12)
(Triangle inequality);

here x and y are arbitrary vectors in X and « is any scalar. A
norm on X defines a metric d on X which is given by

d(x,y) = lIx —yll (X, VEX) oo (13)

and is called the metric induced by the norm. The normed
space just defined is denoted by (X, | .Il) or simply by X. »

Examples 2.10 [2]:-



(1) Euclidean space R and unitary space c». These spaces were

defined in. They are Banach spaces with norm defined by

a 1/2
I~ (2 16F) " =VIaF+ &

(2) Space [P, Hilbert sequence space [?, Hélder and
Minkowski inequalities for sums. Let p = 1 be a fixed real
number. By definition, each element in the space [? is a

sequence x = (& j) = (&1, &,, ) of numbers such that
|€,|P + |&,|P + -+ converges; thus

z &P < oo (21, fixed) c.ooovnnn.. (15)
j=1
and the metric is defined by
(2)
o 1/p
p
d(x,y) = Z & =niP ) (16)
j=1
where y=(n;) and ), |77j |P< oo,
gt is Banach space with norm
. o p\/P
give by lell = (2520 16517) 7 e (A7)

10



this norm induces the metric in ...... (16)

d(x,y) =l x — y II= Z & =P | e, (18)
=1

Lemma 2.11 (Translation invariance) [4]. A metric d induced
by a norm on a normed space X satisfies .

d(x+a, y+a)=d(x, y)

d(ax,ay)=|a| dX,y).cceereeeeeennen. (19)
for all x, y, ae X and every scalar a.
Proof. We have
d(x+a, y+a)=llx+a-(y+a)ll=lx-yll=d(x, y)
and

d(ax, ay) = llax -ayll = |a| Ix =yl = |a] d(x, y).

Lemma 2.12 (Linear combinations)[4]:- Let {xi,......... ,Xn} be

a linearly independent set of vectors in a normed space X (of
any dimension). Then there is a number ¢ >0 such that for
every choice of scalars

Ap yeevennnnn , a,we have

Il agx;+......... +a,x, IZ c(laq|+...... +|a,]) (c>0)

11



3.section three

(linear operators)



3. linear operators

In calculus we consider the real line R and real-valued functions
on R (or on a subset of R).obviously, any such function is a
mapping of its domain into R. In functional analysis we
consider more general spaces, such as metric spaces and
normed spaces, and mappings of these spaces. In the case of
vector spaces and, in particular, normed spaces, a mapping is
called an operator. Of special interest are operators which
"preserve" the two alge-braic operations of vector space, in the
sense of the following definition.

Definition 3.1 [5]:-

(Linear operator):- A linear operator T is an operator such
that

(1) the domain D(T) of T is a vector space and the range R(T)
lies in a vector space over the same field,

(2) forall x,y € D(T)and scalars «,

T(x+y)=Ix+TY ... (20)
T'(ax)=alx

Note 3.2:-

Observe the notation; we write Tx instead of T(x); this
simplifica-tion is standard in functional analysis. Furthermore,

D(T) denotes the domain of T.

13



R(T') denotes the range of T.
N(T') denotes the null space of T.
Definition 3.3 [1]:-

null space of T is the set of all x € D(T) such that 7(x)=0.
(Another word for null space is "kernel.")

Note 3.4:-

we should also say somenthing about the use of arrows in
con-nection with operators. Let D(T) c X and R(T)c Y,
where X and Y are vector spaces, both real or both complex.
Then T is an operator from (or mapping of) D(T) onto R(T),

written

T:D(T)—R(T),

Clearly (20),is equivalent to
T(ox+By)=aTx+LTy ...cccceeeeene(21)

By taking a = 0 we obtain the following formula which we shall
need many times in our work:

14



Example 3.5 [3]:-

(1) Identity operator. The identity operator Ix: X —X is
defined by Ix* = x for all x € X. We also write simply I

for Ix; thus, Ix = x.

(2) Zero operator. The zero operator 0: X —Y is defined
by ox.= o for all x € X.

(3) Differentiation. Let X be the vector space of all
polynomials on [a, b]. We may define a linear operator
T on X by setting

TR(E) =X (B)sessssisssnsvinand (23)

for every x € X, where the prime denotes differentiation
with respect to t. This operator T maps X onto itself.

(4) Integration. A linear operator T from C[a, b] into itself
can be defined by

Tx(t) = | X(T)dT tefa,b].

