Republic of Iraq
Ministry of Higher Education and Scientific
Research

University of Babylon

College of Education for Pure Sciences

Inner Product Spaces and Hilbert Space

Research Submitted to university of Babylon /college of Education for Pure Sciences/Mathematic Department as part of The Requirements for the Degree of B.Sc. in mathematical science

By

Ahmed Salam Abdul Reda

Supervised by

Mayada Ali Kareem

2022-2023

بسمماللهِ الرَمَمِن الرَرِيمم

الْعَاِيمُمُالْكَكِيم".

صدقٌ الله العلي العظيمم

سورة البقرة الاية (r")

Bedicafon

This Work is Dedicated To all my beloved family

Thank for your endless love, sacrifices, prayers supports and advice

Ahmed

Acknowledgments

First of all, I would like to thank Allah, whom I must thank for everything great in my life.

My supervisor, Assistant Professor Mayada ali, for her generous help and her encouragement and guidance through the process of writing this graduation reasearch.

My great thanks are addressed to the Dean of the College of Pure Science and Head of the Department of Mathematics for their help and assistance.

Last but not least, I would like to thank all members of my family and all my respected friends for their outstanding assistance, motivation, and love. I would not have made it without them all.

Ahmed

Abstract

We study a special class of Banach spaces, namely Hilbert spaces, in which the presence of a so-called "inner product" allows us to define angles between elements. In particular, we can introduce the geometric concept of orthogonality. This has far-reaching consequences

Contents

subject	Page
Introduction	3
Inner Product Spaces	4
Cauchy Schwarz Inequality	5
Hilbert space	9
Orthogonal Projection	14
References	19

Introduction

In the preceding chapters, we discussed normed linear spaces and Banach spaces. These spaces has linear properties as well as metric properties. Although the norm on a linear space generalizes the elementary concept of the length of a vector, but the main geometric concept other than the length of a vector is the angle between two vectors, In this chapter, we take the opportunity to study linear spaces having an inner product, a generalization of the usual dot product on finite dimensional linear spaces. The concept of an inner product in a linear space leads to an inner product space and a complete inner product space which is called a Hilbert space. The theory of Hilbert Spaces does not deal with angles in general. Most interestingly, it helps us to introduce an idea of perpendicularity for two vectors and the geometry deals in various fundamental aspects with Euclidean geometry.

The basics of the theory of Hilbert spaces was given by in 1912 by the work of German mathematician D. Hilbert (1862-1943) on integral equations. However, an axiomatic basis of the theory was given by famous mathematician J. Von Neumann (1903-1957). However, Hilbert spaces are the simplest type of infinite dimensional Banach spaces to tackle a remarkable role in functional analysis.

1.Inner Product Spaces

Definition 1.1 : Let, X be a linear space over a field of complex numbers. If for every pair $(x, y) \in X \times X$ there corresponds a scalar denoted by $\langle x, y\rangle$ called inner product of x and y of X such that the following properties hold.
(IP.1) $\langle x, y\rangle=\overline{\langle y, x\rangle}$ where $(x, y) \in X \times X$ and denotes the conjugate of the complex number.
(IP.2) for all $\alpha \in \mathbb{C}$,

$$
\langle\alpha x, y\rangle=\alpha\langle x, y\rangle, \forall(x, y) \in X \times X
$$

(IP.3) for all $x, y, z \in X$

$$
\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle .
$$

(IP.4) $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0$ iff $x=\theta$.
Then ($X,\langle \rangle$.)iscalledaninnerproductspaceorpre - Hilbertspace.
Remark 1.2: The following properties hold in an inner product space.
Let X be an inner product space then,
(i) for all $\alpha, \beta \in \mathbb{C},\langle\alpha x+\beta y, z)=\alpha\langle x, z\rangle+\beta\langle y, z\rangle \forall x, y, z \in X$.
(ii) for all $\alpha \in \mathbb{C}\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle \forall x, y \in X$
(iii) for all $\alpha, \beta \in \mathbb{C} \forall x, y, z \in X$.

$$
\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle .
$$

Remark 1.3: Inner product induces a norm. For this we proceed as follows:
Proof: Let X be an inner product space. Take $x \in X$
Define $\|x\|=+\sqrt{\langle x, x\rangle}$
Now, $\|x\| \geq 0$ as $\langle x, x\rangle \geq 0$ by (IP.4).
Also, $\|x\|=0$ iff $x=\theta$ by (IP.4)
Take $\alpha \in \mathbb{C}$ so,

$$
\begin{aligned}
\|\alpha x\|^{2} & =\langle\alpha x, \alpha x\rangle, \alpha \in X \\
& =\alpha \bar{\alpha}\langle x, x\rangle, x \in X \\
& =|\alpha|^{2}\|x\|^{2}, x \in X \\
\text { so }\|\alpha x\| & ==|\alpha|\|x\|, x \in X
\end{aligned}
$$

