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Abstract 

 
We study a special class of Banach spaces, namely Hilbert spaces, in 
which the presence of a so-called "inner product" allows us to define 
angles between elements. In particular, we can introduce the 
geometric concept of orthogonality. This has far-reaching 
consequences 
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Introduction 
In the preceding chapters, we discussed normed linear spaces and Banach spaces. These 
spaces has linear properties as well as metric properties. Although the norm on a 
linear space generalizes the elementary concept of the length of a vector, but the main 
geometric concept other than the length of a vector is the angle between two vectors, In 
this chapter, we take the opportunity to study linear spaces having an inner product, a 
generalization of the usual dot product on finite dimensional linear spaces. The concept 
of an inner product in a linear space leads to an inner product space and a complete 
inner product space which is called a Hilbert space. The theory of Hilbert Spaces does 
not deal with angles in general. Most interestingly, it helps us to introduce an idea of 
perpendicularity for two vectors and the geometry deals in various fundamental aspects 
with Euclidean geometry. 

The basics of the theory of Hilbert spaces was given by in 1912 by the work of 
German mathematician D. Hilbert (1862 -1943) on integral equations. However, an 
axiomatic basis of the theory was given by famous mathematician J. Von Neumann 
(1903 -1957). However, Hilbert spaces are the simplest type of infinite dimensional 
Banach spaces to tackle a remarkable role in functional analysis. 
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1.Inner Product Spaces 
Definition 1.1 : Let,  be a linear space over a field of complex numbers. If for 
every pair ( , ) ∈ ×  there corresponds a scalar denoted by ⟨ , ⟩ called inner 
product of  and  of  such that the following properties hold. 
(IP.1) ⟨ , ⟩ = ⟨ , ⟩ where ( , ) ∈ ×  and denotes the conjugate of the 
complex number. 
(IP.2) for all ∈ ℂ, 

⟨ , ⟩ = ⟨ , ⟩, ∀( , ) ∈ × . 
(IP.3) for all , , ∈  

⟨ + , ⟩ = ⟨ , ⟩ + ⟨ , ⟩. 
(IP.4) ⟨ , ⟩ ≥ 0 and ⟨ , ⟩ = 0 iff = . 
Then ( , ⟨⟩.) − . 
Remark 1.2: The following properties hold in an inner product space. 
Let  be an inner product space then, 
(i) for all , ∈ ℂ, ⟨ + , ) = ⟨ , ⟩ + ⟨ , ⟩ ∀ , , ∈ . 
(ii) for all ∈ ℂ⟨ , ⟩ = ‾⟨ , ⟩ ∀ , ∈  
(iii) for all , ∈ ℂ ∀ , , ∈ . 

⟨ , + ⟩ = ‾⟨ , ⟩ + ‾⟨ , ⟩. 
Remark 1.3: Inner product induces a norm. For this we proceed as follows: 
Proof: Let  be an inner product space. Take ∈  
Define ∥ ∥= + ⟨ , ⟩ 
Now, ∥ ∥≥ 0 as ⟨ , ⟩ ≥ 0 by (IP.4). 
Also, ∥ ∥= 0 iff =  by (IP.4) 
Take ∈ ℂ so, 

∥ ∥  = ⟨ , ⟩, ∈
 = ‾⟨ , ⟩, ∈
 = | | ∥ ∥ ,  ∈

 so ∥ ∥  == | | ∥ ∥,  ∈
 

 

(1) 
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2. Cauchy Schwarz Inequality  
To prove the triangle inequality we first state and prove Cauchy Schwarz Inequality 

|⟨ , ⟩| ≤∥ ∥∥ ∥  ∀ , ∈  
Proof: If =  then the result follows trivially. 
Let ≠ . Then for every scalars ∈ ℂ, 

 ⟨ + , + ⟩ ≥ 0
 ⟹  ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩ ≥ 0  (By (IP.3)) 
 ⟹  ⟨ , ⟩ + ‾⟨ , ⟩ + ⟨ , ⟩+∥ ∥ ≥ 0
 ⟹  ∥ ∥ + ‾⟨ , ⟩ + ⟨ , ⟩ + | | ∥ ∥ ≥ 0
 Take  = − ⟨ , ⟩

