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  الاهداء
  
  

  
  الى ... سيد العالمين وخاتم الانبياء والمرسلين محمد صلى ا عليه وسلم

  الى ... كل من وقف الى جانبي في مشواري الدراسي

  الافاضل الذين منحونا من وقتهم وجهدهمالى ... الاساتذة 

  الى ... أخوتي وأخواتي الاعزاء

  الى ... كل أصدقائي وزملائي في الدراسة

الى ... أولئك الذين احببتهم وأحبوني في ا  

  أهدي لهم ثمرة جهدي هذا .... 
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  الشكر والتقدير
  

ــاتم       ــلى  لهــم  حســان، حمــداً یليــق بجــلا وعظمتــه، وصــل ا الحمد  ذي المن والفضل و
ــات،  ر ــلى ا ات، ورفعنا بها أ ه، من لا نبي بعده، صلاة تقضي لنا بها الحا الرسل محمد وأهل ب

ت من جميع الخيرات، في الحياة وبعد المــمات، و الشــكر أولاً  ــلى  وتبلغنا بها أقصى الغا ــيراً،  وأ
سرــ العســير،  ليّ من انجاز لهذا البحث، بعــد أن  ح به  لى ما منّ وف قه وريم عونه، و حسن توف
انه وتعالى في انجاز  ن بعظيم الفضل والشكر والعرفان بعد الله سب ل الصعب، وفرج الهم، كما أد وذ

لصورة المر  ه  ــاهذا البحث وإخرا ستاذة الفاضــ (ر حتــني  ــامرب جوة، الى  كامــل) الــتي م
ير  ر ان يجزیه عني  ده، وتوجيهاته، وارشاداته، وآرائه القيمة سائلين المولى القد ه، و ير من وق ك ا

جر ان شاء الله. ه    الجزاء ویث
ير الجزاء. لشكر، فجزاهم الله عني  رهم  رة بذ سعفني ا كل من مد لي ید العون، ممن لم  ه    وأتو

اتماً  سهل لي به و فعاً، و لماً  ه، وأن يجع  الصاً لو كون هذا العمل  ر ان  اسأل الله العلي القد
  طریقاً الى الجنة.
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Abstract  
      In this research, we study the concept of linear space, Inner product 
space, and Hilbert space, and find out results about them.  
      We also study we dealt with the inner product space in terms of  its 
definition, examples, and some theories related to it, as well as its 
relationship to the Hilbert space. 
     We also define Hilbert space and dealt with examples and the most 
important results related to it.  
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1. introduction  
      In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing 
the methods of linear algebra and calculus from (finite– dimensional) Euclidean 
vector spaces to spaces that may be infinite– dimensional. Hilbert spaces arise 
naturally and frequently in mathematics and physics, typically as function spaces. 
formally, a Hilbert space is a vector space equipped with an inner product that 
defines a distance function for which the spaces is a complete metric space. The 
earliest Hilbert spaces were studied from this point of view in the first decade of 
the 20th century by David Hilbert , Erhard Schmidt , and Frigyes Riesz . They are 
indispensable tools in the theories of partial differential equations , quantum 
mechanics, fourier analysis ( which includes applications to signal processing and 
heat transfer ), John Van Neumann coined the term Hilbert spaces for the abstract 
concept that underlies money of these diverse applications . The success of Hilbert 
spaces methods us hered in a very fruitful era for functional analysis . Aeart from 
the classical Euclidean vector spaces , examples of Helbert spaces include spaces 
of square – integrable functions , spaces of sequences , sobolev spaces consisting 
of generalized functions , and Hardy spaces of holomorphic functions. 
     Geometric intuition plays an important role in many aspects of Hilbert space 
theory. Exact analys of the Pythagorean theorem and parallelogram law hald in a 
Hilbert space. At a deeper level, perpendicular projection on to a linear subspace 
or a subspace or a subspace ( the analys of " dropping the altitude " of a triangle) 
plays a significant role in optimization proplems and other aspects of the theory. 
An element of a Hilbert space can be uniquely specified by its coordinates with 
respect to an orthonormal basis, in analogy with cortesian coordinates in classical 
geometry when this basis is countably infinite, it allows identifying the Hilbert 
space with the space of the infinite sequences that are square– summable. The 
latter space is often in the older literature referred to as the Hilbert space.  
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2- Important definition and  results .  
Definition 2.1  (Linear space):[1] 
     Let (F, + , -) be a field whose elements are called scalars. Let L is a nonempty 
set whose elements are called vectors . Then L  is a linear space (or a vectors 
space) over the field F, if  
(1) addition : There is a binary operation + on L called addition (not usual 
addition) such that (L , +) is a commutative group .  
(2) scalar multiplication: ∝  .   ∈        ∀ ∈   , ∀ ∝ ∈ .  
(3) The scalar multiplication and addition satisfy  
(i) ∝ . ( + ) = ∝ . +∝ .     ∀  ,  ∈       ,   ∀ ∝ ∈  
(ii)  (∝  +  ) . = ∝ . +  .     ∀  ∈         ∀ ∝ , ∈  
(iii)  (∝  .   ) . = ∝ . (  . )    ∀  ∈              ∀ ∝ , ∈  
(iv) 1 . =     ∀  ∈       1  ℎ     
Example 2.2:[2] 
    The set of real number R, with Ordinary addition and ordinary multi– 
application, is a linear space over (F , + , .) = (R, + , .). indeed,  
(1) (IR , +) is an abelian an group  
(2)  ∝ .  ∈      ∀  ∈       , ∝ ∈  
(3) All other condition are sat is field (check)  
This linear space (IR , + , .) is called real linear space .  
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Example  2.3 : [1] 
      The set of complex numbers C, with ordinary addition and ordinary 
multiplication, is a linear space over (F , + , . ) = (C , + , .). indeed,  
(1) (C , + , .) is an abelian an group  
(2) ∝ .  ∈ ∁     ∀  ∈  ∁       , ∝ ∈ ∁ 
(3) All other conditions are sat is field   
This linear space (C , + , .) is called complex linear space .  
 
