Ministry of Higher Education and
Scientific Research
University of Babylon
College of Education for Pure Sciences
Department of Mathematics

Research Title

Pre- Hilbert and Hilbert Spaces

A research submitted to the Council of the College of Education
for Pure Sciences, Mathematics Department, as part of the requirements for obtaining a bachelor's degree in mathematics

Dr. supervision
Lecturer. Rehab Amer Kamel

Prepared by the Student Heba Haider

الاهداء

الشكروالتقدير

الممد لله ذي المن والضضل والاحسان، مـداً يليق بجلاله وعظمته، وصل اللهم على خاتم الرسل همد وأهل بيته، من لا نبي بعده، صلاة تضضي لنا با الحاجات، ورفعنا ها أعلى الدرجات، وتبلغنا ها أقصى الغايات من جميع الميرات، في الحياة وبعد المات، ولله الشكر أولاَ وأخيراً، على حسن توفيته وكيع عونه، وعلى ما منّ وفتح به عليّ من انجاز لهذا البحث، بعد أن يسرـ العسير، وذلل الصعب، وفرج المم، كا أدين بطظم الضضل والشكر والعرفان بعد الهَ سبحانه وتعالى في الجاز هذا البحث وإخراجه بالصورة المرجوة، الى الاستاذة الفاضلة (رحاب عامر كامل) التي منحتني الكثير من وقته، وجمده، وتوجيهاته، وارشاداته، وآرائه الثمهة سائين المولى القدير انيزيزه عني خير
الجزاء ويثيبه الطجر ان شاء النه.

وأتوجه لكل من مد لي يد العون، من لم ستعفي الذاكة بذكهم بالشكر، جفزاهم الله عني خير الجزاء. وخاتًا اسأل الهه العلي القدير ان يكون هذا العمل خالصاً لوجه، وأن يجعله علمَ نا فأا، ويسهل لي به طريقاً الى الجنة.

الباحث

Table of Symbols

Symbol	Definition	Page		
$\langle., \cdot\rangle$	Inner product	10		
$\\|\cdot\\|$	Normed Space	7		
\mathbf{H}	Hilbert	17		
\mathbf{X}	Vector Space	15		
\mathbf{L}	Linear map	2		

Contents

sequencing	the topic	page
1	Abstract	1
2	Section 1 Introduction	2
3	Section 2 Important definition and results	3
4	Section 3 Inner product space	10
5	Section 4 Hilbert space	17
6	References	26

Abstract

In this research, we study the concept of linear space, Inner product space, and Hilbert space, and find out results about them.

We also study we dealt with the inner product space in terms of its definition, examples, and some theories related to it, as well as its relationship to the Hilbert space.

We also define Hilbert space and dealt with examples and the most important results related to it.

1. introduction

In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite- dimensional) Euclidean vector spaces to spaces that may be infinite- dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the spaces is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the $20^{\text {th }}$ century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, fourier analysis (which includes applications to signal processing and heat transfer), John Van Neumann coined the term Hilbert spaces for the abstract concept that underlies money of these diverse applications. The success of Hilbert spaces methods us hered in a very fruitful era for functional analysis. Aeart from the classical Euclidean vector spaces, examples of Helbert spaces include spaces of square - integrable functions, spaces of sequences, sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions.

Geometric intuition plays an important role in many aspects of Hilbert space theory. Exact analys of the Pythagorean theorem and parallelogram law hald in a Hilbert space. At a deeper level, perpendicular projection on to a linear subspace or a subspace or a subspace (the analys of " dropping the altitude " of a triangle) plays a significant role in optimization proplems and other aspects of the theory. An element of a Hilbert space can be uniquely specified by its coordinates with respect to an orthonormal basis, in analogy with cortesian coordinates in classical geometry when this basis is countably infinite, it allows identifying the Hilbert space with the space of the infinite sequences that are square- summable. The latter space is often in the older literature referred to as the Hilbert space.

2- Important definition and results .

Definition 2.1 (Linear space): ${ }^{[1]}$

Let $(\mathrm{F},+,-)$ be a field whose elements are called scalars. Let L is a nonempty set whose elements are called vectors. Then L is a linear space (or a vectors space) over the field F, if
(1) addition : There is a binary operation + on L called addition (not usual addition) such that $(\mathrm{L},+)$ is a commutative group .
(2) scalar multiplication: $\propto . \mathcal{X} \in L \quad \forall \mathcal{X} \in L, \forall \propto \in F$.
(3) The scalar multiplication and addition satisfy
(i) $\propto \cdot(\mathcal{X}+y)=\propto . \mathcal{X}+\propto . y \quad \forall \mathcal{X}, y \in L \quad, \forall \propto \in F$
(ii) $(\alpha+\beta) \cdot \mathcal{X}=\propto \cdot \mathcal{X}+\beta \cdot \mathcal{X} \quad \forall \mathcal{X} \in L \quad \forall \propto, \beta \in F$
(iii) $(\alpha \cdot \beta) \cdot \mathcal{X}=\propto \cdot(\beta \cdot \mathcal{X}) \quad \forall \mathcal{X} \in L \quad \forall \propto, \beta \in F$
(iv) $1 . X=X \quad \forall X \in L \quad$ and 1 is the unity F

Example 2.2: ${ }^{[2]}$

The set of real number R , with Ordinary addition and ordinary multiapplication, is a linear space over $(\mathrm{F},+,)=.(\mathrm{R},+,$.$) . indeed,$
(1) $(\operatorname{IR},+)$ is an abelian an group
(2) $\propto . \mathcal{X} \in I R \quad \forall \mathcal{X} \in I R \quad, \propto \in I R$
(3) All other condition are sat is field (check)

This linear space (IR , + ,.) is called real linear space .

