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Abstract

In this research, we study the concept of linear space, Inner product

space, and Hilbert space, and find out results about them.

We also study we dealt with the inner product space in terms of its
definition, examples, and some theories related to it, as well as its

relationship to the Hilbert space.

We also define Hilbert space and dealt with examples and the most

important results related to it.



1. introduction

In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing
the methods of linear algebra and calculus from (finite— dimensional) Euclidean
vector spaces to spaces that may be infinite— dimensional. Hilbert spaces arise
naturally and frequently in mathematics and physics, typically as function spaces.
formally, a Hilbert space is a vector space equipped with an inner product that
defines a distance function for which the spaces is a complete metric space. The
earliest Hilbert spaces were studied from this point of view in the first decade of
the 20™ century by David Hilbert , Erhard Schmidt , and Frigyes Riesz . They are
indispensable tools in the theories of partial differential equations , quantum
mechanics, fourier analysis ( which includes applications to signal processing and
heat transfer ), John Van Neumann coined the term Hilbert spaces for the abstract
concept that underlies money of these diverse applications . The success of Hilbert
spaces methods us hered in a very fruitful era for functional analysis . Aeart from
the classical Euclidean vector spaces , examples of Helbert spaces include spaces
of square — integrable functions , spaces of sequences , sobolev spaces consisting

of generalized functions , and Hardy spaces of holomorphic functions.

Geometric intuition plays an important role in many aspects of Hilbert space
theory. Exact analys of the Pythagorean theorem and parallelogram law hald in a
Hilbert space. At a deeper level, perpendicular projection on to a linear subspace
or a subspace or a subspace ( the analys of " dropping the altitude " of a triangle)
plays a significant role in optimization proplems and other aspects of the theory.
An element of a Hilbert space can be uniquely specified by its coordinates with
respect to an orthonormal basis, in analogy with cortesian coordinates in classical
geometry when this basis is countably infinite, it allows identifying the Hilbert
space with the space of the infinite sequences that are square— summable. The

latter space is often in the older literature referred to as the Hilbert space.



2- Important definition and results .
Definition 2.1 (Linear space):m
Let (F, +, -) be a field whose elements are called scalars. Let L is a nonempty

set whose elements are called vectors . Then L is a linear space (or a vectors

space) over the field F, if

(1) addition : There is a binary operation + on L called addition (not usual

addition) such that (L , +) is a commutative group .

(2) scalar multiplication:x . X €L VX €L, VxX€EF.
(3) The scalar multiplication and addition satisfy
Hx.X+y)=x.X+x.y VX,y EL , VXEF
(i) (x +B8) X =x.X+B.X VX €L V,BEF
(iii) (¢ . B). X =x.(B.X) VX €L VX,BEF
(iv)1. X=X VX € L and1isthe unity F
Example 2.2:1%

The set of real number R, with Ordinary addition and ordinary multi—

application, is a linear space over (F, +,.) = (R, +, .). indeed,
(1) (IR, +) 1s an abelian an group

2) x.X €lIR VX € IR , x€lIR

(3) All other condition are sat is field (check)

This linear space (IR , +, .) is called real linear space .



Example 2.3 : ]

The set of complex numbers C, with ordinary addition and ordinary

multiplication, is a linear space over (F,+,.)=(C, +,.). indeed,
(1) (C,+,.)1s an abelian an group

Q)x.X eC vXe(C ,xe(C

(3) All other conditions are sat is field

This linear space (C, +, .) is called complex linear space .

Definition 2.4 (Linear subspace ): 2]

Let L be a linear space over a field Fand Let @ # H CL. Then H is called a

linear subspace of L if H itself'is a linear space over F.
Theorem 2.5 : !

Let H be a nonempty subset of a linear space L (F) . H is called a subspace of L
ifandonlyif «x X+ fyeH forall X,yeH and forall «,[fe€F.

Definition 2.6 (Linear Transformation Mapping ): ]

Let L(F) and L' (F) be two Linear spaces over the same field F. A mapping
T:L —> L' iscalled a Linear operator or Linear Transformation if

T(x X+ By)=«<T (X)+ BT (y) VX,y€ELVX,BeF



Example 2.7: il

Let T: IR® - R? defined by T (X;, X5, X3) = (Xi, X»)
VX, X,,X; €EIR

(1) show that T is a linear transformation .

Q) IEX=(x1,%2,%x3)=(2,1,-3),Y=(y1,¥2,¥3) =(0,-5, 1) . compute T (2X)
and T (X +Y).