⟨ , ⟩
 So,  ∥ ∥ − ⟨ , ⟩⟨ , ⟩

∥ ∥ − ⟨ , ⟩⟨ , ⟩
∥ ∥ + |⟨ , ⟩|

∥ ∥ ∥ ∥ ≥ 0. 
 So,  ∥ ∥ − |⟨ , ⟩|

∥ ∥ − |⟨ , ⟩|
∥ ∥ + |⟨ , ⟩|

∥ ∥ ≥ 0

 

 So ∥ ∥ − |⟨ , ⟩|
∥ ∥ ≥ 0

⟹ ∥ ∥ ∥ ∥ ≥ |⟨ , ⟩|
⟹ ∥ ∥∥ ∥≥ |⟨ , ⟩|

 

 
Sometimes this inequality is abbreviated as C-S inequality. We see that equality 
sign will hold if and only if in above derivation ⟨ + , + ⟩ = 0 ⟹∥ +

∥ = 0 ⟹ + = , i.e  and  are linearly dependent. 
We shall now prove triangle inequality for norm. Now ∀ , ∈ . 

(2) 
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 Now, ∥ + ∥ = ⟨ + , + ⟩
 = ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩
 =∥ ∥ +∥ ∥ + ⟨ , ⟩ + ⟨ , ⟩
 So, ∥ + ∥ = |∥ ∥ +∥ ∥ + ⟨ , ⟩ + ⟨ , ⟩|
 ≤∥ ∥ +∥ ∥ + |⟨ , ⟩ + ⟨ , ⟩|
 ≤∥ ∥ +∥ ∥ + 2 ∥ ∥∥ ∥
 = (∥ ∥ +∥ ∥)

 

So, ∥ + ∥≤∥ ∥ +∥ ∥. 
Hence, inner product induces a norm and consequently every inner product space 
is a normed linear space. 
Remark 2.1 : So every inner product space is a metric space and the metric 
induced by inner product is defined as follows: for all , ∈  define : × →
ℝ by 
                          ( , ) =∥ − ∥= + ⟨ − , − ⟩    
Theorem 2.2: Every inner product function is a continuous function. 
(Equivalently, if : × → ℂ defined by ( , ) = ⟨ , ⟩, ∀ , ∈  then  is 
continuous). 
Proof: 
 Let  be an inner product space. Define : × → ℂ by ( , ) = ⟨ , ⟩,  ∀ , ∈

. Now take { } and { } be a sequence in  such that →  as 
→ ∞ and →  as → ∞ 

So, ∥∥ − ∥∥ → 0 as → ∞ and ∥∥ − ∥∥ → 0 as → ∞. 
As, →  as → ∞ then, ∥∥ ∥∥ →∥ ∥ as → ∞. 
So, {∥∥ ∥∥} are bounded. So, there exists a constant > 0 such that ∥∥ ∥∥ ≤ ,  ∀  
Now,  |⟨ , ⟩ − ⟨ , ⟩| 

       (3) 
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 = |⟨ , ⟩ − ⟨ , ⟩ + ⟨ , ⟩ − ⟨ , ⟩|
 = |⟨ , − ⟩ + ⟨ − , ⟩|
 ≤ |⟨ , − ⟩|+∣ ⟨ − , ⟩
 ≤ ∥∥ ∥∥∥∥ − ∥∥ + ∥∥ − ∥∥ ∥ ∥   [By C-S inequality( 2)] 
 ≤ ∥∥ − ∥∥ + ∥∥ − ∥∥ ∥ ∥
 → 0 as → ∞

 

i.e ⟨ , ⟩ → ⟨ , ⟩ as → ∞, implying that ( , ) → ( , ) as → ∞. So,  
is continuous. 
Theorem 2.3: (Parallelogram Law): Let  be an inner product space and let 

, ∈ . Then, 
∥ + ∥ +∥ − ∥ = 2(∥ ∥ +∥ ∥ ) 

Proof: 
∥ + ∥  = ⟨ + , + ⟩ = ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩

 =∥ ∥ +∥ ∥ + ⟨ , ⟩ + ⟨ , ⟩
 and ∥ − ∥  = ⟨ − , − ⟩ = ⟨ , ⟩ + ⟨ , − ⟩ + ⟨− , ⟩ + ⟨− , − ⟩

 =∥ ∥ +∥ ∥ − ⟨ , ⟩ − ⟨ , ⟩
 

Adding (4) and (5) we get 
∥ + ∥ +∥ − ∥ = 2(∥ ∥ +∥ ∥ ) 

Theorem2.4  (Polarization Identity): Let  be an inner product space, let , ∈ 
. Then 

⟨ , ⟩ = [∥ + ∥ −∥ − ∥ + ∥ − ∥ − ∥ − ∥ ] 
Proof: 
Now, ∥ + ∥ =∥ ∥ +∥ ∥ + ⟨ , ⟩ + ⟨ , ⟩ 

∥ − ∥ =∥ ∥ +∥ ∥ − ⟨ , ⟩ − ⟨ , ⟩ 
 
Replacing  by  in (7) and (8) 

(4) 

(5) 

(6) 

(7) 

(8) 
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∥ + ∥  =∥ ∥ +∥ ∥ + ⟨ , ⟩ + ⟨ , ⟩
 =∥ ∥ +∥ ∥ − ⟨ , ⟩ + ⟨ , ⟩

∥ − ∥  =∥ ∥ +∥ ∥ − ⟨ , ⟩ − ⟨ , ⟩
 =∥ ∥ +∥ ∥ + ⟨ , ⟩ − ⟨ , ⟩

 

(7) − (8) + (9) − (10), we get (6). Hence the result 
Theorem ٢.٥ : Let  be an inner product space. Then 
(i) Every Cauchy sequence is bounded 
(ii) If { } and { } are two Cauchy sequences in  then {⟨ , ⟩} is also a 
Cauchy sequence in ℂ and hence convergence in ℂ. 
Proof: 
 (i) Let, { } be a Cauchy sequences in . Then for = 1 there exists a positive 
integer  such that, ∥∥ − ∥∥ < 1, whenever, , ≥ . In particular, ∥∥ −

∥∥ < 1, whenever ≥ . 
Now, ∥∥ ∥∥ ≤ ∥∥ − ∥∥ + ∥∥ ∥∥ < 1 + ∥∥ ∥∥∀ ≥ . 
Let, = max{∥∥ ∥∥, ∥∥ ∥∥, ⋯ , ∥∥ ∥∥, ∥∥ ∥∥ + 1} so, ∥∥ ∥∥ ≤  ∀  so, { } is 
bounded. 
(ii) Let { }, { } be two Cauchy sequences in . 
So, ∥∥ − ∥∥ → 0 as , → ∞ and ∥∥ − ∥∥ → 0 as , → ∞. 
Also, by (i) ∥∥ ∥∥ ≤  for all  and for some > 0. Similarly ∥∥ ∥∥ ≤ , for some 

> 0 and ∀ . 

 Now, 
|⟨ , ⟩ − ⟨ , ⟩|

= |⟨ , ⟩ − ⟨ , ⟩ + ⟨ , ⟩ − ⟨ , ⟩|
= |⟨ , − ⟩ + ⟨ − , ⟩|
≤ |⟨ , − ⟩| + |⟨ − , ⟩|

 

≤ ∥∥ ∥∥∥∥ − ∥∥ + ∥∥ − ∥∥∥∥ ∥∥ (By C-S inequality) 
≤ ∥∥ − ∥∥ + ∥∥ + ∥∥

 → 0  as , → ∞
 

So, {⟨ , ⟩} is a Cauchy sequences of scalars in ℂ. As ℂ is complete, {⟨ , ⟩} is 
convergent in ℂ. 
 