(5) Multiplication by t. Another linear operator from C[a,
b] into itself is defined by

15



Tx(t) = BX(E). cvorseerserssnaress (24)

(6) Elementary vector algebra. The cross product with

(7)

one factor kept fixed defines a linear operator T : R’
— R’. Similarly, the dot product with one fixed factor

defines a linear operator T2 : R> — R, say,
Tox=x +a =E1011+ §2a2+ 303
where a =(a;)€R3 is fixed.

Matrices. A real matrix A = (ajx) with r rows and n
columns defines an operator T: R» —Rr by means of

y=Ax

where x = (§j) has n components and y = (nJ) has r
components and both vectors are written as column
vectors because of the usual convention of matrix
multiplication; writing y = Ax out, we have

o e
m a, &, .. £
2
1, A, Oy ... Oy,
_77r_ _arl . am_ é:
n

T is linear because matrix multiplication is a linear
operation
16



Theorem 3.6 [1](Range and null space) . Let T be a
linear operator. Then:

(a) The range R(T) is @ vector space.
(b) If dim D(T)=n<oo, then dimR(T)=n.
(c) The null space N(T) is a vector space.

Proof. (a) Wetake any yi,y= € R(T) and show that
ay: + By= € R(T) for any scalars «, B. Since yi1, y= € R(T),
we have y; = Tx;,y2 =Tx. for some x, , x- € D(T), and

ax; + Bx2 € D(T) because D(T) is a vector space. The
linearity of T yields

T(ax1+Bx2)=aTx1+BTX2=ay:+ Pye.

Hence ay1+fy: €R(T). Since y1,y. €ER(T) were arbitrary and so
were the scalars, this proves that R(T) is a vector space.

(b) We choose n+1 elements y;,:+,y n+1 0f R(T) in an arbitrary
fashion. Then we have y1=Tx,***,yn+1=Tn+: for some xi,***,Xn+11n
D(T). Since dim D(T)=n, this set {Xi,-:*,Xn+1 } must be linearly
dependent. Hence

X1+ .eenen +0Qn+1Xn+1=0

for some scalars ou,:-+,an+1, not all zero. Since T is linear and
To=0, application of T on both sides gives

T(a1x1+ .ot on+1Xn+1) =1y 1+ oo FQn+1Yn+1=0.

17



This shows that {yi, ..., yn+1} is a linearly dependent set because
the q; 's are not all zero. Remembering that this subset of R(T)
was chosen in an arbitrary fashion, we conclude that R(T) has
no linearly independent subsets of n+1 or more elements. By
the definition this means that dim R(T)=n.has no linearly
independent subsets of n+1 or more elements. By the definition
this means that dim R(T)=n.

TX1 =TX2

(c) We take any xi1,x2 € N(T). Then Tx: = Tx== 0. Since

T is linear, for any scalars a, B we have
T(ax1 + sz) = aTX] . g BTXQ = ().

This shows that aXi + BX= € N(T). Hence N(T) is a vector
space. e

18



4. section four

(Additional Results about Linear Operators)
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4. Additional Results about Linear Operators.
Definition 4.1 [1]:-

injective or one-to-one  Let us turn to the inverse of a
linear operator. We first remember

that a mapping T: D(T) —Y is said to be injective or one-to-one
if

different points in the domain have different images, that is, if
for any x1,x. € D(T)

X1#Xo = Tx:1#TX2;

equivalently,

Tx1=Tx2 = X1=X2

20



In this case there exists the mapping
T :R(T)— D(T)

Yo 2 Xo (Yo= Txo)

which maps every yo € R(T) onto that x, € D(T) for which
TXo=yO.

Figer(1) (the mapping 7'is called the inverse6 of T.)

Form(27), we clearly have

T 1Tx =x forall x € D(T)
TT ly =y forally € R(T)

21



Note 4.2:-

In connection with linear operators on vector spaces the
situation

is as follows. The inverse of a linear operator exists if and only if
the null space of the operator consists of the zero vector only.

Theorem 4.3 (Inverse operator). Let X, Y be vector spaces,
both real or both complex. Let T: D(T) — Y be a linear operator
with

Domain D(T) € X and rang R(T) c Y
(a) The inverse T~1: R(T) — D(T) exists if and only if

Tx=0 = x=0

(b) If T~! exists, it is a linear operator.

(c)IfdimD (T) =n < o and T~ exists, then dim R (T) =
dim D(T).

Proof.

(a) Suppose that Tx = 0 implies x = 0. Let Tx; = Tx,. Since T is
linear,

T(Xl'XQ) =TX1 'TX2= 0 )

so that x; — x, = 0 by the hypothesis. . Hence Tx; = Tx, implies
x, = x,, and T lexists by( 26). . Conversely, if T —1 exists, then
(26) holds. From 26 with x 2=0 and (23) we obtain

T x =T 0=0 = X 1=0.