2. Cauchy Schwarz Inequality

To prove the triangle inequality we first state and prove Cauchy Schwarz Inequality

$$
\begin{equation*}
|\langle x, y\rangle| \leq\|x\|\|y\| \forall x, y \in X \tag{2}
\end{equation*}
$$

Proof: If $y=\theta_{X}$ then the result follows trivially.
Let $y \neq \theta_{X}$. Then for every scalars $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
& \langle x+\lambda y, x+\lambda y\rangle \geq 0 \\
& \Rightarrow\langle x, x\rangle+\langle x, \lambda y\rangle+\langle\lambda y, x\rangle+\langle\lambda y, \lambda y\rangle \geq 0 \quad \text { (By (IP.3)) } \\
& \Rightarrow\langle x, x\rangle+\bar{\lambda}\langle x, y\rangle+\lambda\langle y, x\rangle+\|\lambda y\|^{2} \geq 0 \\
& \Rightarrow\|x\|^{2}+\bar{\lambda}\langle x, y\rangle+\lambda\langle\overline{x, y}\rangle+|\lambda|^{2}\|y\|^{2} \geq 0
\end{aligned}
$$

Take $\lambda=-\frac{\langle x, y\rangle}{\langle y, y\rangle}$
So, $\|x\|^{2}-\frac{\langle\overline{x, y}\rangle\langle x, y\rangle}{\|y\|^{2}}-\frac{\langle x, y\rangle\langle\overline{x, y}\rangle}{\|y\|^{2}}+\frac{|\langle x, y\rangle|^{2}}{\|y\|^{4}}\|y\|^{2} \geq 0$.
So, $\quad\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}+\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}} \geq 0$

So $\quad\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}} \geq 0$
$\Rightarrow \quad\|x\|^{2}\|y\|^{2} \geq|\langle x, y\rangle|^{2}$
$\Rightarrow \quad\|x\|\|y\| \geq|\langle x, y\rangle|$

Sometimes this inequality is abbreviated as C-S inequality. We see that equality sign will hold if and only if in above derivation $\langle x+\lambda y, x+\lambda y\rangle=0 \Rightarrow \| x+$ $\lambda y \|^{2}=0 \Rightarrow x+\lambda y=\theta_{X}$, i.e x and y are linearly dependent.
We shall now prove triangle inequality for norm. Now $\forall x, y \in X$.

$$
\begin{aligned}
& \text { Now, }\|x+y\|^{2}=\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle \\
& \text { So, }\|x+y\|^{2}=\left|\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle\right| \\
& \leq\|x\|^{2}+\|y\|^{2}+|\langle x, y\rangle+\langle y, x\rangle| \\
& \leq\|x\|^{2}+\|y\|^{2}+2\|x\|\|y\| \\
& =\left(\|x\|+\|y\|^{2}\right.
\end{aligned}
$$

So, $\|x+y\| \leq\|x\|+\|y\|$.
Hence, inner product induces a norm and consequently every inner product space is a normed linear space.

Remark 2.1 : So every inner product space is a metric space and the metric induced by inner product is defined as follows: for all $x, y \in X$ define $d: X \times X \rightarrow$ \mathbb{R} by

$$
\begin{equation*}
d(x, y)=\|x-y\|=+\sqrt{\langle x-y, x-y\rangle} \tag{3}
\end{equation*}
$$

Theorem 2.2: Every inner product function is a continuous function.
(Equivalently, if $f: X \times X \rightarrow \mathbb{C}$ defined by $f(x, y)=\langle x, y\rangle, \forall x, y \in X$ then f is continuous).

Proof:

Let X be an inner product space. Define $f: X \times X \rightarrow \mathbb{C}$ by $(x, y)=\langle x, y\rangle, \forall x, y \in$ X. Now take $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be a sequence in X such that $x_{n} \rightarrow x$ as
$n \rightarrow \infty$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$
So, $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|y_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$.
As, $x_{n} \rightarrow x$ as $n \rightarrow \infty$ then, $\left\|x_{n}\right\| \rightarrow\|x\|$ as $n \rightarrow \infty$.
So, $\left\{\left\|x_{n}\right\|\right\}$ are bounded. So, there exists a constant $M>0$ such that $\left\|x_{n}\right\| \leq M, \forall n$ Now, $\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right|$

$$
\begin{aligned}
& =\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n}, y\right\rangle+\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right| \\
& =\left|\left\langle x_{n}, y_{n}-y\right\rangle+\left\langle x_{n}-x, y\right\rangle\right| \\
& \leq\left|\left\langle x_{n}, y_{n}-y\right\rangle\right|+\mid\left\langle x_{n}-x, y\right\rangle \\
& \left.\left.\leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| \quad \quad \text { By C-S inequality(} 2\right)\right] \\
& \leq M\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

i.e $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$ as $n \rightarrow \infty$, implying that $f\left(x_{n}, y_{n}\right) \rightarrow f(x, y)$ as $n \rightarrow \infty$. So, f is continuous.