 

(9) 

(10) 
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3. Hilbert space  
Definition 3.1: A complete inner product space is called a Hilbert space i.e. an 
inner product space  which is complete with respect to a metric : × → ℝ 
induced by the inner product ⟨,⟩ ×  i.e. ( , ) = ⟨ − , − ⟩ / ∀ , ∈

. 
Theorem 3.2 : A Banach space  is a Hilbert space if and only if parallelogram 
law holds in it. 
Proof: 
 We know that every Hilbert space  is a Banach space where parallelogram law 
holds in it. 
Conversely suppose that  is a Banach space where parallelogram law holds. 
Without loss of generality we can assume a function ⟨,⟩ . For all 

, ∈ . 
Define ⟨⟩: , × → ℝ by 

⟨ , ⟩ = 1
4 [∥ + ∥ −∥ − ∥ ] 

i.e. for real inner product space we start with (9.1.11) and sometimes we write 
⟨ , ⟩ = [∥ + ∥ −∥ − ∥ ],  ∀ , ∈ . Clearly ⟨ , ⟩ = ⟨ , ⟩ as ⟨ , ⟩ 

is real. Also ⟨ , ⟩ ≥ 0 ∀ ∈  and ⟨ , ⟩ = 0 iff = 0. So, (IP.1) and (IP.4) 
holds. 
Now, for , , ∈  

 ∥ + + ∥ +∥ + − ∥ = 2(∥ + ∥ +∥ ∥ )
 ∥ − + ∥ +∥ − − ∥ = 2(∥ − ∥ +∥ ∥ ) 

By (12) − (13) we get 
∥ + + ∥ +∥ + − ∥ −∥ − + ∥ +∥ − − ∥
= 2(∥ + ∥ −∥ − ∥ )

⟹  4[⟨ + , ⟩ + ⟨ − , ⟩] = 2.4⟨ , ⟩
⟹  ⟨ + , ⟩ + ⟨ − , ⟩ = 2⟨ , ⟩
 Put,  =

⟨2 , ⟩ = 2⟨ , ⟩

 

(11) 

(13) 
(12)

(14)

(15)
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Again put, = + , = − , =  then from (14) we get 
⟨ , ⟩ + ⟨ , ⟩  = 2⟨ , ⟩ = ⟨2 , ⟩ ( by (15))

 = ⟨ + , ⟩  

So, (IP.3) holds. 
From (16) for , , , ∈ , 

⟨ + + , ⟩ = ⟨ + , ⟩ + ⟨ , ⟩ = ⟨ , ⟩ + ⟨ , ⟩ + ⟨ , ⟩ 
Put = = = , =  i.e. ⟨3 , ⟩ = 3⟨ , ⟩. 
So, by Principle of Mathematical Induction for any positive integer  
⟨ , ⟩ = ⟨ , ⟩ ∀ , ∈  

 Now, ⟨− , ⟩  = [∥ − + ∥ −∥ − − ∥ ]
 = [−∥ + ∥ +∥ − ∥ ] = −⟨ , ⟩ 

Take, = − ( > 0) 
⟨ , ⟩ = ⟨− , ⟩  = ⟨ (− ), ⟩

 = ⟨− , ⟩ ( by (9.1.17))
 = − ⟨ , ⟩ ( by (9.1.18)) 
 = ⟨ , ⟩

 

So (17) is also true for any negative integer. Thus ⟨ , ⟩ = ⟨ , ⟩, when  is 
either positive integer or a negative integer. 
Take = / = a rational number where, gcd ( , ) = 1 and  and  are integer. 
           Now ⟨ , ⟩  = ,

 So ⟨ , ⟩  = , = ⟨ , ⟩ = ⟨ , ⟩
⟹ ⟨ , ⟩  = ⟨ , ⟩
⟹ ,  = ⟨ , ⟩

 

Let,  be any real. So there exists a sequence of rationals { } such that →  as 
→ ∞. So, ⟨ , ⟩ = ⟨ , ⟩ → ⟨ . ⟩ as → ∞ 

(16)

(17)

(18)

(19)



11  

Now,  |⟨ , ⟩ − ⟨ , ⟩| 
= |⟨( − ) , ⟩| ≤ ∥∥( − ) ∥∥ ∥ ∥ (by C-S inequality (2)) 
= | − | ∥ ∥∥ ∥→ 0 as → ∞ 
⟨ , ⟩ → ⟨ , ⟩ as → ∞. So, ⟨ , ⟩ = ⟨ , ⟩∀ , ∈ . So, (IP.2) holds. 
So,  is an inner product space with respect to (11) consequently,  is a Hilbert 
space. 
Note: For a complete inner product space we start with ⟨ , ⟩ = [∥ + ∥ −∥