Solution (1) :-
Let X = (X1, X2, X3)€ IR3,Y = (y1,y,,y3) EIR3and «,B € R.Then
T(xX+BY)=T[x(x,%z,%X3) + B(V1,¥2,¥3)]
=Tlexy+ By1, XX+ Bys, X x3+ L ys3]
= (X x1,BY1,%xX; + B Y2)
= (X x1,X%X;) + (By1+BY2)
= (X1, X2) + B(y1, ¥2)
=oT(xy,%X2,%X3) + BT(Y1,Y2,¥3) =xT (X) + B T(Y).
Solution 2) :-T (2X)=T 4,2,-6)=(4,2).
TX+Y)=TQ2,-4,-2)=2,-4).
Definition 2.8 : *
Let L be a linear space . A linear transformation
T:L - Fissaidtobe Linear functional .

(Note: that F can be regarded as a linear space over F).



Example 2.9: il

LetL = F*"={(x{,cceee,X3) : Xq, e wun., X, € F} be a linear space over
the field F. Let T : F* — F defined by T(xy , ... ...., X3,)
=0 Xg F e X Xy V(Xq e, X)) €E FMand &4, ..., x, € F.

Prove that T is a linear trans formation.

Solution : Let X = (X1, .... , X0 ), V= (V1,5 cvrvnes ,Va) €E F*and «,[,€,F.
Then T(x x + BY) =T [ (X1, e veeee, X)) + BV1 5 eee e, V)]
=T (X X3+ L Y1) eeee, X Xy + BYn)

=o; (Xx;+By)+ -+, (X x,+ By,
=0 (X1 Xq + -+ xp) + B(x1Y1 +Xy )
= T(Xg ey X)) + BT( Y1500 es V)

Thus , T is a linear transformation ( Linear functional ) .

Definition 2.10 ( Normed Linear space): 121

Let L(F) be a linear space over a field F . A mapping || ||: L — IRis called

norm if the following conditions hold

(D) |lx]l = 0 Vx € L. (positivity)

(2) ||x]] = Oifandonlyif x=0.

) llx+yll < x|l + llyllVx,y €L (Triangle Inequality)
4 llcx|| = || [|x]| Vx €L , Vx EF.

(L, .| 1s called normed Linear space .



Example 2.11 1

Let L =1IR be a linear space over IR with ||.||: L — IR
Such that || x || =| x| . show that (R, || . ||) is a normed space .
Solution : we show that
(D |lx|]] = |x| =0 Vx €IR; hence||x|| =0.
2Q)Letx €IR,||x]| =0 & |x|=0 & x=0.

B3)Vvx €IR,Vx €IR.
lloc x[| = o< x| = Joc|[x| = ec] [|x]I.

@llx+yll = lx +yl| < x|+ |yl =llxl[ +llyllvx,y €IR.

Example 2.12 :

Let L = C be a complex Linear space over C with ||. ||: C = IR
Such that||z||=|z|=Va?+ b? VZ =a+ib.show that (C, 11 11)

is a normed space.
Solution :- we show that
()=|Z|=+Va?+ b2 =0 VZ=a+ib €C;hence|Z|] =0.
(2)Letz=a +ib €C
ZIl=1Z|=Va? + b2 =0 ©@a=b=0=Z=0+i0=0.
(3)Letz,w €C
lz + wl|l?> (Z+ W)(Z + W) where Z + W = conjugate of Z + W
=Z+WYZ+W)YZZ+WW+WZ+WZ

—Z7+WW+WZI+WZ



=7ZZ+WW +2ReWZ
S NZ NP+ Iw 112 + 2w lZ] = dIZIE+ [IwW]D3.
Thus, |Z + W|I* < (IZ]| + W])? hence, IZ + W|| < |IZ|| + [W]| .
(4)LetZ€eC,x€C,

lloc Z|| = [oc Z] = Jox (a + ib)|

= J(x a)? + (x b)2 = Jo2 (a? + b2) =V Va2 + b2 = |«||Z| = |«|||Z]|.

Definition 2.13 : I
A sequence < Un > in the normed space L is called convergent if 340 € L S.t
VE>03IK € N: ||[Un—40|| <e Vn >K.

Definition 2.14 :
A sequence < Un > in L is called a Cauchy Sequence if
VE>03IK(E) EN: ||Un—Um| <€ Vnm >K.