Theorem 2.3: (Parallelogram Law): Let X be an inner product space and let $x, y \in X$. Then,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

Proof:

$$
\begin{align*}
\|x+y\|^{2} & =\langle x+y, x+y\rangle=\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle \tag{4}\\
\text { and }\|x-y\|^{2} & =\langle x-y, x-y\rangle=\langle x, x\rangle+\langle x,-y\rangle+\langle-y, x\rangle+\langle-y,-y\rangle \\
& =\|x\|^{2}+\|y\|^{2}-\langle x, y\rangle-\langle y, x\rangle \tag{5}
\end{align*}
$$

Adding (4) and (5) we get

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

Theorem2.4 (Polarization Identity): Let X be an inner product space, let $x, y \in$ X. Then

$$
\begin{equation*}
\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}+i\|x-i y\|^{2}-i\|x-i y\|^{2}\right] \tag{6}
\end{equation*}
$$

Proof:
Now, $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle$

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-\langle x, y\rangle-\langle y, x\rangle \tag{8}
\end{equation*}
$$

Replacing y by iy in (7) and (8)
$\|x+i y\|^{2} \quad=\|x\|^{2}+\|i y\|^{2}+\langle x, i y\rangle+\langle i y, x\rangle$

$$
\begin{equation*}
=\|x\|^{2}+\|y\|^{2}-i\langle x, y\rangle+i\langle y, x\rangle \tag{9}
\end{equation*}
$$

$\|x-i y\|^{2} \quad=\|x\|^{2}+\|i y\|^{2}-\langle x, i y\rangle-\langle i y, x\rangle$

$$
\begin{equation*}
=\|x\|^{2}+\|y\|^{2}+i\langle x, y\rangle-i\langle y, x\rangle \tag{10}
\end{equation*}
$$

(7) $-(8)+i(9)-i(10)$, we get (6). Hence the result

Theorem $\upharpoonright . \bullet$: Let X be an inner product space. Then
(i) Every Cauchy sequence is bounded
(ii) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two Cauchy sequences in X then $\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}$ is also a Cauchy sequence in \mathbb{C} and hence convergence in \mathbb{C}.

Proof:

(i) Let, $\left\{x_{n}\right\}$ be a Cauchy sequences in X. Then for $\varepsilon=1$ there exists a positive integer N such that, $\left\|x_{n}-x_{m}\right\|<1$, whenever, $n, m \geq N$. In particular, $\| x_{n}-$ $x_{N} \|<1$, whenever $n \geq N$.
Now, $\left\|x_{n}\right\| \leq\left\|x_{n}-x_{N}\right\|+\left\|x_{N}\right\|<1+\left\|x_{N}\right\| \forall n \geq N$.
Let, $M=\max \left\{\left\|x_{1}\right\|,\left\|x_{2}\right\|, \cdots,\left\|x_{N-1}\right\|,\left\|x_{N}\right\|+1\right\}$ so, $\left\|x_{n}\right\| \leq M \forall n$ so, $\left\{x_{n}\right\}$ is bounded.
(ii) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be two Cauchy sequences in X.

So, $\left\|x_{n}-x_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$ and $\left\|y_{n}-y_{m}\right\| \rightarrow 0$ as $n, m \rightarrow \infty$.
Also, by (i) $\left\|x_{n}\right\| \leq M$ for all n and for some $M>0$. Similarly $\left\|y_{n}\right\| \leq K$, for some $K>0$ and $\forall n$.

$$
\begin{aligned}
&\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{m}, y_{m}\right\rangle\right| \\
&=\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n}, y_{m}\right\rangle+\left\langle x_{n}, y_{m}\right\rangle-\left\langle x_{m}, y_{m}\right\rangle\right| \\
&=\left|\left\langle x_{n}, y_{n}-y_{m}\right\rangle+\left\langle x_{n}-x_{m}, y_{m}\right\rangle\right| \\
& \leq\left|\left\langle x_{n}, y_{n}-y_{m}\right\rangle\right|+\left|\left\langle x_{n}-x_{m}, y_{n}\right\rangle\right| \\
& \leq\left\|x_{n}\right\|\left\|y_{n}-y_{m}\right\|+\left\|x_{n}-x_{m}\right\|\left\|y_{n}\right\| \text { (By C-S inequality) } \\
& \leq \quad M\left\|y_{n}-y_{m}\right\|+K\left\|x_{n}+x_{m}\right\| \\
& \rightarrow 0 \text { as } n, m \rightarrow \infty
\end{aligned}
$$

So, $\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}$ is a Cauchy sequences of scalars in \mathbb{C}. As \mathbb{C} is complete, $\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}$ is convergent in \mathbb{C}.

3. Hilbert space

Definition 3.1: A complete inner product space is called a Hilbert space i.e. an inner product space X which is complete with respect to a metric $d: X \times X \rightarrow \mathbb{R}$ induced by the inner product \langle,$\rangle on X \times$ i.e. $d(x, y)=\langle x-y, x-y\rangle^{1 / 2} \forall x, y \in$ X.
Theorem 3.2 : A Banach space X is a Hilbert space if and only if parallelogram law holds in it.