− ∥ ], Im ⟨ , ⟩ = [∥ + ∥ −∥ − ∥ ], ∀ , ∈  and the proof is 
similar to the proof of real inner product space. (Readers can verify it) 
 
Example 3.3: The Euclidean space ℝ  is a Hilbert space. 
Solution: Let = ( , , ⋯ , ) and = ( , , ⋯ , ) be two element of ℝ . 
We define the inner product of  and  by ( , ) = + + ⋯ + . Then 
∥ ∥= ⟨ , ⟩ = ( + + ⋯ + ) . It may be easily verified that all the inner 
product axioms are satisfied in ℝ  and the Euclidean metric  is obtained by 
( , ) = ∥ − ∥= ⟨ − , − ⟩ = ∑  ( − ) . With respect to this 
metric we can at once see that ℝ  is complete so as to make ℝ , a Hilbert space. 
 
Example 3.4: The Euclidean space ℂ  is a Hilbert space. 
Solution: Let = ( , , ⋯ , ) and = ( , , ⋯ , ) be two elements of ℂ . 
We define the inner product of  and  by 

⟨ , ⟩ = + + ⋯ + . 
Then ∥ ∥= ⟨ , ⟩ = (| | + | | + ⋯ + | | ) . It may be easily verified that 
all the inner product axioms are satisfied in ℂ  and the Euclidean metric  is 
obtained by ( , ) =∥ − ∥= ⟨ − , − ⟩ = ∑  ( − ) . With 
respect to this metric we can at once see that ℂ  is complete so as to make ℂ , a 
Hilbert space. 
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Example 3.5: The space  is a Hilbert space. 
Solution: Let = { } and = { } be elements of . We define the inner product 
of  and  by ⟨ , ⟩ = ∑    convergence of the series on the right hand side 
follows from the fact that ∈  and | | ≤ | | + | | . 

Then ∥ ∥= ⟨ , ⟩ = (∑   ) . It can be easily shown that all the inner product 
axioms (IP.1) -(IP.4) are satisfied in . The metric  of  is defined by ( , ) = 
∥ − ∥= ⟨ − , − ⟩ = (∑  | − | ) . With respect to this metric we 
can at once see that  is complete so as to make  a Hilbert space. 
But for 1 ≤ < ∞,  ( ≠ 2 is not a Hilbert space. It can be shown by the 
following example. 
Example 3.6: For 1 ≤ < ∞, ( ≠ 2) is not an inner product space and hence 
not a Hilbert space. 
Solution: Let = (1,1,0,0, ⋯ ) ∈  and = (1, −1,0,0, ⋯ ) ∈ . Then ∥ ∥= 
∥ ∥= 2  and ∥ + ∥=∥ − ∥= 2. Now we see that if ≠ 2, the 
parallelogram law does not hold. 
Hence 1 ≤ < ∞ ( ≠ 2) is not an inner product space and consequently it is 
not a Hilbert space. 
Example 3.7 : The space [ , ] of all real valued continuous in the closed interval 
[ , ] is not an inner product space with respect to sup norm and hence not a 
Hilbert space. 
Solution: Here the norm defined by ∥ ∥= sup  | ( )|. Take ( ) = 1, ∀ ∈
[ , ] and ( ) = , ∀ ∈ [ , ]. Then ∥ ∥= 1, ∥ ∥= 1, ∥ + ∥= 2, ∥ −

∥= 1. By simple calculations we see that parallelogram law does not hold in it. 
Hence [ , ] is not a Hilbert space. 
 
Example 3.8 : The space [ , ], the space of all square integrable functions over 
[ , ] is a Hilbert space. 