Definition 2.15 (Banach space ): 14]

Let L be a normed space. Then, L is complete if every Cauchy sequence in L is

convergent to a point in L. The complete normed space is called Banach space.

Example 2.16 : "
For1l <P < oo,Wedefine the P —normonIR"™ (or C™) by

N0y, %5, e v x)lp = (x| + 125 4 - |, |P)VP

For P= co We define the oo, or maximum, norm by

Cx1,%2 5 s Xl = max {[xs], [x2], ., x|}



Then IR™ equipped with the P-norm is a finite — dimension al Banach space for

I< P < oo,

Example 2.17 : %!

The space C ([ a, b ]) of continuous, real — valued functions on [a, b], with the
sup — norm is a Banach space. More generally the space C (K) of continuous
function on a compact metric space K equipped with the supnorm is a Banach

space .



3. Inner product space
In mathematics, an inner product space (or, rarely a Hausdorff
per-Hilbert space) is a real vector space or a complex vector
space with an operation called an inner product. The inner
product of two vectors in the space is a scatar, often denoted
with angle brackets such as in < a,b >. Inner products allow
formal definitions of intuitive geometric notions, such as
lengths, angles, and orthogonally (Zero inner product) of

vectors.

Inner product spaces generalize Euclidean vector spaces, in
which the inner product is the dot product or scalar product of
Cartesian coordinates. Inner product spaces of infinite
dimension are widely used in functional analysis. Inner product
spaces over the field of complex numbers are sometimes

referred to as unitary spaces.

The first usage of the concept of a vector space with an inner

product is due to Giuseppe peano in 1898.

Definition 3.1 :!!

Let L is a linear space over F . A mapping <. .>:L X L — F is called an

inner production L if the following axioms hold
(Hh<x,x >=0 Vx €L.

2)<x,x >=0 =x=0

10



B)<x,y>=<y,x> Vx,y € Lwhere <x,y >= conjugale of <y,x >
DH<xx+py>=x<x,Z>+p <y, Z> Vx,y,Z €L.
(L, <. .>) iscalled inner product space or pre-Hilbert space.

Remark 3.2 :
(1) If F = IR then axiom (3) becomes < x,y >=<y,x > Vx,y,EL

(2) Every subspace of inner product space is an inner product space .
BG)<uAV>=A<uv>VAEFandu,v €L

Example 3.3 : Bl
Let L =IR*and Let <.,.>: IR2 X IR? - F is defined as
< X,Y > = X1V1 + Xy Vo VX,Y € 1R2 where X = (xl,xz) Y = (yl,yz).

Show that <.,.> is an inner product on IR?

Solution : (i) we check the I . P . S axioms
<X, X>=x{+x2=0 VX= (x,x,) €IR?
QD<XX>=0 ©x2+x2=0 © x,=x=0 X=(0,0)

B)<X,)Y >=x1y; + x27, =< X ,Y > (Since F = IR)

4) Leto,f €IRand Let X = (xq,x3), Y =, ¥2),Z = (Z1,Z,)
<qX+BY,Z>= < (x4 By, X x5 +BY2), (Z1,Z3) >

= (< x; + By1)Z:1,+ (X x5 + BY2)Z,

= (< x1Z1+X x,Z3) ,+ (By1Z1 + BY2Z3)

= (X121 + X2Z3) , + B(y1Z1 + ¥2Z2)

=x(X,Z),+ B(Y,Z)

Thus, (., . )is an inner product on IR?

11



Example 3.4: 4

Let L = F" be a linear space and Let (.,. ) : F* X F* > F
Defined as (X,Y) = YL, x; ¥ : VX,Y € F" where
X=01,00x),Y =1, V)

Show that (, ) is an inner product on F"

Solution :-

X, Xy =X x 5 =X" 01> =20

)X, X)=0 © Y x’=0=x,=0Vi=1,.. ,n
=X=(x,.,x,)=(0,....,0) =0F"

)X, Y) =YL % Vi = Xin %y = Ximq yi%i = (Y, X)

(4)Letx,B8 €F and Let X,Y ,Z € F"

<X+ BY,Z >= YL (xx;+By) Zy =« iy xzi + PRl ViZi = X

(X,Z) + B(Y, Z).