Proof:

We know that every Hilbert space X is a Banach space where parallelogram law holds in it.

Conversely suppose that X is a Banach space where parallelogram law holds. Without loss of generality we can assume a function \langle,$\rangle whoserangeis . For all$ $x, y \in X$.
Define $\rangle:, X \times X \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right] \tag{11}
\end{equation*}
$$

i.e. for real inner product space we start with (9.1.11) and sometimes we write $R\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right], \forall x, y \in X$. Clearly $\langle x, y\rangle=\langle\overline{y, x}\rangle$ as $\langle x, y\rangle$ is real. Also $\langle x, x\rangle \geq 0 \forall x \in X$ and $\langle x, x\rangle=0$ iff $x=\underline{0}$. So, (IP.1) and (IP.4) holds.
Now, for $u, v, w \in X$

$$
\begin{align*}
& \|u+v+w\|^{2}+\|u+v-w\|^{2}=2\left(\|u+v\|^{2}+\|w\|^{2}\right) \tag{12}\\
& \|u-v+w\|^{2}+\|u-v-w\|^{2}=2\left(\|u-v\|^{2}+\|w\|^{2}\right) \tag{13}
\end{align*}
$$

By (12) - (13) we get

$$
\begin{array}{ll}
& \|u+v+w\|^{2}+\|u+v-w\|^{2}-\|u-v+w\|^{2}+\|u-v-w\|^{2} \\
& =2\left(\|u+v\|^{2}-\|u-v\|^{2}\right) \\
\Rightarrow \quad & 4[\langle u+w, v\rangle+\langle u-w, v\rangle]=2.4\langle u, v\rangle \\
\Rightarrow \quad & \langle u+w, v\rangle+\langle u-w, v\rangle=2\langle u, v\rangle \\
\text { Put, } & u=w \tag{15}\\
& \langle 2 u, v\rangle=2\langle u, v\rangle
\end{array}
$$

Again put, $x_{1}=u+w, x_{2}=u-w, x_{3}=v$ then from (14) we get

$$
\begin{align*}
\left\langle x_{1}, x_{3}\right\rangle+\left\langle x_{2}, x_{3}\right\rangle & =2\langle u, v\rangle=\langle 2 u, v\rangle(\text { by (15)) } \\
& =\left\langle x_{1}+x_{2}, x_{3}\right\rangle \tag{16}
\end{align*}
$$

So, (IP.3) holds.
From (16) for $x_{1}, x_{2}, x_{3}, x_{4} \in X$,

$$
\left\langle x_{1}+x_{2}+x_{3}, x_{4}\right\rangle=\left\langle x_{1}+x_{2}, x_{4}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle=\left\langle x_{1}, x_{4}\right\rangle+\left\langle x_{2}, x_{4}\right\rangle+\left\langle x_{3}, x_{4}\right\rangle
$$

Put $x_{1}=x_{2}=x_{3}=x, x_{4}=y$ i.e. $\langle 3 x, y\rangle=3\langle x, y\rangle$.
So, by Principle of Mathematical Induction for any positive integer n
$\langle n x, y\rangle=n\langle x, y\rangle \forall x, y \in X$
Now, $\langle-x, y\rangle \quad=\frac{1}{4}\left[\|-x+y\|^{2}-\|-x-y\|^{2}\right]$

$$
\begin{equation*}
=\frac{1}{4}\left[-\|x+y\|^{2}+\|y-x\|^{2}\right]=-\langle x, y\rangle \tag{18}
\end{equation*}
$$

Take, $n=-m(m>0)$

$$
\begin{aligned}
\langle n x, y\rangle=\langle-m, y\rangle & =\langle m(-x), y\rangle \\
& =m\langle-x, y\rangle(\text { by }(9.1 .17)) \\
& =-m\langle x, y\rangle(\text { by }(9.1 .18)) \\
& =n\langle x, y\rangle
\end{aligned}
$$

So (17) is also true for any negative integer. Thus $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$, when λ is either positive integer or a negative integer.

Take $\lambda=p / q=$ a rational number where, $\operatorname{gcd}(p, q)=1$ and p and q are integer.

$$
\begin{align*}
\text { Now }\langle\lambda x, y\rangle & =\left\langle\frac{p}{q} x, y\right\rangle \\
\text { So } q\langle\lambda x, y\rangle & =q\left\langle\frac{p}{q} x, y\right\rangle=\langle p, y\rangle=p\langle x, y\rangle \\
\Rightarrow\langle\lambda x, y\rangle & =\frac{p}{q}\langle x, y\rangle \\
\Rightarrow\left\langle\frac{p}{q} x, y\right\rangle & =\frac{p}{q}\langle x, y\rangle \tag{19}
\end{align*}
$$

Let, λ be any real. So there exists a sequence of rationals $\left\{r_{n}\right\}$ such that $r_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. So, $\left\langle r_{n} x, y\right\rangle=r_{n}\langle x, y\rangle \rightarrow \lambda\langle x . y\rangle$ as $n \rightarrow \infty$