Example 2.3 : ${ }^{[1]}$

The set of complex numbers C , with ordinary addition and ordinary multiplication, is a linear space over $(\mathrm{F},+,)=.(\mathrm{C},+,$.$) indeed,$
(1) $(\mathrm{C},+,$.$) is an abelian an group$
(2) $\propto . x \in C \quad \forall x \in C \quad, \propto \in C$
(3) All other conditions are sat is field

This linear space ($\mathrm{C},+,$.) is called complex linear space .

Definition 2.4 (Linear subspace): ${ }^{[2]}$

Let L be a linear space over a field F and Let $\emptyset \neq H \mathrm{C} L$. Then H is called a linear subspace of L if H itself is a linear space over F .

Theorem 2.5: ${ }^{[3]}$

Let H be a nonempty subset of a linear space $\mathrm{L}(\mathrm{F})$. H is called a subspace of L if and only if $\propto X+\beta y \in H$ for all $X, y \in H$ and for all $\alpha, \beta \in F$.

Definition 2.6 (Linear Transformation Mapping): ${ }^{[4]}$

Let $L(F)$ and $L^{\prime}(F)$ be two Linear spaces over the same field F. A mapping
$\mathrm{T}: \mathrm{L} \rightarrow \mathrm{L}^{\prime}$ is called a Linear operator or Linear Transformation if

$$
T(\alpha X+\beta y)=\alpha T(X)+\beta T(y) \quad \forall x, y \in L, \forall X, \beta \in F
$$

Example 2.7 : ${ }^{[1]}$

Let $T: \mathrm{IR}^{3} \rightarrow \mathrm{R}^{2}$ defined by $\mathrm{T}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)=\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$

$$
\forall x_{1}, x_{2}, x_{3} \in I R
$$

(1) show that T is a linear transformation .
(2) If $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=(2,1,-3), \mathrm{Y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=(0,-5,1)$. compute $\mathrm{T}(2 \mathrm{X})$ and $\mathrm{T}(\mathrm{X}+\mathrm{Y})$.

Solution (1) :-
Let $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in I R^{3}, Y=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right) \in I R^{3}$ and $\alpha, \beta \in R$. Then
$T(\alpha X+\beta Y)=T\left[\alpha\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)+\beta\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)\right]$

$$
\begin{aligned}
& =T\left[\alpha \mathrm{x}_{1}+\beta \mathrm{y}_{1}, \alpha \mathrm{x}_{2}+\beta \mathrm{y}_{2}, \alpha \mathrm{x}_{3}+\beta \mathrm{y}_{3}\right] \\
& =\left(\alpha \mathrm{x}_{1}, \beta \mathrm{y}_{1}, \alpha \mathrm{x}_{2}+\beta \mathrm{y}_{2}\right) \\
& =\left(\alpha \mathrm{x}_{1}, \alpha \mathrm{x}_{2}\right)+\left(\beta \mathrm{y}_{1}+\beta \mathrm{y}_{2}\right) \\
& =\alpha\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\beta\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \\
& =\alpha T\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)+\beta T\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=\alpha T(X)+\beta T(Y)
\end{aligned}
$$

Solution (2) :- $\mathrm{T}(2 \mathrm{X})=\mathrm{T}(4,2,-6)=(4,2)$.

$$
\mathrm{T}(\mathrm{X}+\mathrm{Y})=\mathrm{T}(2,-4,-2)=(2,-4) .
$$

Definition 2.8 : ${ }^{[2]}$

Let L be a linear space. A linear transformation
$\mathrm{T}: \mathrm{L} \rightarrow \mathrm{F}$ is said to be Linear functional.
(Note: that F can be regarded as a linear space over F).

Example 2.9: ${ }^{[1]}$

Let $\mathrm{L}=F^{n}=\left\{\left(x_{1}, \ldots \ldots, x_{2}\right): x_{1}, \ldots \ldots . . x_{2} \in F\right\}$ be a linear space over the field F. Let T: $F^{n} \rightarrow F$ defined by $\mathrm{T}\left(x_{1}, \ldots \ldots, x_{n}\right)$

$$
=\propto_{1} x_{1}+\ldots \ldots . .+\propto_{n} x_{n} \forall\left(x_{1}, \ldots \ldots, x_{n}\right) \in F^{n} \text { and } \propto_{1}, \ldots . ., x_{n} \in F .
$$

Prove that T is a linear trans formation.
Solution : Let $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \ldots \ldots, \mathrm{y}_{\mathrm{n}}\right) \in F^{n}$ and \propto, β, \in, F.
Then $\mathrm{T}(\alpha x+\beta y)=T\left[\alpha\left(x_{1}, \ldots \ldots, x_{n}\right)+\beta\left(y_{1}, \ldots \ldots . . y_{n}\right)\right]$

$$
\begin{aligned}
& =T\left(\propto x_{1}+\beta y_{1}, \ldots \ldots, \propto x_{n}+\beta y_{n}\right) \\
& =\alpha_{1}\left(\alpha x_{1}+\beta y_{1}\right)+\cdots+\alpha_{n}\left(\propto x_{n}+\beta y_{n}\right) \\
& =\propto\left(\alpha_{1} x_{1}+\cdots+\propto_{n} x_{n}\right)+\beta\left(x_{1} y_{1}+\propto_{n} y_{n}\right) \\
& =\propto T\left(x_{1}, \ldots, x_{n}\right)+\beta T\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

Thus, T is a linear transformation (Linear functional).

Definition 2.10 (Normed Linear space): ${ }^{[2]}$

Let $\mathrm{L}(\mathrm{F})$ be a linear space over a field F . A mapping $\|\|: \mathrm{L} \rightarrow \quad \mathrm{IR}$ is called norm if the following conditions hold
(1) $\|x\| \geq 0 \quad \forall x \in L$. (positivity)
(2) $\|x\|=0$ if and only if $x=0$.
(3) $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in L$ (Triangle Inequality)
(4) $\|\propto x\|=|\propto|\|x\| \forall x \in L, \forall x \in F$.
$(\mathrm{L},\|\cdot\|)$ is called normed Linear space .