Thus, (., .) is an inner product on F"

Example 3.5 : !
Let L = C [0, 1] be a linear space over IR , and Let (.,. ): L XL — IR is de-

finedby (f,g ): fol f(x)g(x)prove that ( , ) is an inner product L .
Solution :-
WAF )= [ f(O f(x) dx = [J[f(0)]2 dx =0

Q=0 [ [fMPdc=0 & [f]2=0vx € [0,1]
S f(x)=0vx e0,1]ef=20
3)Letx,B8 €IRand f,g,h €L

(< f+ Bg,hy= [/ (f+Bg) (x)L(x) dx

12



= [ (o f(x) + Bg(x) L(x) dx
= o [ () Lx)dx + B [ g(x) L(x) dx
= (f ,h)+ B (g,h)
@ (f,9) = [ FO0) gdx = [} g(x) f(x) dx = (f,g)
Theorem 3.6 (General Cauchy Schwarz's Inequality): ©*

Let (L,(.,.)) is an Inner product space and Let || || : L — IR is defined by
l|x|| = +/{x,x) Vx €L.Then,

ey < llxll iyl vxy€eL.

Proof : If x =0 or y=0 then (x,y) = 0, and hence (x,y) =0

<lxllliyll If y #0,put Z = = ®

Izl = (z,2) = (&, 29 = == (v,9)

1
lly1l2

Iyl =7 (1D
Next , it is enough to show that |(x, Z)| < ||x]||

because if |[(x,Z)| < ||x|| then from (I)

2 = [ )| = o= [ 2)] < lx]

[(x, 2)] < x| Iyl

Letx € F then (x—x z,x—xz) =0
(x—xz,x—xz) >0

(x,x) —x(z,x) —X(x,z)+xx(z,z) >0

13



x> — & (x,2z) — x (z, x)+ «X ||z||* = 0
=1 fram (I)

Ixl|? = (x,2) (x,2) + (x,2) (x,2) — & (x,2) — « (z,x)+x&X > 0
lxll? =[x, 2)* + (x,2) (x, 2) = &)=« ({z,%) = ((2,x) =%)) =0
[l = 1¢x, 2)|* + ({x, 2)= ¢ )({z,x) —x) 2 0
x|l — [{x,2)|> + [{x,z)— x|? >0V xEF (I11)
Put o {x,z), then (III) becomes
Xl =[x, 2)I? 20 = [(x,2)]* < [Ix]|?

[(x, 2)] < Il

|, 22| < llxll - (using @) )

1
—_ <<

[, < 0y

Theorem 3.7 : 4

Every inner product space is a normed space and hence a metric space.

Proof :-
Let (L,{(., .)) is an Inner product space and Let the function || || : L — IR is
defined by || x || = /{x,x)Vx € L Toprove ||. | isanormonL

()Since (x,x) =20Vx €L = || x| =+/(x,x) =20Vx €L

Qlx]=0 Jx,x)=0 {(x,x)=0=5x=0X
3)LetVx €F andx €L

lloc x[|? = (o< x, ¢ &) =oxa (x, ) o] |||

14



Thus, |loc x|| = [x] [|x]]
@ T.P. lx+yll < [xll + llyllvx,y €L
lx+ylI?=(x+y, x+y)
=(x, )+ (y,x)+ (x, ) +(yv,y)
Ixl1> + &) + (x,9) + lyll?
IxII> + 2Re { x,y) + [l¥lI?
< llxll® + 2 [ e, ) + llyll?
< x>+ 2 | x|l llyll + llyll*>  (by Cauchy Schwarz)
= (Il xll + llylD?
Thus, [[x +yll < x|l + [yl
Theorem 3. 8 : !
Let (L,(.,. ))isan.P.S.and x,y € L. Then

(O lx+ylI*> = llx|I>+ 2Re{x,y)+ |lyll*>  (Polarization Identity)
O lx+ylI2+ llx=ylI2=2|xlI>+ 2 |lyll> (Law of parallelogram)

Proof :-
Mllx+yll>= (x+y, x +y)
(x )+ (yx)+H{y)+(yy)
= |lx[1? + (x, ¥} + (x,y) + |lyII?
= |lxI* + 2 Re (x, y) + lIylI?
) T.P. llx + ylI* + llx = yII* = 2 [Ix]I* + 2 Iy ll?

By part (1), [lx + yII* = llx[I* + 2 Re {x,y) + llyll*

lx—yll*=(x—-y, g—y)

15



=xx)—yx)—(xy)+{yy)
= |Ix12 + (x, ¥) — (x, y) + |IylI?
= |lx|I* — 2 Re (x, y) + llylI? (1D)

By Summing up (I) and (IT) We get ||x + y[|? + ||x — y]|?
=2 lx]I* + 2 |IylI?