Now, $\left|\left\langle r_{n} x, y\right\rangle-\langle\lambda x, y\rangle\right|$
$=\left|\left\langle\left(r_{n}-\lambda\right) x, y\right\rangle\right| \leq\left\|\left(r_{n}-\lambda\right) x\right\|\|y\|$ (by C-S inequality (2))
$=\left|r_{n}-\lambda\right|\|x\|\|y\| \rightarrow 0$ as $n \rightarrow \infty$
$\left\langle r_{n} x, y\right\rangle \rightarrow\left\langle\lambda_{x}, y\right\rangle$ as $n \rightarrow \infty$. So, $\left\langle\lambda_{x}, y\right\rangle=\lambda\langle x, y\rangle \forall x, y \in X$. So, (IP.2) holds.
So, X is an inner product space with respect to (11) consequently, X is a Hilbert space.
Note: For a complete inner product space we start with $R l\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|\right.$ $\left.x-y \|^{2}\right], \operatorname{Im}\langle x, y\rangle=\frac{1}{4}\left[\|x+i y\|^{2}-\|x-i y\|^{2}\right], \forall x, y \in X$ and the proof is similar to the proof of real inner product space. (Readers can verify it)

Example 3.3: The Euclidean space \mathbb{R}^{n} is a Hilbert space.
Solution: Let $x=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)$ and $y=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)$ be two element of \mathbb{R}^{n}. We define the inner product of x and y by $(x, y)=\zeta_{1} \eta_{1}+\zeta_{2} \eta_{2}+\cdots+\zeta_{n} \eta_{n}$. Then $\|x\|=\sqrt{\langle x, x\rangle}=\left(\zeta_{1}^{2}+\zeta_{2}^{2}+\cdots+\zeta_{n}^{2}\right)^{\frac{1}{2}}$. It may be easily verified that all the inner product axioms are satisfied in \mathbb{R}^{n} and the Euclidean metric d is obtained by $(x, y)=\|x-y\|=\langle x-y, x-y\rangle^{\frac{1}{2}}=\sqrt{\sum_{i=1}^{n}\left(\zeta_{i}-\eta_{i}\right)^{2}}$. With respect to this metric we can at once see that \mathbb{R}^{n} is complete so as to make \mathbb{R}^{n}, a Hilbert space.

Example 3.4: The Euclidean space \mathbb{C}^{n} is a Hilbert space.
Solution: Let $x=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)$ and $y=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)$ be two elements of \mathbb{C}^{n}. We define the inner product of x and y by

$$
\langle x, y\rangle=\zeta_{1} \overline{\bar{\eta}_{1}}+\zeta_{2} \overline{\bar{\eta}_{2}}+\cdots+\zeta_{n} \overline{\eta_{n}} .
$$

Then $\|x\|=\sqrt{\langle x, x\rangle}=\left(\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{2}+\cdots+\left|\zeta_{n}\right|^{2}\right)^{\frac{1}{2}}$. It may be easily verified that all the inner product axioms are satisfied in \mathbb{C}^{n} and the Euclidean metric d is obtained by $d(x, y)=\|x-y\|=\langle x-y, x-y\rangle^{\frac{1}{2}}=\sqrt{\sum_{i=1}^{n}\left(\zeta_{i}-\eta_{i}\right)^{2}}$. With respect to this metric we can at once see that \mathbb{C}^{n} is complete so as to make \mathbb{C}^{n}, a Hilbert space.

Example 3.5: The space l_{2} is a Hilbert space.
Solution: Let $x=\left\{\zeta_{i}\right\}$ and $y=\left\{\eta_{i}\right\}$ be elements of l_{2}. We define the inner product of x and y by $\langle x, y\rangle=\sum_{i=1}^{\infty} \zeta_{i} \bar{\eta}_{l}$ convergence of the series on the right hand side follows from the fact that $x \in l_{2}$ and $\left|\zeta_{i} \bar{\eta}_{i}\right| \leq \frac{\left|\zeta_{i}\right|^{2}}{2}+\frac{\left|\eta_{i}\right|^{2}}{2}$.

Then $\|x\|=\sqrt{\langle x, x\rangle}=\left(\sum_{i=1}^{\infty} \zeta_{i}\right)^{\frac{1}{2}}$. It can be easily shown that all the inner product axioms (IP.1) -(IP.4) are satisfied in l_{2}. The metric d of l_{2} is defined by $(x, y)=$ $\|x-y\|=\langle x-y, x-y\rangle^{\frac{1}{2}}=\left(\sum_{i=1}^{n}\left|\zeta_{i}-\eta_{i}\right|^{2}\right)^{\frac{1}{2}}$. With respect to this metric we can at once see that l_{2} is complete so as to make l_{2} a Hilbert space.

But for $1 \leq p<\infty, l_{p}(p \neq 2$ is not a Hilbert space. It can be shown by the following example.

Example 3.6: For $1 \leq p<\infty, l_{p}(p \neq 2)$ is not an inner product space and hence not a Hilbert space.