Example 2.11 : ${ }^{[1]}$

Let $L=I R$ be a linear space over IR with $\|\|:. L \rightarrow I R$
Such that $\|\mathrm{x}\|=|\mathrm{x}|$. show that $(\mathrm{R},\|\|$.$) is a normed space$.
Solution : we show that
(1) $\|x\|=|x| \geq 0 \forall x \in I R$; hence $\|x\| \geq 0$.
(2) Let $x \in I R,\|x\|=0 \Leftrightarrow|x|=0 \Leftrightarrow x=0$.
(3) $\forall x \in I R, \forall x \in I R$.
$\|\propto x\|=|\propto x|=|\propto\|x|=|\propto|\|x\|$.
(4) $\|x+y\|=|x+y| \leq|x|+|y|=\|x\|+\|y\| \forall x, y \in I R$.

Example 2.12: ${ }^{[2]}$

Let $\mathrm{L}=\mathrm{C}$ be a complex Linear space over C with $\|\|:. \mathrm{C} \rightarrow \mathrm{IR}$
Such that $\|\mathrm{z}\|=|\mathrm{z}|=\sqrt{a^{2}+b^{2}} \forall Z=a+i b$. show that $(\mathrm{C}, 1111)$ is a normed space.

Solution :- we show that

(1) $=|Z|=\sqrt{a^{2}+b^{2}} \geq 0 \quad \forall Z=a+i b \in C$; hence $\|Z\| \geq 0$.
(2) Let $z=a+i b \in C$

$$
\|Z\|=|Z|=\sqrt{a^{2}+b^{2}}=0 \Leftrightarrow a=b=0 \Leftrightarrow Z=o+i o=o .
$$

(3) Let $\mathrm{z}, \mathrm{w} \in C$

$$
\begin{aligned}
\|z+w\|^{2} & (Z+W)(\overline{Z+W}) \text { where } \overline{Z+W}=\text { conjugate of } Z+W \\
& =(Z+W)(\overline{Z+W}) Z \bar{Z}+W \bar{W}+W \bar{Z}+\bar{W} Z \\
& =Z \bar{Z}+W \bar{W}+W \bar{Z}+\overline{W \bar{Z}}
\end{aligned}
$$

$$
\begin{array}{r}
=Z \bar{Z}+W \bar{W}+2 \operatorname{Re} W \bar{Z} \\
\leq\|Z\|^{2}+\|W\|^{2}+2\|W\|\|Z\|=(\|Z\|+\|W\|)^{2} .
\end{array}
$$

Thus, $\|Z+W\|^{2} \leq(\|Z\|+\|W\|)^{2}$, hence , $\|Z+W\| \leq\|Z\|+\|W\|$.
(4) Let $\mathrm{Z} \in C, \propto \in C$,

$$
\begin{aligned}
& \|\propto Z\|=|\propto Z|=|\propto(a+i b)| \\
& =\sqrt{(\propto a)^{2}+(\propto b)^{2}}=\sqrt{\alpha^{2}\left(a^{2}+b^{2}\right)}=\sqrt{\alpha^{2}} \sqrt{a^{2}+b^{2}}=|\propto||Z|=|\propto|\|Z\| .
\end{aligned}
$$

Definition 2.13 : ${ }^{[3]}$

A sequence $<U n>$ in the normed space L is called convergent if $\exists 40 \in L$ S.t $\forall \in>0 \exists K \in N:\|U n-40\|<\in \forall n>K$.

Definition 2.14 : ${ }^{[4]}$

A sequence $\langle U n>$ in L is called a Cauchy Sequence if $\forall \in>0 \exists K(\epsilon) \in N:\|U n-U m\|<\in \forall n, m>K$.

Definition 2.15 (Banach space): ${ }^{[4]}$

Let L be a normed space. Then, L is complete if every Cauchy sequence in L is convergent to a point in L . The complete normed space is called Banach space.

Example 2.16 : ${ }^{[1]}$

For $1 \leq P<\infty$, We define the P - norm on $I R^{n}$ (or C^{n}) by

$$
\left\|\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)\right\|_{P}=\left(\left|x_{1}\right|^{P}+\left|x_{2}\right|^{P}+\cdots\left|x_{n}\right|^{P}\right)^{1 / P}
$$

For $\mathrm{P}=\infty$ We define the ∞, or maximum, norm by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\} .
$$

Then $I R^{n}$ equipped with the P-norm is a finite - dimension al Banach space for $\exists \leq P \leq \infty$.

Example 2.17 : ${ }^{[2]}$

The space $C([a, b])$ of continuous, real - valued functions on $[a, b]$, with the sup - norm is a Banach space. More generally the space $C(K)$ of continuous function on a compact metric space K equipped with the supnorm is a Banach space .

3. Inner product space

In mathematics, an inner product space (or, rarely a Hausdorff per-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scatar, often denoted with angle brackets such as in $\langle a, b\rangle$. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonally (Zero inner product) of vectors.

Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces.

The first usage of the concept of a vector space with an inner product is due to Giuseppe peano in 1898.