Definition 2.4  (Linear subspace ): [2] 
      Let L be a linear space over a field F and Let  ∅ ≠  ∁  .   Then H is called a 
linear subspace of  L if H  itself is a linear space over F.  
Theorem 2.5 : [3] 
     Let H be a nonempty subset of a linear space L (F) . H is called a subspace of L 
if and only if  ∝  +             ,          ∝ ,   .  
 
Definition 2.6 (Linear Transformation Mapping ): [4] 
Let  L(F) and L' (F) be two Linear spaces over the same field F. A mapping 
 T : L → L'   is called a Linear operator or Linear Transformation if 

(∝  +   ) =∝  ( ) +    ( )    ∀ , ∈ , ∀ ,    
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Example    2.7 : [1] 
Let T: IR3   →   R2   defined by T (X1 , X2 , X3) = (X1 , X2)  

∀  , ,  ∈   
(1) show that T is a linear transformation .  
(2) If X = (x1 , x2 , x3 ) = (2, 1 , -3), Y = (y1 , y2 , y3) = (0 , -5 , 1) . compute   T (2X) 
and T (X + Y).  
Solution  (1) :-  
      Let X = (x1 , x2 , x3)∈   , = (y  , y  , y ) ∈   ∝ ,  ∈  . ℎ    

 (∝ + ) =  ∝ (x  , x  , x ) + (y  , y  , y )   
=   ∝ x +   y  , ∝ x +   y  , ∝ x +  y    
=  (∝ x  ,  y  , ∝ x +  y )  
= (∝ x  , ∝ x ) +  (  y +  y )  
= ∝ (x  ,  x ) +  ( y  , y )  
= ∝ (x  , x  , x ) +  (y  , y  , y ) = ∝  ( ) +  ( ).   