This completes the proof of (a).
22



(b) We assume that T~! exists and show that T~1 is linear. The
domain of T~1 is R(T) and is a vector space by Theorem 3.6 (a)
. We consider any x,,x, € D(T) and

y; = Txq and vy = Tx,.
Then

T is linear, so that for any scalars @ and  we have

ay, + By, = aTx; + fTx, = T(ax; + Bx5).

Since x; = T™'y; , this implies

T~ ay, + By,) = axy + Bx; = aT ty, + BT 1y,

and proves that T~ is linear.

(¢) Wehave dim R (T) = dim D (T) by Theorem 3.6(b), and
dimD (T) < dimR (T) ) by the same theorem applied to T~ .

Lemma 4.4 [4] (Inverse of product). Let T: X — Y and
S:Y — Z Z be bijective linear operators, where X, Y, Z are vector
spaces (see Fig. inverse of product). Then the inverse

(ST)"1: Z — X of the product (the compos-ite) ST exists, and

(ST) L =T71871 ...l (28)

23



Proof.

The operator ST:X — Z is bijective, so that (ST) ™! exists. We
thus have

ST(ST)_l - IZ

where I, is the identity operator on Z. Applying S~! and using
S~1§ = I, (the identity operator on Y ), we obtain

S™IST(ST "' =T(ST ~'=5S"1, =51,

(ST)!

Figer(2) (inverse product).

Applying T~ and using T~!T = I, we obtain the desired result

T-1T(ST)™! = (ST)" = T~1§71.
This completes the proof.

24



5. section five

(Bounded and Continuous Linear Operators)
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5 .Bounded and Continuous Linear Operators

The reader may have noticed that in the whole last section we
did not make any use of norms. We shall now again take norms
into account, in the following basic definition.

Definitions.1 [5]:-

(Bounded linear operator). Let X and Y be normed spaces
and T: D(T) — Y alinear operator, where D(T) c X.The
operator T is said to be bounded if there is a real number c such
that for all x € D(T),

NTx NS c x|l coveeeeeeeeeeeenes (29)
Note 5.2: —

(1) In (29) the norm on the left is that on Y, and the norm on
the right is that on X. For simplicity we have denoted both
norms by the same symbol |||, . without danger of

confusion. Formula(29) shows that a bounded linear
operator maps bounded sets in D(T) onto bounded sets in Y.
This motivates the term "bounded operator."

(2) What is the smallest possible ¢ such that (29) still holds
for all nonzero x € D(T) ? [We can leave out x = 0 since
Tx = 0 for x = 0 By division,

™ < (x # 0)

x|l

26



and this shows that ¢ must be at least as big as the supremum of
the expression on the left taken over D(T) — {0}. Hence the
answer to our question is that the smallest possible ¢
mliTxI=cllxll

is that supremum. This quantity is denoted by || T II;

thus
IT = sup 220 . (30)
xep(T) I*I
x#0

| T |l is called the norm of the operator T. If D(T) = {0}, we
define || T [|l= 0; in this (relatively uninteresting) case, T = 0
since TO = 0

Note that (29) with ¢ =|I T || is

I Tx NS0T NI x 1 (31)

Lemma 5.3 [4](Norm). Let T be a bounded linear operator
as defined in 5.1 . Then:
(a) An altemative formula for the norm of T is

ITIl= sup N TxIl -, (32)
x€D(T)
lxll=1

(b) The norm defined by (2) satisfies (Normed space Definition
(2.9))

27



Proof. (a) We write || x l= a and set y = (1/a)x, where x # 0.
Then || y I=Il x lI/a = 1, and since T is linear, (30) gives

ITI= sup ~ITxl= sup |T(x)|= sup ITyl
x€D(T) ¢ x€D(T) a y€eD(T)
x#0 x#0 lyll=1

Writing x for y on the right, we have (32).

(b) (N1) is obvious, and sois 0 [[= 0. From || T ||= 0 we
have Tx = 0 for all x € D(T), so that T = 0. Hence (N2) holds.
Furthermore, (N3) is obtained from

sup |l aTx ||I= sup |a| Il Tx l= |a| sup |l Tx I
locll=1 llcll=1 llocll=1

where x € D(T). Finally, (N4) follows from

sup [(T; + T,)x|l = sup [ITyx + Tox|l < sup T x|l + sup T, x|l
lxll=1 lxll=1 lxll=1 lxl=1

here, x € D(T).