13  

Solution: Define the inner product on [ , ] by 
⟨ , ⟩ = ∫  | ( ) ( )| , ∀ , ∈ [ , ] and the norm on [ , ] is given by 
∥ ∥= ∫  | ( )| . Also with respect 
to this norm it can be shown that [ , ] is complete with respect to a metric 
defined by 

( , ) =     | ( ) − ( )|  

So [ , ] is a Hilbert space. 
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4. Orthogonal Projection 
Lemma 4.1: Let  be an inner product space. Then (.|.) : X×X K is continuous. 
Proof. Let →  and → . Then : = sup ∈ℕ  ∥∥ ∥∥ < ∞. By the Cauchy-
Schwarz inequality, 

|( ∣ ) − ( ∣ )|  ≤ |( ∣ − )| + |( − ∣ )|
 ≤ ∥∥ − ∥∥+∥ ∥ ∥∥ − ∥∥ → 0 

In this section we show that in a Hilbert space one can project onto any closed 
subspace. In other words, for any point there exists a unique best approximation in 
any given closed subspace. For this the geometric properties arising from the inner 
product are crucial. 
Definition 4.2: Let ( , (⋅∣⋅)) be an inner product space. We say that two vectors 

, ∈  are orthogonal (and write ⊥  ) if ( ∣ ) = 0. Given a subset ⊂ , the 
annihilator  of  is defined by 

: = { ∈ : ⊥  for all ∈ } 
If  is a subspace, then  is also called the orthogonal complement of . 
In an inner product space the following fundamental and classic geometric identity 
holds. 
Lemma 4.3 (Pythagoras): Let  be an inner product space. If ⊥ , then 

∥ + ∥ =∥ ∥ +∥ ∥  
Proof. 

∥ + ∥ =∥ ∥ + 2Re ( ∣ )+∥ ∥ =∥ ∥ +∥ ∥ . 
 
Proposition 4.4: Let  be an inner product space and ⊂ . 
(a)  is a closed, linear subspace of . 
(b) span ⊂ ( ) . 
(c) span ∩ = {0}. 
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Proof: 
 (a) If , ∈  and ∈ , then, for ∈ , we have ( + ∣ ) = ( ∣ ) +
( ∣ ) = 0, hence + ∈ . This shows that  is a linear subspace. If ( ) is 
a sequence in  which converges to , then we infer from Lemma 4.1 that 
( ∣ ) = lim( ∣ ) = 0 for all ∈ . 
(b) By (a), ( )  is a closed linear subspace which contains . Thus span ⊂
( )  
(c) If ∈ span ∩ , then, by (b), ∈ ∩ ( )  and hence ⊥ . But this 
means ( ∣ ) = 0. By (IP1) it follows that = 0. 
We now come to the main result of this section. 
 
Theorem 4.5: Let ( , (⋅∣⋅)) be a Hilbert space and ⊂  be a closed linear 
subspace. Then for every ∈ , there exists a unique element  of  such that 

∥∥ − ∥∥ = min{∥ − ∥: ∈ } 
Proof: 
 Let : = inf{∥ − ∥: ∈ }. By the definition of the infimum, there exists a 
sequence ( ) in  with ∥∥ − ∥∥ → . Applying the parallelogram identity 4.8 to 
the vectors −  and − , we obtain 

2 ∥∥ − ∥∥ + ∥∥ − ∥∥
 = ∥∥( − ) + ( − )∥∥ + ∥∥ − − ( − )∥∥
 = ∥∥2 − − ∥∥ + ∥∥ − ∥∥
 = 4 ∥∥∥ − 1

2 ( + )∥∥∥ + ∥∥ − ∥∥ .
 

Since : = ( + ) ∈ , we have ∥∥ − ∥∥ ≥  and thus 
∥∥ − ∥∥ ≤ 2 ∥∥ − ∥∥ + ∥∥ − ∥∥ − 4  

By the choice of the sequence ( ), the right-hand side of this equation converges 
to 0 as , → ∞, proving that ( ) is a Cauchy sequence. Since  is complete, 
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( ) converges to some vector . Since  is closed, ∈ . We have thus 
proved existence. 
As for uniqueness, if ∥ − ∥= min{∥ − ∥: ∈ }, then, by the 
parallelogram identity, 

2∥∥ − ∥∥ + 2 ∥ − ∥ = 4 ∥∥∥ − 1
2 ( + )∥∥∥ + ∥∥ − ∥∥  

and thus 

4 = 4 ∥∥∥ − 1
2 ( + )∥∥∥ + ∥∥ − ∥∥ ≥ 4 + ∥∥ − ∥∥  

proving that ∥∥ − ∥∥ = 0; hence = . 
Definition 4.6: The map : →  from Theorem 4.5 is called the orthogonal 
projection onto . 
We now collect some properties of . 
Proposition 4.7: Let  be a Hilbert space,  be a closed subspace of  and  be 
the orthogonal projection onto . 
(a) For all , ∈ , we have =  if and only if ∈  and − ∈ . 
(b)  is a bounded linear operator on . 
(c) =  and ( ∣ ) = ( ∣ ) for all , ∈ . 
 