Definition 3.1 : ${ }^{[1]}$

Let L is a linear space over F . A mapping $<.$, . $>: L \times L \rightarrow F$ is called an inner production L if the following axioms hold
(1) $<x, x>\geq 0 \quad \forall x \in L$.
(2) $\langle x, x\rangle=0 \Leftrightarrow x=0$
(3) $\overline{\langle x, y\rangle}=\langle y, x\rangle \quad \forall x, y \in L$ where $\overline{\langle x, y\rangle}=$ conjugale of $\langle y, x\rangle$
(4) $\langle\alpha x+\beta y\rangle=\alpha<x, Z\rangle+\beta<y, Z\rangle \quad \forall x, y, Z \in L$.
($\mathrm{L},<.,$.$\rangle) is called inner product space or pre-Hilbert space.$

Remark 3.2 :

(1) If $\mathrm{F}=\mathrm{IR}$ then axiom (3) becomes $\langle x, y\rangle=\langle y, x\rangle \forall x, y, \in L$
(2) Every subspace of inner product space is an inner product space .
(3) $\langle u, \lambda V\rangle=\bar{\lambda}\langle u, v\rangle \forall \lambda \in F$ and $u, v \in L$

Example 3.3: ${ }^{[3]}$

Let $\mathrm{L}=\mathrm{IR}^{2}$ and Let $\left.<_{., .}\right\rangle: I R^{2} X I R^{2} \rightarrow F$ is defined as $<X, Y>=x_{1} y_{1}+x_{2} y_{2} \forall X, Y \in I R^{2}$ where $X=\left(x_{1}, x_{2}\right) \quad Y=\left(y_{1}, y_{2}\right)$.
Show that $\left.<_{\text {., }}\right\rangle$ is an inner product on $I R^{2}$
Solution : (i) we check the I. P.S axioms
(1) $\langle X, X\rangle=x_{1}^{2}+x_{2}^{2} \geq 0 \quad \forall X=\left(x_{1}, x_{2}\right) \in I R^{2}$
(2) $<X, X>=0 \Leftrightarrow x_{1}^{2}+x_{2}^{2}=0 \Leftrightarrow x_{1}=x_{2}=0 \Leftrightarrow X=(0,0)$
(3) $\langle X, Y\rangle=x_{1} y_{1}+x_{2} y_{2}=\langle X, Y\rangle($ Since $F=I R)$
(4) Let $\alpha, \beta \in I R$ and Let $X=\left(x_{1}, x_{2}\right), Y=\left(y_{1}, y_{2}\right), Z=\left(Z_{1}, Z_{2}\right)$

$$
\begin{aligned}
& <\alpha X+\beta Y, Z>=<\left(\alpha x_{1}+\beta y_{1}, \propto x_{2}+\beta y_{2}\right),\left(Z_{1}, Z_{2}\right)> \\
& =\left(\propto x_{1}+\beta y_{1}\right) Z_{1},+\left(\alpha x_{2}+\beta y_{2}\right) Z_{2} \\
& =\left(\propto x_{1} Z_{1}+\propto x_{2} Z_{2}\right),+\left(\beta y_{1} Z_{1}+\beta y_{2} Z_{2}\right) \\
& =\propto\left(x_{1} Z_{1}+x_{2} Z_{2}\right),+\beta\left(y_{1} Z_{1}+y_{2} Z_{2}\right) \\
& =\propto\langle X, Z\rangle,+\beta\langle Y, Z\rangle
\end{aligned}
$$

Thus , $\langle. .$.$\rangle is an inner product on I R^{2}$

Example 3.4: ${ }^{[4]}$

Let $\mathrm{L}=\mathrm{F}^{\mathrm{n}}$ be a linear space and Let $\langle.\rangle:, F^{n} \times F^{n} \rightarrow F$
Defined as $\langle X, Y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}: \forall X, Y \in F^{n}$ where
$X=\left(x_{1}, \ldots, x_{n}\right), Y=\left(y_{1}, \ldots, y_{n}\right)$.
Show that \langle,$\rangle is an inner product on F^{n}$

Solution :-

(1) $\langle X, X\rangle=\sum_{i=1}^{n} x_{i} \bar{x}_{i}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \geq 0$
(2) $\langle X, X\rangle=0 \Leftrightarrow \sum_{i=1}^{n}\left|x_{i}\right|^{2}=0 \Leftrightarrow x_{i}=0 \forall i=1, \ldots, n$

$$
\Leftrightarrow X=\left(x_{1}, \ldots, x_{n}\right)=(o, \ldots ., o)=O F^{n}
$$

(3) $\langle\overline{X, Y}\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}=\sum_{i=1}^{n} \bar{x}_{i} y_{i}=\sum_{i=1}^{n} y_{i} \bar{x}_{i}=\langle Y, X\rangle$
(4) Let $\alpha, \beta \in F$ and Let $X, Y, Z \in F^{n}$
$\alpha X+\beta Y, Z>=\sum_{i=1}^{n}\left(\alpha x_{i}+\beta y_{i}\right) \bar{Z}_{i}=\alpha \sum_{i=1}^{n} x_{i} z_{i}+\beta \sum_{i=1}^{n} y_{i} \bar{z}_{i}=\alpha$ $\langle X, Z\rangle+\beta\langle Y, Z\rangle$.
Thus, $\langle.,$.$\rangle is an inner product on F^{n}$

Example 3.5: ${ }^{[3]}$

Let $\mathrm{L}=\mathrm{C}[0,1]$ be a linear space over IR , and Let $\langle.,\rangle:. L \times L \rightarrow I R$ is defined by $\langle f, g\rangle: \int_{0}^{1} f(x) g(x)$ prove that \langle,$\rangle is an inner product \mathrm{L}$.