Solution: Let $x=(1,1,0,0, \cdots) \in l_{p}$ and $y=(1,-1,0,0, \cdots) \in l_{p}$. Then $\|x\|=$ $\|y\|=2^{\frac{1}{p}}$ and $\|x+y\|=\|x-y\|=2$. Now we see that if $p \neq 2$, the parallelogram law does not hold.

Hence $1 \leq p<\infty l_{p}(p \neq 2)$ is not an inner product space and consequently it is not a Hilbert space.

Example 3.7: The space $c[a, b]$ of all real valued continuous in the closed interval $[a, b]$ is not an inner product space with respect to sup norm and hence not a Hilbert space.

Solution: Here the norm defined by $\|x\|=\sup _{a \leq t \leq b}|x(t)|$. Take $x(t)=1, \forall t \in$ $[a, b]$ and $y(t)=\frac{t-a}{b-a}, \forall t \in[a, b]$. Then $\|x\|=1,\|y\|=1,\|x+y\|=2, \| x-$ $y \|=1$. By simple calculations we see that parallelogram law does not hold in it. Hence $c[a, b]$ is not a Hilbert space.

Example 3.8: The space $L_{2}[a, b]$, the space of all square integrable functions over [a, b] is a Hilbert space.

Solution: Define the inner product on $L_{2}[a, b]$ by $\langle x, y\rangle=\int_{a}^{b}|x(t) \overline{y(t)}| d t, \forall x, y \in L_{2}[a, b]$ and the norm on $L_{2}[a, b]$ is given by $\|x\|=\sqrt{\int_{z}^{b}|x(t)|^{2} d t}$. Also with respect to this norm it can be shown that $L_{2}[a, b]$ is complete with respect to a metric defined by

$$
d(x, y)=\left[\int_{a}^{b}|x(t)-y(t)|^{2} d t\right]^{\frac{1}{2}}
$$

So $L_{2}[a, b]$ is a Hilbert space.

4. Orthogonal Projection

Lemma 4.1: Let X be an inner product space. Then (.|.) : $\mathrm{X} \times \mathrm{X} \mathrm{K}$ is continuous. Proof. Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Then $M:=\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty$. By the CauchySchwarz inequality,

$$
\begin{aligned}
\left|\left(x_{n} \mid y_{n}\right)-(x \mid y)\right| & \leq\left|\left(x_{n} \mid y_{n}-y\right)\right|+\left|\left(x_{n}-x \mid y\right)\right| \\
& \leq M\left\|y_{n}-y\right\|+\|y\|\left\|x_{n}-x\right\| \rightarrow 0
\end{aligned}
$$

In this section we show that in a Hilbert space one can project onto any closed subspace. In other words, for any point there exists a unique best approximation in any given closed subspace. For this the geometric properties arising from the inner product are crucial.

Definition 4.2: Let $(X,(\cdot \mid \cdot))$ be an inner product space. We say that two vectors $x, y \in X$ are orthogonal (and write $\perp y$) if $(x \mid y)=0$. Given a subset $S \subset X$, the annihilator S^{\perp} of S is defined by

$$
S^{\perp}:=\{y \in X: y \perp x \text { for all } x \in S\}
$$

If S is a subspace, then S^{\perp} is also called the orthogonal complement of S.
In an inner product space the following fundamental and classic geometric identity holds.

Lemma 4.3 (Pythagoras): Let X be an inner product space. If $x \perp y$, then

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

Proof.

$$
\|x+y\|^{2}=\|x\|^{2}+2 \operatorname{Re}(x \mid y)+\|y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

Proposition 4.4: Let X be an inner product space and $S \subset X$.
(a) S^{\perp} is a closed, linear subspace of X.
(b) $\overline{\operatorname{span}} S \subset\left(S^{\perp}\right)^{\perp}$.
(c) $\overline{\operatorname{span}} S \cap S^{\perp}=\{0\}$.

Proof:

(a) If $x, y \in S^{\perp}$ and $\lambda \in \mathbb{K}$, then, for $z \in S$, we have $(\lambda x+y \mid z)=\lambda(x \mid z)+$ $(y \mid z)=0$, hence $\lambda x+y \in S^{\perp}$. This shows that S^{\perp} is a linear subspace. If $\left(x_{n}\right)$ is a sequence in S^{\perp} which converges to x, then we infer from Lemma 4.1 that $(x \mid z)=\lim \left(x_{n} \mid z\right)=0$ for all $z \in S$.
(b) By (a), $\left(S^{\perp}\right)^{\perp}$ is a closed linear subspace which contains S. Thus $\overline{\operatorname{span}} S \subset$ $\left(S^{\perp}\right)^{\perp}$
(c) If $x \in \overline{\operatorname{span}} S \cap S^{\perp}$, then, by (b), $x \in S^{\perp} \cap\left(S^{\perp}\right)^{\perp}$ and hence $x \perp x$. But this means $(x \mid x)=0$. By (IP1) it follows that $x=0$.