Remark 3.9 :

Any normed Linear space generated from inner product space must satisfies the

two Laws of Theorem 3.8

Definition 3. 10 Orthogonal Elements"'

Let (L,(., .)) beanI. P. S. and X,y € L. Then x is said to be
orthogonal on y (denoted by x y)ifandonlyif<x,y = o.
Example 3. 11"

Let L =IR? is I. P. S. such that (X,Y) =x; y; + x, ¥, is
usual inner product VX = (x;, x1),Y = (y,, y,) € IR?

Let X= (=6, 3),Y =(2,-1), Z=(1,2).

Show thatX LZ,Y L Z andY ™= X.

Solution: (X ,Z) = ((—6,3),(1,2))
=-6+6=0.Hence, X 1Z.

16



4. Hilbert Space
Definition 4. 1 ¥

Hilbert space is an Inner product space (L,(., .)) which is a

Banach space with respect to ||x|| = +/{x, x) .

Example 4. 20!
Consider the I. P. S. (IR™,{(., .))or (C™,{., .)) such that

n
<X1Y> :z 1xi )Tl where X = (xl,...,X4),Y = (ylr---iy‘l-)
1=

€ IR™ (or C™).
Show that (IR™,(., .))or (C™,(., .)) is Hilbert space

Solution:

1 1
n 2 n 2
Since /(X ,x) = [Z X; Jﬁ] = lz Ixilzl = |IX]|

From Example , IR™( or C™) is a Banach space w.r.t.

IXIl = y{x,x), and thus , (/IR™,{, .)(or C",{, .)) is a
Hilbert space.

Example 4. 3"
The space C[—1, 1] with the inner product defined by (f, g)

1
= ff(x) g(x)dx isnot a Hilbert space.
1

Solution: Let
0 if -1<x<0

fu)=—nx if 0<x<-

17



1 if
”fn - f‘m”2 = (fn — fmoJn — fm)

Suppose n>m, then% < % . We must find f,(x) —

fm ()

<x<1

S

0 if -1<x<0
fu)=—nx if 0<x<-

1 if f<x<1
n

and 0 if -1<x<0
fn )= mx if 0<x<-—
1 if Y<x<1
m

fx)=
1 if 0<x<1
Thus, f € C[—1,1]. Then,(f,) is not convergent in
C [-1,1]. i.e., The space is not Hilbert space.

Remark 4.4 "

Every Hilbert space is a Banach space but the converse is not
true. For example, the space C [a,b] with||f]| =
max {|f (x)|:x € [a, b]}

is Banach space. However, C [a, b] is not a Hilbert space since
it does not Satisfy parallel gram Law; that is ||.|| cannot be

obtained from inner product.

18



The Gram 4. 5 !
We define the projection operator by

(uu)
Where (V, u) denotes the inner product of the vectors v and u.
This operator projects the vector v orthogonally onto the line
spanned by vector u. If u= o, we define proj, (v):= 0 i.e.
the projection map proj, is the zero map, sending every vector

to the zero vector.

The Gram — Schmidt process then works as follows

U, = v e, = —2
1 L L7 gl
_ . _ uz
Uy = Vp — projy, (v2), € =
1
llull
Us
e =
37 Nusll

Uz = vz — projy, (v3) - projy, (v3)

Uy = Vy — POy, (vy) — pTojy, (vy) — projy, (va),

Ug
e, =
T gl
k-1
: Uy
U = Vg — proju, (vi), €x = -
llu |l
0=1
The sequence uq,... , Uy is the required system of orthogonal
vectors, and the normalized vectors  e;, ..., e from an
orthonormal set. The calculation of the sequence u; , ... , u; 1is

know as, Gram- Schmidt orthogonalization.

19



While the calculation of the sequence eq,..., e is know as
Gram- Schmidt orthonormalization as the vectors are
normalized.

Example 4. 6 !

Euclidean space
Consider the following set of vectors in R? (with the

conventional inner product).

5= =[] = )

Now, perform Gram- Schmidt, to obtain an orthogonal set of

vectors.

w=v =[]

Uy = v1 — proj,, (vy) = [;] - pTOj[B] [;] - [;] B 1_80 [ﬂ
—215] 1
615 I’

We check the vectors u; and u, are indeed orthogonal

= 3] [ 2= - ¢+ 2=0

Noting that if the dot product of two vectors is o then they are
orthogonal.
For non- zero vectors, we can then normalize the vectors by

dividing out their sizes as shown above.