Solution :-

(1) $\langle f, f\rangle=\int_{0}^{1} f(x) f(x) d x=\int_{0}^{1}[f(x)]^{2} d x \geq 0$
(2) $\langle f, f\rangle=0 \Leftrightarrow \int_{0}^{1}[f(x)]^{2} d x=0 \Leftrightarrow[f(x)]^{2}=0 \forall x \in[0,1]$
$\Leftrightarrow f(x)=0 \forall x \in[0,1] \Leftrightarrow f=\hat{o}$
(3) Let $x, \beta \in \operatorname{IR}$ and $f, g, h \in L$
$\langle\propto f+\beta g, h\rangle=\int_{0}^{1}(\alpha f+\beta g)(x) L(x) d x$
$=\int_{0}^{1}(\propto f(x)+\beta g(x) L(x) d x$
$=\propto \int_{0}^{1} f(x) L(x) d x+\beta \int_{0}^{1} g(x) L(x) d x$

$$
=\alpha\langle f, h\rangle+\beta\langle g, h\rangle
$$

(4) $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} g(x) f(x) d x=\langle f, g\rangle$

Theorem 3.6 (General Cauchy Schwarz's Inequality): ${ }^{[3]}$

Let $(L,\langle.,\rangle$.$) is an Inner product space and Let \|\|: L \rightarrow I R$ is defined by $\|x\|=\sqrt{\langle x, x\rangle} \forall x \in L$. Then,
$|\langle x, y\rangle| \leq\|x\|\|y\| \forall x y \in L$.
Proof: If $\mathrm{x}=0$ or $\mathrm{y}=0$ then $\langle x, y\rangle=0$, and hence $\langle x, y\rangle=0$
$\leq\|x\|\|y\|$ If $y \neq 0$, put $Z=\frac{y}{\|y\|}$

$$
\begin{gather*}
\|Z\|^{2}=\langle Z, Z\rangle=\left\langle\frac{y}{\|y\|}, \frac{y}{\|y\|^{\prime}}\right\rangle=\frac{1}{\left\|y^{\prime}\right\|}\langle y, y\rangle \\
\frac{1}{\|y\|^{2}}\|y\|^{2}=7 \tag{II}
\end{gather*}
$$

Next, it is enough to show that $|\langle x, Z\rangle| \leq\|x\|$
because if $|\langle x, Z\rangle| \leq\|x\|$ then from (I)

$$
\begin{aligned}
& |\langle x, Z\rangle|=\left|\left\langle x, \frac{y}{\|y\|}\right\rangle\right|=\frac{1}{\|y\|}=|\langle x, Z\rangle| \leq\|x\| \\
& \quad|\langle x, Z\rangle| \leq\|x\|\|y\|
\end{aligned}
$$

Let $\alpha \in F$ then $\langle x-\alpha z, x-\alpha z\rangle \geq 0$
$\langle x-\propto z, x-\propto z\rangle \geq 0$
$\langle x, x\rangle-\propto\langle z, x\rangle-\bar{\alpha}\langle x, z\rangle+\propto \bar{\alpha}\langle z, z\rangle \geq 0$

$$
\begin{align*}
& \|x\|^{2}-\bar{\propto}\langle x, z\rangle-\propto\langle z, x\rangle+\propto \bar{\alpha}\|z\|^{2} \geq 0 \\
& \quad=1 \text { fram (I) } \\
& \|x\|^{2}-\langle x, z\rangle \overline{\langle x, z\rangle}+\langle x, z\rangle \overline{\langle x, z\rangle}-\bar{\propto}\langle x, z\rangle-\propto\langle z, x\rangle+\propto \bar{\alpha} \geq 0 \\
& \|x\|^{2}-|\langle x, z\rangle|^{2}+\langle x, z\rangle(\overline{(\langle x, z\rangle}-\bar{\propto})-\propto(\langle z, x\rangle-\propto(\langle z, x\rangle-\bar{\alpha})) \geq 0 \\
& \|x\|^{2}-|\langle x, z\rangle|^{2}+(\langle x, z\rangle-\propto)(\overline{\langle z, x\rangle-x}) \geq 0 \\
& \|x\|^{2}-|\langle x, z\rangle|^{2}+|\langle x, z\rangle-\propto|^{2} \geq 0 \forall \propto \in F \tag{III}
\end{align*}
$$

Put $\propto\langle x, z\rangle$, then (III) becomes

$$
\begin{aligned}
& \|x\|^{2}-|\langle x, z\rangle|^{2} \geq 0 \Rightarrow|\langle x, z\rangle|^{2} \leq\|x\|^{2} \\
& |\langle x, z\rangle| \leq\|x\| \\
& \left|\left\langle x, \frac{y}{\|y\|}\right\rangle\right| \leq\|x\| \quad \text { (using (I)) } \\
& |\langle x, y\rangle\rangle \frac{1}{\|y\|} \leq\|x\| \\
& |\langle x, y\rangle| \leq\|x\|\|y\| .
\end{aligned}
$$

Theorem 3.7: ${ }^{[4]}$

Every inner product space is a normed space and hence a metric space.

Proof :-

Let $(L,\langle.,\rangle$.$) is an Inner product space and Let the function \|\|: L \rightarrow I R$ is defined by $\|x\|=\sqrt{\langle x, x\rangle} \forall x \in L$ To prove $\|$.$\| is a norm on \mathrm{L}$
(1) Since $\langle x, x\rangle \geq 0 \forall x \in L \Rightarrow\|x\|=\sqrt{\langle x, x\rangle} \geq 0 \forall x \in L$
(2) $\|x\|=0 \Leftrightarrow \sqrt{\langle x, x\rangle}=0 \Leftrightarrow\langle x, x\rangle=0 \Leftrightarrow x=0 X$
(3) Let $\forall x \in F$ and $x \in L$

$$
\|\propto x\|^{2}=\langle\propto x, \propto x\rangle=\propto \bar{\alpha}\langle x, x\rangle|\propto|^{2}\|x\|^{2}
$$

Thus, $\|\propto x\|=|x|\|x\|$
(4) T. P. $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in L$
$\|x+y\|^{2}=\langle x+y, x+y\rangle$
$=\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle$
$\|x\|^{2}+\langle\overline{x, y}\rangle+\langle x, y\rangle+\|y\|^{2}$
$\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}$
$\leq\|x\|^{2}+2|\langle x, y\rangle|+\|y\|^{2}$
$\leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \quad$ (by Cauchy Schwarz)
$=(\|x\|+\|y\|)^{2}$
Thus, $\|x+y\| \leq\|x\|+\|y\|$
Theorem 3.8: ${ }^{[1]}$
Let $(L,\langle\ldots\rangle)$ is an I. P. S. and $x, y \in L$. Then
(1) $\|x+y\|^{2}=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} \quad$ (Polarization Identity)
(2) $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \quad$ (Law of parallelogram)