We now come to the main result of this section.

Theorem 4.5: Let $(X,(\cdot \cdot))$ be a Hilbert space and $K \subset X$ be a closed linear subspace. Then for every $x \in X$, there exists a unique element $P_{K} x$ of K such that

$$
\left\|P_{K} x-x\right\|=\min \{\|y-x\|: y \in K\}
$$

Proof:

Let $d:=\inf \{\|y-x\|: y \in K\}$. By the definition of the infimum, there exists a sequence $\left(y_{n}\right)$ in K with $\left\|y_{n}-x\right\| \rightarrow d$. Applying the parallelogram identity 4.8 to the vectors $x-y_{n}$ and $x-y_{m}$, we obtain

$$
\begin{aligned}
2\left(\left\|x-y_{n}\right\|^{2}+\right. & \left.\left\|x-y_{m}\right\|^{2}\right) \\
& =\left\|\left(x-y_{n}\right)+\left(x-y_{m}\right)\right\|^{2}+\left\|x-y_{n}-\left(x-y_{m}\right)\right\|^{2} \\
& =\left\|2 x-y_{n}-y_{m}\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2} \\
& =4\left\|x-\frac{1}{2}\left(y_{n}+y_{m}\right)\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2} .
\end{aligned}
$$

Since $z_{n m}:=\frac{1}{2}\left(y_{n}+y_{m}\right) \in K$, we have $\left\|x-z_{n m}\right\|^{2} \geq d^{2}$ and thus

$$
\left\|y_{n}-y_{m}\right\|^{2} \leq 2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right)-4 d^{2}
$$

By the choice of the sequence $\left(y_{n}\right)$, the right-hand side of this equation converges to 0 as $n, m \rightarrow \infty$, proving that $\left(y_{n}\right)$ is a Cauchy sequence. Since X is complete,
$\left(y_{n}\right)$ converges to some vector $P_{K} x$. Since K is closed, $P_{K} x \in K$. We have thus proved existence.

As for uniqueness, if $\|z-x\|=\min \{\|y-x\|: y \in K\}$, then, by the parallelogram identity,

$$
2\left\|x-P_{K} x\right\|^{2}+2\|x-z\|^{2}=4\left\|x-\frac{1}{2}\left(P_{K} x+z\right)\right\|^{2}+\left\|z-P_{K} x\right\|^{2}
$$

and thus

$$
4 d^{2}=4\left\|x-\frac{1}{2}\left(P_{K} x+z\right)\right\|^{2}+\left\|P_{K} x-z\right\|^{2} \geq 4 d^{2}+\left\|P_{K} x-z\right\|^{2}
$$

proving that $\left\|P_{K} x-z\right\|=0$; hence $P_{K} x=z$.
Definition 4.6: The map $P_{K}: X \rightarrow X$ from Theorem 4.5 is called the orthogonal projection onto K.
We now collect some properties of P_{K}.
Proposition 4.7: Let X be a Hilbert space, K be a closed subspace of X and P_{K} be the orthogonal projection onto K.
(a) For all $x, y \in X$, we have $P_{K} x=y$ if and only if $y \in K$ and $x-y \in K^{\perp}$.
(b) P_{K} is a bounded linear operator on X.
(c) $P_{K}^{2}=P_{K}$ and $\left(P_{K} x \mid y\right)=\left(x \mid P_{K} y\right)$ for all $x, y \in X$.

Proof:

(a) If $y \in K$ and $x-y \in K^{\perp}$, then for every $z \in K$ we have $y-z \in K$ and thus $x-y \perp y-z$. By Pythagoras,

$$
\|x-z\|^{2}=\|x-y\|^{2}+\|y-z\|^{2} \geq\|x-y\|^{2} .
$$

Thus $\|x-y\|=\min \{\|x-z\|: z \in K\}$, proving that $P_{K} x=y$.
Conversely, if $P_{K} x=y$, then clearly $y \in K$. Assume that $x-y \notin K^{\perp}$. Then there exists $z \in K \backslash\{0\}$ with $(x-y \mid z) \neq 0$. We may assume that $(x-y \mid$
$z)=1$ (otherwise, we divide z by $\overline{(x-y \mid z)})$. Then, for $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\|x-y-\lambda z\|^{2} & =\|x-y\|^{2}-2 \operatorname{Re} \lambda(x-y \mid z)+\lambda^{2}\|z\|^{2} \\
& =\|x-y\|^{2}-2 \lambda+\lambda^{2}\|z\|^{2}
\end{aligned}
$$