_ 1B
75
o L 215] [1]
* [a0 L 615 \/_
25

20



Theorem 4.7 !

Let V be an inner product space and V|, be a finite- dimensional
subspace of V. Then any vector x € V is uniquely represented as
x=p+o,whereP €V,and o L V,

The component P is the orthogonal projection of the vector x
onto the subspace V, . The distance from x to the subspace V, is
lloll.

Ifv,,v, ... , v, 1s an orthogonal basis for V, then.

<x vvl) <x ,172> (x :Vn>
v + %) + + (V1) n -

(v1,v2) 1 (v ,v2)

Theorem 4.8 ! [ The projection theorem |
Let § CH be a Hilbert subspace and Let x € H. Then
1. There exists a unique element x2 € § (called the

projection of x onto § ) such that.

inf

e =2l = llx =yl

Where || .|| is the norm generated by the inner product
associated with H.
2. x? is (uniquely) characterized by
(x —x?) € 6%
Proof:
In order to prove part 1 we being by noting that ¢ .
Since it is a Hilbert subspace, is both complete and convex.

Now fix x € H and define

21



inf

_ L 2
d= syl

Clearly d exists since the set of squared norms ||x — y||? is a set
of real numbers bounded below by o. Now since d is the greatest
lower bound of ||x — y||? there exists a sequence (Vy)pe; from
6 such that, for each € > 0, there exists an N, such that
lx —yill> <d +e

For all K = N, . we now want to show that any such sequence
(yx) 1s a Cauchy sequence. For that purpose, define

U= X—Yn

V= X—9Y,
Now applying the parallelogram identity to u and v , we get.

12 = Ym = Yull? + 1y = yml1? 20l1x =yl + llx = ypll?)

Which may be manipulated to become.

2
+ ”yn - ymllz

1
4||x—§(ym — Yn)
= 2(”x - ymllz + ”.X' _ynllz)

Now since § is convex, % (Vm + ) € 6 and consequently

”x —%(ym + y,) ”2 > d . It follows that

1Vim = Yull® < 2(01x =yl + llx =y l? ) — 4d
Now consider any € > o0, choose a corresponding N, such that
lx — yell> <d+ €14 for all K > N, (such an N, exists we
have seen).

Then, for alln,m = N, ,we have
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1V = nll? < 2Qlx = yll? + llx —ypll?) —4d < ¢
Hence (yy,) is a Cauchy sequence. By the completeness of § ,

It converges to some element X € 6 . By the continuity of the
inner product,

lx — %]|> = d . Hence % is the projection we seek. To show
that X is unique, consider another projection y € § and the
sequence (X,y,X,y,X,y, ..).By the argument above, this is a
Cauchy sequence. But then X =y . Hence (1) is proved . The
proof of part (2) comes in two parts.

First we show that any X that satisfies also satisfies.

Suppose, then, that X satisfies. Define w=x—X and
consider an element y = X4« z where Z € § and «€ IR.
Since 6 is a vector space, it follows that y € § . Now since X

satisfies , y is no closer to x then X 1s. Hence

w|? < lw—oxz||?> = (W—xz,w— X 2) =
= [wll? +oc? |Iz]|* — 2 « (¢, 2)
Simplifying, we get
0 <x?=|z||? = 2 x (w, 2)
This is true for a u scalars o< . In particular, set
x=(g,z) . Weget 0< (w,2)%2(z||?> - 2)
For this to be true for all z € § we must have (w, z) =0

For all z € § such that ||z]|? < 2. But then (why 2) we

must have

23



(w,z) =o forall z€ &S . Hence w € 61 . Now we went to
prove the converse , i. e. thatif X satisfies, then it also satisfies.
Thus consider an element X € § which and Let y €6 .
Mechanical calculation reveal that.
lx—yl?’=xx—-%2+X—y,x—X+%—y) =
=llx 2P+ -ylIP+(x—%,2-y) =
Now since (x —X) € 6+ and (X —y) €5 (recall that § is
recta space), the last term disappears , and our minimization

problem becomes (disregarding the con-stant term ||x — £|?)
min , .
, e gl® =yl
Clearly X solves this problem (Nate that it doesn't matter for the
solution whether we minimize a norm or its square) Indeed.
Since ||X —y|| = 0 implies X =y we may conclude that: f

Same X, then it is the unique solution.
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Figure 1: The relationship between Hilbert's
space and other spaces.
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