Solution (2) :- T (2X) = T (4 , 2 , -6) = (4 , 2).  
                       T (X + Y) = T (2 , -4 , -2) = (2 , -4) .  
Definition 2.8 : [2] 
Let L be a linear space . A linear transformation  
T : L   → F is said to be   Linear functional .  
(Note: that F can be regarded as a linear space over F).  
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Example   2.9 : [1] 
      Let L =  = (  , … … . . , ) ∶  , … … . . ,   ∈  be a linear space over 
the field F . Let T :   →  defined by T(  , … … . , ) 

=∝ +  … … . . +∝   ∀(  , … … . , ) ∈  ∝ , … . . , ∈ .  
Prove that T is a linear trans formation.   
Solution : Let X = (x1 , …. , xn ) , y = (y1 , ……. , yn ) ∈   ∝, , ∈, . 
Then T(∝ + ) =  ∝ (  , … … . . , ) +  (  , … … . . , )   

=  (∝ +  , … . . … , ∝  + ) 
= ∝ (∝ +  ) + ⋯ + ∝ ( ∝  + ) 
=∝ (∝ + ⋯ +∝  ) + ( +∝ ) 

    = ∝ (  , … , ) +  (  , … . , )  
Thus , T is a linear transformation ( Linear functional ) .  
Definition   2.10 ( Normed Linear space): [2] 
Let L(F) be a linear space over a field F . A mapping ||  || : L   →   IR is called 
norm if the following conditions hold  
(1)  ‖ ‖ ≥   0   ∀ ∈  .  (positivity) 
(2) ‖ ‖  =  0 if and only if  x = 0 .  
(3) ‖ + ‖  ≤  ‖ ‖ +  ‖ ‖ ∀  ,  ∈   (Triangle Inequality) 
(4) ‖∝ ‖ =  |∝| ‖ ‖  ∀  ∈    , ∀  ∈  .  
(L , || . ||) is called normed Linear space .  
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Example  2.11 : [1] 
     Let   L = IR be a linear space over IR with || . || : L  →  IR  
Such that || x || = | x | . show that (R , || . ||) is a normed space .  
Solution : we show that  
(1) ‖ ‖  =   | | ≥ 0  ∀  ∈ ;   ℎ  ‖ ‖  ≥ 0 . 
(2) Let  ∈  , ‖ ‖ = 0 ⟺  | | = 0 ⇔ = 0 .   
(3) ∀  ∈  , ∀  ∈ . 
‖∝ ‖ = |∝ | = |∝|| | = |∝| ‖ ‖.   
(4) ‖ +  ‖  =  |  +   |  ≤  | | +  | | = ‖ ‖ + ‖ ‖ ∀  ,  ∈ .  
Example  2.12 : [2] 
    Let L = C be a complex Linear space over C with ||.  || : C  → IR  
Such that || z || = | z | = √ +    ∀ = +  . show that (C , 11 11) 
is a normed space.  
Solution :- we show that  
(1) = | | =  √ +     ≥ 0    ∀ = +  ∈  ; ℎ  ‖ ‖ ≥ 0 .  
( 2 ) Let =  +  ∈    

 ‖ ‖ = | | =  √ +   = 0  ⟺ = = 0 ⟺ = + =  . 
 ( 3 ) Let z , w  ∈  
‖  +  ‖  ( + )( + ) ℎ  + =   +    

= ( + )( + ) ̅ + + ̅ +    
= ̅ + + ̅ + ̅  
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= ̅ + + 2  ̅ 
≤ ‖  ‖ + ‖  ‖ + 2‖ ‖‖ ‖ = (‖ ‖ + ‖ ‖) .  
Thus , ‖ + ‖  ≤ (‖ ‖ + ‖ ‖) , ℎ  , ‖ + ‖  ≤ ‖ ‖ + ‖ ‖ .   
(4) Let Z ∈  , ∝ ∈  ,   
  ‖∝ ‖ = |∝ | =  |∝ ( + )|  
  = (∝ ) + (∝ ) = ∝ ( + ) = √∝  √ + = |∝|| | = |∝|‖ ‖.  
Definition 2.13 : [3] 
   A sequence < > in the normed space L is called convergent if ∃ 40 ∈  S.t  
∀ ∈ > 0 ∃  ∈   ∶  ‖ − 40‖  < ∈  ∀  >  .  
 
Definition 2.14 : [4] 
A sequence < > in L is called a Cauchy Sequence if  
∀ ∈ > 0 ∃  (∈)   ∈ ∶  ‖ − ‖ < ∈  ∀ ,  >  .  
 