Examples 5.4 [2]:-

(1)Identity operator. The identity operator I: X — X on a
normed space X # {0} is bounded and has norm || I ||= 1.

(2) Zero operator. The zero operator 0: X — Y on a normed
space X is bounded and has norm || 0 ||= 0.

(3) Differentiation operator. Let X be the normed space of
all polynomials on J = [0,1] with norm given || x ||=
max|x(t)|,t € J. A differentiation operator T is defined on X by

28



Tx(t) = x'(t)

where the prime denotes differentiation with respect to t. This
operator is linear but not bounded. Indeed, Iet x,,(t) = t",
where n € N. Then ||lx,|| = 1 and

Tx,(t) = x, ' '(t) =nt" 1!

so that [|Tx, || = n and ITx,|l/| x, || = n. Since n € N is arbitrary,
this shows that there is no fixed number ¢ such that

ITx,l/llx, |l = c. From this and (29) we conclude that T is not
bounded.

(4) Integral operator. We can define an integral operator
T:C[0,1]- C[0,1] by
y=Tx where y(t)= [ k(t)x(r)dr.

Here k is a given function, which is called the kernel of T and is
assumed to be continuous on the closed square G = ] X J in the
t tT-plane, where /] = [0,1]. This operator is linear.

T is bounded.

To prove this, we first note that the continuity of k on the closed
square implies that k is bounded, say, |k(¢t, )| = k, for all

(t,7) € G, where k, is a real number. Furthermore,

< =
lx(®)] < rg(gXIx(t)I I Il.
Hence
1
Iy =l Tx | —n?éajx| [} k(e D)x(r)dr
1
= max Jy 1kt DIlx(@)|dz

<kl xl.

29



The resultis || Tx II< ko Il x Il. T is bounded.

Theorem 5.5 [1](Finite dimension). If a normed space X is
finite dimensional, then every linear operator on X is bounded.

Proof. Let dim X = n and {e;, -+, e, } a basis for X. We take any

X =Y¢ e; and consider any linear operator T on X. Since T is
linear,

ITxi= ) &Tel= > |& |ITel < maxired ) |g]

(summations from 1 to n ). To the last sum we apply Lemma
2.12 with a; = ¢; and x; = e,.. Then we obtain

1 1
> 1<l §;|Z €l = Il
Together,
ITxI<y|xll where y= %mI?XIITekII

T is bounded
Definition 5.6 [3]:-

(continuous mapping) :-We shall now consider important
general properties of bounded linear operators.

Let T: D(T) — Y be any operator, not necessarily linear, where
D(T) c X and X and Y are normed spaces. By Def (5.6 )the
operator T is continuous at an x, € D(T) if for every € > 0 there
isa § > 0 such that

ITx — Tx,ll < € forall x € D(T) satisfying [lx — x,ll < 6.

30



T is continuous if T is continuous at every x € D(T).

Theorem 5.7 [5] (Continuity and boundedness).

Let T:D(T) — Y be a linear operator, where D(T) c X and X,Y
are normed spaces. Then:

(a) T is continuous if and only if T is bounded.
(b) If T is continuous at a single point, it is continuous.

Proof.

(a) For T = 0 the statement is trivial. Let T # 0. Then || T [|# 0.
We assume T to be bounded and consider any x, € D(T), Let
any € > 0 be given. Then, since T is linear, for every x € D(T)
such that

£
T

lx — xoll < &6 where 6§ =

we obtain

ITx — Txoll = ITx —x )N SNT N llx —x0ll <IT N 6 = €.

Since x, € D(T) was arbitrary, this shows that T is continuous.
Conversely, assume that T is continuous at an arbitrary

Xo € D(T). Then, given any € > 0, there is a § > 0 such that
(33) ITx — Tx,ll = € for all x € D(T) satisfying [lx — x,ll < 6.
We now take any y # 0 in D(T) and set

+ Th d
X=X V. en x — xop = —
*Tuyn? TIYNTR

Hence [|x — x,ll = 6, so that we may use (33). Since T is linear,
we have
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ITx = Txol = ITCe = xo)ll = |7 ()| =55 1 Ty

and (33) implies

O ITyl<e Thus ITyl<S1y 1
— < ¢. Thus <=
iyn' yisshy
This can be written || Ty lI< ¢ |l y I, where ¢ = ¢/§, and shows
that T is bounded.

(b) Continuity of T at a point implies boundedness of T by the

second part of the proof of (a), which in turn implies continuity
of T by (a).