Proof :-

(1) $\|x+y\|^{2}=\langle x+y, x+y\rangle$

$$
\begin{gathered}
\langle x, x\rangle+\langle y, x\rangle+\langle x, y\rangle+\langle y, y\rangle \\
=\|x\|^{2}+\overline{\langle x, y\rangle}+\langle x, y\rangle+\|y\|^{2} \\
=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}
\end{gathered}
$$

(2) T. P. $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$

By part (1), $\|x+y\|^{2}=\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}$
$\|x-y\|^{2}=\langle x-y, g-y\rangle$

$$
\begin{align*}
& =\langle x, x\rangle-\langle y, x\rangle-\langle x, y\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\overline{\langle x, y\rangle}-\langle x, y\rangle+\|y\|^{2} \\
& =\|x\|^{2}-2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} \tag{II}
\end{align*}
$$

By Summing up (I) and (II) We get $\|x+y\|^{2}+\|x-y\|^{2}$

$$
=2\|x\|^{2}+2\|y\|^{2}
$$

Remark 3.9:

Any normed Linear space generated from inner product space must satisfies the two Laws of Theorem 3.8

Definition 3. 10 Orthogonal Elements ${ }^{[3]}$

Let (L, 〈. , .〉) be an I. P. S. and $x, y \in L$. Then x is said to be orthogonal on y (denoted by x y) if and only if $\langle x, y \geq o$.

Example 3. 11 ${ }^{[4]}$

Let $L=I R^{2}$ is I. P. S. such that $\langle X, Y\rangle=x_{1} y_{1}+x_{2} y_{2}$ is usual inner product $\forall X=\left(x_{1}, x_{1}\right), Y=\left(y_{2}, y_{2}\right) \in I R^{2}$
Let $X=(-6,3), Y=(2,-1), Z=(1,2)$.
Show that $X \perp Z, Y \perp Z$ and $Y^{ \pm} X$.
Solution: $\langle X, Z\rangle=\langle(-6,3),(1,2)\rangle$

$$
=-6+6=0 . \text { Hence, } X \perp Z .
$$

4. Hilbert Space

Definition 4. $1^{[5]}$
Hilbert space is an Inner product space ($L,\langle.$, . \rangle) which is a Banach space with respect to $\|x\|=\sqrt{\langle x, x\rangle}$.

Example 4. $2^{[5]}$
Consider the I. P. S. $\left(I R^{n},\langle.,\rangle.\right)$ or $\left(C^{n},\langle.,\rangle.\right)$ such that

$$
\begin{aligned}
\langle X, Y\rangle= & \sum_{i=1}^{n} x_{i} \overline{y l} \text { where } X=\left(x_{1}, \ldots, x_{4}\right), Y=\left(y_{1}, \ldots, y_{4}\right) \\
& \in I R^{n}\left(\text { or } C^{n}\right)
\end{aligned}
$$

Show that $\left(I R^{n},\langle.,\rangle.\right)$ or $\left(C^{n},\langle.,\rangle.\right)$ is Hilbert space

Solution:

Since $\sqrt{\langle X, x\rangle}=\left[\sum_{i=1}^{n} x_{i} \overline{x l}\right]^{\frac{1}{2}}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}=\|X\|$
From Example, $I R^{n}\left(\right.$ or $\left.C^{n}\right)$ is a Banach space w.r.t.
$\|X\|=\sqrt{\langle x, x\rangle}$, and thus,$\left(I R^{n},\langle.,\rangle.\right)\left(\right.$ or $\left.C^{n},\langle.,\rangle.\right)$ is a Hilbert space.

Example 4. ${ }^{[5]}$

The space $C[-1,1]$ with the inner product defined by $\langle f, g\rangle$

$$
=\int_{-1}^{1} f(x) g(x) d x \text { is not a Hilbert space. }
$$

Solution: Let

$$
f_{n}(\mathrm{x})=\left\{\begin{array}{llr}
0 & \text { if } & -1 \leq x \leq 0 \\
\mathrm{nx} & \text { if } & 0<x<\frac{1}{n}
\end{array}\right.
$$

$$
\left\|f_{n}-f_{m}\right\|^{2}=\left\langle f_{n}-f_{m}, f_{n}-f_{m}\right\rangle
$$

Suppose $n>m$, then $\frac{1}{n}<\frac{1}{m}$. We must find $f_{n}(x)-$ $f_{m}(x)$

$$
\begin{aligned}
& f_{n}(\mathrm{x})=\left\{\begin{array}{ccc}
0 & \text { if } & -1 \leq x \leq 0 \\
\mathrm{nx} & \text { if } & 0<x<\frac{1}{n} \\
1 & \text { if } & \frac{1}{n} \leq x \leq 1
\end{array}\right. \\
& f_{m}(\mathrm{x})=\left\{\begin{array}{ccc}
0 & \text { if } & -1 \leq x \leq 0 \\
\mathrm{mx} & \text { if } & 0<x<\frac{1}{m} \\
1 & \text { if } & \frac{1}{m} \leq x \leq 1
\end{array}\right. \\
& f(\mathrm{x})=\left\{\begin{array}{lll}
0 & \text { if } & -1 \leq x \leq 0 \\
1 & \text { if } & 0<x \leq 1
\end{array}\right.
\end{aligned}
$$

Thus, $\mathrm{f} \notin C[-1,1]$. Then, $\left\langle f_{n}\right\rangle$ is not convergent in $C[-1,1]$. i.e., The space is not Hilbert space.