Proof: 
 
 (a) If ∈  and − ∈ , then for every ∈  we have − ∈  and 
thus − ⊥ − . By Pythagoras, 

∥ − ∥ =∥ − ∥ +∥ − ∥ ≥∥ − ∥ . 
Thus ∥ − ∥= min{∥ − ∥: ∈ }, proving that = . 
Conversely, if = , then clearly ∈ . Assume that − ∉ . Then 
there exists ∈ ∖ {0} with ( − ∣ ) ≠ 0. We may assume that ( − ∣

) = 1 (otherwise, we divide  by ( − ∣ )). Then, for ∈ ℝ, 
∥ − − ∥  =∥ − ∥ − 2Re ( − ∣ ) + ∥ ∥

 =∥ − ∥ − 2 + ∥ ∥  
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The latter is strictly less than ∥ − ∥  for small > 0, for example if 
∥ ∥ < 2 , i.e. < 2 ∥ ∥ . Hence we find an element in , namely 

+∥ ∥ , for example, which is closer to  than to . But then ≠ . 
 
(b) Let , ∈  and ∈ . By (a), − , − ∈ . Since  is a 
subspace by Proposition 4.4, − + − = ( + ) −
( + ) ∈ . Since + ∈ , it follows from (a) that ( +

) = + , i.e.  is linear. As for the boundedness, observe that 
= + ( − ) where ⊥ −  by (a). Thus, by Pythagoras, 

∥ ∥ = ∥∥ ∥∥ + ∥∥ − ∥∥ ≥ ∥∥ ∥∥ , 
proving the boundedness of . 
(c) ∈  and 0 = − ∈ . Hence, by (a), = . 
For the second part, observe that 

( ∣ ) = ( ∣ ) + ( ∣ − ) = ( ∣ ) 
since − ∈  and ∈  by (a). Similarly, one sees that ( ∣ ) = 
( ∣ ) 
We can now refine Proposition 4.4 for linear subspaces. 
 
Corollary 4.8: If  is a Hilbert space and  is a linear subspace of  then ‾ = ( )  
Proof:  
We have seen already that ‾ ⊂ ( ) . Now let ∈ ( ) . Then = +
( − ) =: + . Thus ∥∥ ∥∥ = ( ∣ ) = ( ∣ ) − ( ∣ ) = 0, since 

∈ ‾ =  and ∈ ( )  and ∈ ‾ . It follows that = 0, hence 
= ∈ ‾ . This shows ( ) ⊂ ‾ . 

An important consequence of Theorem 4.5 is the following result, which shows 
that in a Hilbert space all bounded linear functionals can be expressed in a specific 
way in terms of the inner product. 
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Theorem 4.9 (Fréchet-Riesz): Let  be a Hilbert space. Then ∈ ∗ if and only 
if there exists a ∈  such that ( ) = ( ∣ ) for all ∈ . 
Proof: 
If ( ) = ( ∣ ), then  is continuous as a consequence of Lemma 4.1. 
Conversely, let ∈ ∗ be given. Then : = ker  is a closed subspace of . If 

= , pick = 0. If ≠ , there exists an ∈  with ( ) ≠ 0. Put =
− . Since ∉ , we have ≠ 0 and may thus define =∥ ∥ . Then 

∥ ∥= 1 and ∈ . In particular, ( ) ≠ 0. 
Now for ∈ , we have ( ) = ( )

( ) ( ). Define : = ( )
( ). Then, by linearity, 

( − ) = 0 and thus − ∈ . Put : = ( ) . Then 
( ∣ )  = ( )( ∣ )

 = ( )(( − ∣ ) + ( ∣ ))
 = ( ) ∥ ∥ = ( ).
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