Corollary 5.8 [2] (Continuity, null space). Let T be a
bounded linear operator. Then:

(a) x, — x[ where x,,x € D(T)] implies Tx,, — Tx.

(b) The null space NV (T) is closed.

Proof.

(a) follows from (22) because, as n — oo,
ITx, — Txll = ITCx, =) <N T Il lx, —xI — O

(b) For every x € V' (T) there is a sequence (x,,) in V' (T) such
that x,, — x.Hence Tx,, — Tx by part (a) of this Corollary. Also
Tx = 0 since Tx,, = 0, so that x € V'(T). Since x € N (T) was
arbitrary, V' (T) is closed.

Definition 5.9 [1]:-
Two operators T; and T, are defined to be equal, written

T]_ =T2
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if they have the same domain D(T;) = D(T,) and if T;x = T,x
for all x € D(T;) = D(T,).

The restriction of an operator T: D(T) — Y to a subset B c D(T)
is denoted by

Tlp
and is the operator defined by
T|g:B —Y, T|gx =Txforallx € B

Theorem 5.10 (Closure, closed set). Let M be a nonempty
subset of a metric space (X, d) and M its closure as defined in
the previous section.

Then:
(a) x eM if and only if there is a sequence (xn ) in M such that
Xn— X
(b) M is closed if and only if the situation x, € M, x — x implies
that x e M
Theorem 5.11 [3](Bounded linear extension). Let

T:D(T) — Y

be a bounded linear operator, where D (T) lies in a normed
space X and Y is a Banach space. Then T has an extension

T:D(T) > Y

where T is a bounded linear operator of norm || T I=[ T |
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6.section Six

(Linear Functionals)
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6.Linear Functionals

A functional is an operator whose range lies on the real line R
or in the complex plane C. And functional analysis was initially
the analysis of functionals. The latter appear so frequently that
special notations are used.

We denote functionals by lowercase letters f, g, h, ..., the
domain of f by D(f), the range by R(f) and the value of f at an
x € D(f) by f(x), with parentheses.

Functionals are operators, so that previous definitions apply.
We shall need in particular the following two definitions
because most of the functionals to be considered will be linear

and bounded.

Definition 6.1 [4] (Linear functional):- A linear functional
f is a linear operator with domain in a vector space X and range
in the scalar field K of X; thus,

£:D(f) = K
where K = Rif X isreal and K = C if X is complex.

Definition 6.2 [3] (Bounded linear functional):- A
bounded linear functional f is a bounded linear operator with
range in the scalar field of the normed space X in which the
domain D (f) lies. Thus there exists a real number c such that
for all x € D(f),

FOScllxll vovvnininnnn.. (34)

35



Furthermore, the norm of f is

| Fll= sup L&
x€D(f) 11l
x#0

I flI= sup |f(x)].
x€D(f)

lxll=1

Formula (31) in implies

FEI <N e, (36)

Theorem 6.3 [1] (Continuity and boundedness). A linear
functional f with domain D(f) in a normed space is continuous
if and only if f is bounded.

Examples 6.4 [1]:-
(1) Norm. The norm ||-]: X — R on a normed space (X, [I-]) is a
functional on X which is not linear.

(2) Dot product. The familiar dot product with one factor kept
fixed defines a functional f: R3> — R by means of

f(X)=x-a=3§ua+&ay +&3a3

where a = (a;) € R is fixed.
f is linear. f is bounded. In fact,

IfCOl=Ix+al<llxllllal
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sothat || f [I=] a |l follows from (35) if we take the supremum
over all x of norm one. On the other hand, by taking x = a and
using (36) we obtain

If(@] lal?
lall  lal

Hence the normof fis |l f =l a |l.

I f =

=l all

(3) Space C[a, b]. Another practically important functional on
C[a, b] is obtained if we choose a fixed t, € ] = [a, b] and set

fi(x) = x(to) x €
Cla, b].

f1 is linear. f; is bounded and has norm ||f;|| = 1. In fact, we
have

GOl = xRl =l x 1T,

and this implies ||f; || < 1 by (35). On the other hand, for x, = 1
we have |[|x,]l = 1 and obtain from (36)

Ifill 2 |fi(xo)| = 1.

(4) Space 2. We can obtain a linear functional f on the
Hilbert space [ by choosing a fixed a = («;) € [* and setting

f(x) = i $ia;
=1

where x = (¢;) € [?. This series converges absolutely and f is
bounded, since the Cauchy-Schwarz inequality gives
(summation over j from 1to x )

Fel =]y gal <Y laals D 16R Y lak =ixmal
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