Remark 4. $4^{[5]}$

Every Hilbert space is a Banach space but the converse is not true. For example, the space $C[a, b]$ with $\|f\|=$ $\max \{|f(x)|: x \in[a, b]\}$
is Banach space. However, $C[a, b]$ is not a Hilbert space since it does not Satisfy parallel gram Law; that is $\|$.$\| cannot be$ obtained from inner product.

The Gram 4. $5^{[5]}$

We define the projection operator by
$\operatorname{proj}_{u}(v)=\frac{\langle V, u\rangle}{\langle u, u\rangle} u$,
Where $\langle V, u\rangle$ denotes the inner product of the vectors v and u. This operator projects the vector v orthogonally onto the line spanned by vector u. If $u=0$, we define $\operatorname{proj}_{o}(v):=0$ i. e. the projection map proj_{o} is the zero map, sending every vector to the zero vector.
The Gram - Schmidt process then works as follows

$$
\begin{array}{ll}
u_{1}=v_{1}, & e_{1}=\frac{u_{1}}{\left\|u_{1}\right\|} \\
u_{2}=v_{2}-\operatorname{proj}_{u_{1}}\left(v_{2}\right), & e_{2}=\frac{u_{2}}{\left\|u_{2}\right\|} \\
& e_{3}=\frac{u_{3}}{\left\|u_{3}\right\|} \\
u_{3}=v_{3}-\operatorname{proj}_{u_{1}}\left(v_{3}\right)-\operatorname{proj}_{u_{2}}\left(v_{3}\right) \\
u_{4}=v_{4}-\operatorname{proj}_{u_{1}}\left(v_{4}\right)-\operatorname{proj}_{u_{2}}\left(v_{4}\right)-\operatorname{proj}_{u_{3}}\left(v_{4}\right), \\
e_{4}=\frac{u_{4}}{\left\|u_{4}\right\|} \\
u_{k}=v_{k}-\sum_{0=1}^{k-1} \operatorname{proj}_{u_{1}}\left(v_{k}\right), & e_{k}=\frac{u_{k}}{\left\|u_{k}\right\|} .
\end{array}
$$

The sequence u_{1}, \ldots, u_{k} is the required system of orthogonal vectors, and the normalized vectors e_{1}, \ldots, e_{k} from an orthonormal set. The calculation of the sequence u_{1}, \ldots, u_{k} is know as, Gram- Schmidt orthogonalization.

While the calculation of the sequence e_{1}, \ldots, e_{k} is know as Gram- Schmidt orthonormalization as the vectors are normalized.

Example 4. $6{ }^{[5]}$

Euclidean space

Consider the following set of vectors in R^{2} (with the conventional inner product).

$$
S=\left\{v_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\} .
$$

Now, perform Gram- Schmidt, to obtain an orthogonal set of vectors.

$$
\begin{aligned}
& u_{1}=v_{1}=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& u_{1}=v_{1}-\operatorname{proj}_{u_{1}}\left(v_{2}\right)=\left[\begin{array}{l}
2 \\
2
\end{array}\right]-\operatorname{proj}_{\left[\begin{array}{l}
3 \\
1
\end{array}\right]}\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]-\frac{8}{10}\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-215 \\
615
\end{array}\right] .
\end{aligned}
$$

We check the vectors u_{1} and u_{2} are indeed orthogonal

$$
\left\langle u_{1}, u_{2}\right\rangle=\left\langle\left[\begin{array}{l}
3 \\
1
\end{array}\right],\left[\begin{array}{c}
-215 \\
615
\end{array}\right]\right\rangle=-\frac{6}{5}+\frac{6}{5}=0
$$

Noting that if the dot product of two vectors is o then they are orthogonal.

For non- zero vectors, we can then normalize the vectors by dividing out their sizes as shown above.
$e_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}3 \\ 1\end{array}\right]$
$e_{2}=\frac{1}{\sqrt{\frac{40}{25}}}\left[\begin{array}{c}-215 \\ 615\end{array}\right]=\frac{1}{\sqrt{10}}\left[\begin{array}{c}-1 \\ 3\end{array}\right]$.

Theorem 4. $7^{[5]}$

Let V be an inner product space and V_{0} be a finite- dimensional subspace of V . Then any vector $x \in V$ is uniquely represented as $x=p+o$, where $P \in V_{o}$ and $o \perp V_{o}$
The component P is the orthogonal projection of the vector x onto the subspace V_{o}. The distance from x to the subspace V_{o} is $\|o\|$.

If $v_{1}, v_{2} \ldots, v_{n}$ is an orthogonal basis for V_{o} then.
$P=\frac{\left\langle x, v_{1}\right\rangle}{\left\langle v_{1}, v_{2}\right\rangle} v_{1}+\frac{\left\langle x, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}+\cdots+\frac{\left\langle x, v_{n}\right\rangle}{\left\langle v_{n}, v_{n}\right\rangle} v_{n}$.

Theorem 4. $8{ }^{[4]} \quad$ [The projection theorem]

Let $\delta \mathrm{CH}$ be a Hilbert subspace and Let $x \in H$. Then

1. There exists a unique element $x^{2} \in \delta \quad$ (called the projection of x onto δ) such that.

$$
\left\|x-x^{2}\right\|=\inf _{y \in \delta}\|x-y\|
$$

Where $\|$.$\| is the norm generated by the inner product$ associated with H .
2. x^{2} is (uniquely) characterized by

$$
\left(x-x^{2}\right) \in \delta^{\perp}
$$

Proof:
In order to prove part 1 we being by noting that δ.
Since it is a Hilbert subspace, is both complete and convex.
Now fix $x \in H$ and define

$$
d=\inf _{y \in \delta}\|x-y\|^{2}
$$

Clearly d exists since the set of squared norms $\|x-y\|^{2}$ is a set of real numbers bounded below by o . Now since d is the greatest lower bound of $\|x-y\|^{2}$ there exists a sequence $\left(y_{k}\right)_{k=1}^{\infty}$ from δ such that, for each $\in>0$, there exists an N_{ε} such that

$$
\left\|x-y_{k}\right\|^{2} \leq d+\varepsilon
$$

For all $K \geq N_{\varepsilon}$. we now want to show that any such sequence $\left(y_{k}\right)$ is a Cauchy sequence. For that purpose, define

$$
\begin{aligned}
& u=x-y_{m} \\
& v=x-y_{n}
\end{aligned}
$$

Now applying the parallelogram identity to u and v , we get.