Definition 2.15 (Banach space ): [4] 
     Let L be a normed space. Then, L is complete if every Cauchy sequence in L is 
convergent to a point in L. The complete normed space is called Banach space.  
 
Example 2.16 : [1] 
For 1 ≤  < ∞,   ℎ  −    (  )  by  

‖(  ,  , … ….  , )‖ =  (| | + | | + ⋯ | | ) /  
For P= ∞ We define the ∞, or maximum, norm by  

‖(  ,  , … , )‖ =  max  | | , | | , … , | | . 
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Then  equipped with the P-norm is a finite – dimension al Banach space for 
∃ ≤ ≤ ∞.  
Example 2.17 : [2] 
     The space C ([ a, b ]) of continuous, real – valued functions on [a, b], with the 
sup – norm is a Banach space. More generally the space C (K) of continuous 
function on a compact metric space K equipped with the supnorm is a Banach 
space . 
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3. Inner product space  
In mathematics, an inner product space (or, rarely a Hausdorff 
per-Hilbert space) is a real vector space or a complex vector 
space with an operation called an inner product. The inner 
product of two vectors in the space is a scatar, often denoted 
with angle brackets such as in < , >. Inner products allow 
formal definitions of intuitive geometric notions, such as 
lengths, angles, and orthogonally (Zero inner product) of 
vectors. 
  
     Inner product spaces generalize Euclidean vector spaces, in 
which the inner product is the dot product or scalar product of 
Cartesian coordinates. Inner product spaces of infinite 
dimension are widely used in functional analysis. Inner product 
spaces over the field of complex numbers are sometimes 
referred to as unitary spaces. 
  
     The first usage of the concept of a vector space with an inner 
product is due to Giuseppe peano in 1898.  

 
Definition  3.1 : [1] 
     Let L is a linear space over F . A mapping < ., . >∶  ×   →  is called an 
inner production L if the following axioms hold  
(1) <  ,  > ≥ 0   ∀  ∈  . 
(2) <  ,  > = 0   ⟺ = 0 
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(3)< , > = < , >   ∀ , ∈  ℎ  <  ,  >=  < , >    
(4) <∝ + > = ∝ < , >  +  < , >   ∀  ,  ,  ∈  . 
(L , < ., . >)  is called inner product space or pre-Hilbert space.  
Remark 3.2 : 
(1) If F = IR then axiom (3) becomes < , > = < , >  ∀  ,  , ∈   
(2) Every subspace of inner product space is an inner product space .  
(3) < ,  > =  ̅ < , >  ∀  ∈    ,  ∈  
Example  3.3 : [3] 
Let L = IR2 and Let <. , . >∶    →  is defined as 
  < , > = +   ∀ ,  ∈  where = ( , )   = ( , ). 
Show that <. , . >       
Solution : (i) we check the I . P . S axioms  
(1) < , > = + ≥ 0    ∀ =  (  , ) ∈  
(2) < , > = 0   ⟺  + = 0  ⟺    =  = 0 ⟺   = (0 , 0) 
(3) < , > = + =<  , > (  = ) 
(4) Let ∝,  ∈    =  ( , ) , Y = ( , ) , = ( , )  
 <∝ +  , > =  < (∝ +  , ∝  + ), ( , ) > 
= (∝ + )  , + (∝  + )   
= (∝ +∝ ) , + ( + )  
=∝ ( + ) , + ( + )  
=∝ 〈  , 〉 , + 〈 , 〉  
Thus , 〈. , . 〉is an inner product on  
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Example   3.4 : [4] 
Let L = Fn be a linear space and Let 〈 . ,.  〉 ∶   ×   →  
Defined as 〈 , 〉 =  ∑  ∶  ∀ ,  ∈   ℎ    

= (  , … , ) , = (  , … , ).  
Show that 〈 , 〉 is an inner product on  
Solution :-  
(1) 〈  , 〉 = ∑  ̅ = ∑ | |  ≥ 0   
(2) 〈  , 〉 = 0  ⟺  ∑ | | = 0 ⟺ = 0  ∀ = 1 , …   ,   
 ⟺ =  (  , … , ) =  (  , … . ,  ) =   
(3) 〈  , 〉 = ∑  = ∑ ̅ =  ∑ ̅ = 〈 , 〉  
(4) Let ∝ ,  ∈          ,   ,  ∈  
∝ +    ,  > =  ∑ (∝ + ) ̅ = ∝ ∑ +  ∑ ̅ = ∝
〈 , 〉 + 〈 , 〉.   
Thus , 〈 ., . 〉 is an inner product on  
 