The latter is strictly less than $\|x-y\|^{2}$ for small $\lambda>0$, for example if $\lambda^{2}\|z\|^{2}<2 \lambda$, i.e. $\lambda<2\|z\|^{-2}$. Hence we find an element in K, namely $y+\|z\|^{-2} z$, for example, which is closer to x than to y. But then $y \neq P_{K} x$.
(b) Let $x, y \in X$ and $\lambda \in \mathbb{K}$. By (a), $x-P_{K} x, y-P_{K} y \in K^{\perp}$. Since K^{\perp} is a subspace by Proposition 4.4, $\lambda x-\lambda P_{K} x+y-P_{K y}=(\lambda x+y)-$ $\left(\lambda P_{K} x+P_{K} y\right) \in K^{\perp}$. Since $\lambda P_{K} x+P_{K} y \in K$, it follows from (a) that $P_{K}(\lambda x+$ $y)=\lambda P_{K} x+P_{K} y$, i.e. P_{K} is linear. As for the boundedness, observe that $x=P_{K} x+\left(x-P_{K} x\right)$ where $P_{K} x \perp x-P_{K} x$ by (a). Thus, by Pythagoras,

$$
\|x\|^{2}=\left\|P_{K} x\right\|^{2}+\left\|x-P_{K} x\right\|^{2} \geq\left\|P_{K} x\right\|^{2}
$$

proving the boundedness of P_{K}.
(c) $P_{K} x \in K$ and $0=p_{K} x-P_{K} x \in K^{\perp}$. Hence, by (a), $P_{K} P_{K} x=P_{K} x$.

For the second part, observe that

$$
\left(P_{K} x \mid y\right)=\left(P_{K} x \mid P_{K} y\right)+\left(P_{K} x \mid y-P_{K} y\right)=\left(P_{K} x \mid P_{K} y\right)
$$

since $y-P_{K} y \in K^{\perp}$ and $P_{K} x \in K$ by (a). Similarly, one sees that $\left(x \mid P_{K} y\right)=$ ($P_{K} x \mid P_{K} y$)
We can now refine Proposition 4.4 for linear subspaces.

Corollary 4.8: If X is a Hilbert space and K is a linear subspace of X then $\bar{K}=\left(K^{\perp}\right)^{\perp}$

Proof:

We have seen already that $\bar{K} \subset\left(K^{\perp}\right)^{\perp}$. Now let $y \in\left(K^{\perp}\right)^{\perp}$. Then $y=P_{K} y+$ $\left(I-P_{K}\right) y=: y_{1}+y_{2}$. Thus $\left\|y_{2}\right\|^{2}=\left(y_{2} \mid y_{2}\right)=\left(y_{2} \mid y\right)-\left(y_{2} \mid y_{1}\right)=0$, since $y_{2} \in \bar{K}^{\perp}=K^{\perp}$ and $y \in\left(K^{\perp}\right)^{\perp}$ and $y_{1} \in \bar{K}$. It follows that $y_{2}=0$, hence $y=y_{1} \in \bar{K}$. This shows $\left(K^{\perp}\right)^{\perp} \subset \bar{K}$.

An important consequence of Theorem 4.5 is the following result, which shows that in a Hilbert space all bounded linear functionals can be expressed in a specific way in terms of the inner product.

Theorem 4.9 (Fréchet-Riesz): Let X be a Hilbert space. Then $\varphi \in X^{*}$ if and only if there exists a $y \in X$ such that $\varphi(x)=(x \mid y)$ for all $x \in X$.

Proof:

If $\varphi(x)=(x \mid y)$, then φ is continuous as a consequence of Lemma 4.1.
Conversely, let $\varphi \in X^{*}$ be given. Then $K:=\operatorname{ker} \varphi$ is a closed subspace of X. If $K=X$, pick $y=0$. If $K \neq X$, there exists an $x_{0} \in X$ with $\varphi\left(x_{0}\right) \neq 0$. Put $z=$ $x_{0}-P_{K} x_{0}$. Since $x_{0} \notin K$, we have $z \neq 0$ and may thus define $w=\|z\|^{-1} z$. Then $\|w\|=1$ and $w \in K^{\perp}$. In particular, $\varphi(w) \neq 0$.
Now for $x \in X$, we have $\varphi(x)=\frac{\phi(x)}{\phi(w)} \varphi(w)$. Define $\lambda:=\frac{\varphi(x)}{\varphi(w)}$. Then, by linearity, $\varphi(x-\lambda w)=0$ and thus $x-\lambda w \in K$. Put $y:=\overline{\varphi(w)} w$. Then

$$
\begin{aligned}
(x \mid y) & =\varphi(w)(x \mid w) \\
& =\varphi(w)((x-\lambda w \mid w)+(\lambda w \mid w)) \\
& =\varphi(w) \lambda\|w\|^{2}=\varphi(x) .
\end{aligned}
$$

References

[1] R.P. Bryan and M.A. Youngson, Linear Functional Analysis, Springer-Verlag, London, 2008.
[2] Jain, P. K.and Ahmad, Khalil, Definitions and basic properties of inner product spaces and Hilbert spaces. Functional Analysis (2nd ed.). New Age International. (1995) p. 203. ISBN 81-224-0801-X.
[3] Z. Sebestyen and Z.S. Tarcsay, On the adjoint of Hilbert space operators, 67(3) (2019) 625-645.
[4] N. Young, An Introduction to Hilbert Space, Cambridge University Press, 2012.