$$
\left\|2 x-y_{m}-y_{n}\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2} 2\left(\left\|x-y_{m}\right\|^{2}+\left\|x-y_{n}\right\|^{2}\right)
$$

Which may be manipulated to become.

$$
\begin{aligned}
& 4\left\|x-\frac{1}{2}\left(y_{m}-y_{n}\right)\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2} \\
&=2\left(\left\|x-y_{m}\right\|^{2}+\left\|x-y_{n}\right\|^{2}\right)
\end{aligned}
$$

Now since δ is convex, $\frac{1}{2}\left(y_{m}+y_{n}\right) \in \delta$ and consequently

$$
\begin{aligned}
& \left\|x-\frac{1}{2}\left(y_{m}+y_{n}\right)\right\|^{2} \geq d . \text { It follows that } \\
& \quad\left\|y_{m}-y_{n}\right\|^{2} \leq 2\left(\left\|x-y_{m}\right\|^{2}+\left\|x-y_{n}\right\|^{2}\right)-4 d
\end{aligned}
$$

Now consider any $\varepsilon>0$, choose a corresponding N_{ε} such that $\left\|x-y_{k}\right\|^{2} \leq d+\varepsilon 14$ for all $K \geq N_{\varepsilon}$ (such an N_{ε} exists we have seen).

Then, for all $\mathrm{n}, \mathrm{m} \geq N_{\varepsilon}$, we have

$$
\left\|y_{m}-y_{n}\right\|^{2} \leq 2\left(\left\|x-y_{m}\right\|^{2}+\left\|x-y_{n}\right\|^{2}\right)-4 d \leq \varepsilon
$$

Hence $\left(y_{k}\right)$ is a Cauchy sequence. By the completeness of δ, It converges to some element $\hat{x} \in \delta$. By the continuity of the inner product, $\|x-\hat{x}\|^{2}=d$. Hence \hat{x} is the projection we seek. To show that \hat{x} is unique, consider another projection $y \in \delta$ and the sequence ($\hat{x}, y, \hat{x}, y, \hat{x}, y, \ldots$). By the argument above, this is a Cauchy sequence. But then $\hat{x}=y$. Hence (1) is proved. The proof of part (2) comes in two parts.

First we show that any \hat{x} that satisfies also satisfies.
Suppose, then, that \hat{x} satisfies. Define $w=x-\hat{x}$ and consider an element $y=\hat{x}+\propto z$ where $Z \in \delta$ and $\alpha \in I R$. Since δ is a vector space, it follows that $y \in \delta$. Now since \hat{x} satisfies, y is no closer to x then \hat{x} is. Hence

$$
\begin{aligned}
\|w\|^{2} & \leq\|w-\propto z\|^{2}=(w-\propto z, w-\propto z)= \\
& =\|w\|^{2}+\propto^{2}\|z\|^{2}-2 \propto(\varepsilon, z)
\end{aligned}
$$

Simplifying, we get

$$
0 \leq \alpha^{2}=\|z\|^{2}-2 \propto(w, z)
$$

This is true for a u scalars \propto. In particular, set

$$
\propto=(\varepsilon, z) . \text { We get } \quad 0 \leq(w, z)^{2}\left(\|z\|^{2}-2\right)
$$

For this to be true for all $z \in \delta$ we must have $(\mathrm{w}, \mathrm{z})=\mathrm{o}$
For all $z \in \delta$ such that $\|z\|^{2}<2$. But then (why 2) we must have
$(\mathrm{w}, \mathrm{z})=\mathrm{o}$ for all $z \in \delta$. Hence $w \in \delta^{\perp}$. Now we went to prove the converse, i. e. that if \hat{x} satisfies, then it also satisfies. Thus consider an element $\hat{x} \in \delta$ which and Let $y \in \delta$. Mechanical calculation reveal that.

$$
\begin{gathered}
\|x-y\|^{2}=(x-\hat{x}+\hat{x}-y, x-\hat{x}+\hat{x}-y)= \\
=\|x-\hat{x}\|^{2}+\|\hat{x}-y\|^{2}+(x-\hat{x}, \hat{x}-y)=
\end{gathered}
$$

Now since $(x-\hat{x}) \in \delta^{\perp}$ and $(\hat{x}-y) \in \delta$ (recall that δ is recta space), the last term disappears, and our minimization problem becomes (disregarding the con-stant term $\|x-\hat{x}\|^{2}$)

$$
\min _{y \in \delta}\|\hat{x}-y\|
$$

Clearly \hat{x} solves this problem (Nate that it doesn't matter for the solution whether we minimize a norm or its square) Indeed. Since $\|\hat{x}-y\|=0$ implies $\hat{x}=y$ we may conclude that: f Same \hat{x}, then it is the unique solution.

Figure 1: The relationship between Hilbert's space and other spaces.

References

[1] Axler S (2015) Linear Algebra Done Right. Springer, New York
[2] Conway J (1990) A course in functional analysis. Springer, New York.
[3] Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New York.
[4] Muscat J (2014) Functional Analysis. An Introduction to Metric Spaces,Hilbert Spaces, and Banach Algebras. Springer International Publishing Switzerland.
[5] Sunder V.S (2016) Operators on Hilbert space. Springer Science and Business Media Singapore.