Example 3.5 : [3] 
Let L = C [0, 1] be a linear space over IR , and Let 〈 . ,.  〉 ∶  ×  →  is de-
fined by  〈  ,   〉 ∶  ( ) ( )  ℎ  〈  , 〉   inner product L .  
Solution :-  
(1) 〈  , 〉 = ( ) ( )  = ( )   ≥ 0  
(2) 〈  , 〉 = 0 ⟺   ( )  = 0  ⟺ ( ) = 0  ∀  ∈  0 , 1  
 ⟺ ( ) = 0  ∀  ∈  0 , 1 ⟺ =     
(3) Let  ,  ∈     ,  , ℎ ∈  
〈∝ +   , ℎ〉 =  (∝ + ) ( ) ( )    
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=  (∝ ( ) + ( ) ( )    

= ∝ ( ) ( ) +  ( )  ( )    
 =∝ 〈  , ℎ〉 +   〈  , ℎ〉 
 (4) 〈  , 〉 = ( ) ( ) =  ( )  ( )  = 〈  , 〉   
Theorem 3.6 (General Cauchy Schwarz's Inequality): [3] 
     Let ( , 〈. , . 〉 ) is an Inner product space and Let ‖  ‖ ∶  →  is defined by 
‖ ‖ =  〈 , 〉 ∀  ∈  . Then,  
 |〈 , 〉|   ≤  ‖ ‖ ‖ ‖   ∀  ∈  .  
Proof : If x = 0 or y = 0 then 〈 , 〉 = 0 ,  ℎ  〈 , 〉 = 0  
≤ ‖ ‖ ‖ ‖    ≠ 0 ,  =  ‖ ‖      (I)  

‖ ‖ =  〈  , 〉 =  〈‖ ‖  , ‖ ‖〉 =  ‖ ∙ ‖  〈  , 〉   

‖ ‖ ‖ ‖ =  7       (II)  

Next , it is enough to show that |〈 , 〉|  ≤  ‖ ‖ 
because if |〈 , 〉| ≤  ‖ ‖ ℎ   ( ) 
|〈 , 〉| = 〈 , ‖ ‖〉 =  ‖ ‖ = |〈 , 〉|  ≤  ‖ ‖    
  |〈 , 〉|  ≤  ‖ ‖ ‖ ‖  
Let ∝ ∈  then 〈 −∝  , − ∝  〉  ≥ 0  
〈 −∝  , − ∝  〉  ≥ 0  
〈  , 〉 −∝ 〈  , 〉  − ∝ 〈  , 〉+∝∝ 〈  , 〉 ≥ 0  



 

  
  14 

  ‖ ‖ − ∝ 〈  , 〉 − ∝ 〈  , 〉+ ∝∝  ‖ ‖ ≥ 0           = 1 fram (I) 
  ‖ ‖ − 〈  , 〉 〈  , 〉 +  〈  , 〉 〈  , 〉  − ∝ 〈  , 〉 − ∝ 〈  , 〉+∝∝ ≥ 0  
  ‖ ‖ − |〈  , 〉| +  〈  , 〉 (〈  , 〉 − ∝ )− ∝ (〈  , 〉 − ∝ (〈  , 〉 −∝))  ≥ 0  
  ‖ ‖ − |〈  , 〉| + (〈  , 〉− ∝ )(〈  , 〉 − ) ≥ 0  
  ‖ ‖ − |〈  , 〉| + |〈  , 〉− ∝ | ≥ 0 ∀ ∝ ∈     (III)  
Put   ∝ 〈  , 〉 , then (III) becomes  
‖ ‖ − |〈  , 〉| ≥ 0 ⟹  |〈  , 〉| ≤ ‖ ‖   
|〈  , 〉|  ≤  ‖ ‖  
〈  , ‖ ‖〉  ≤  ‖ ‖     (using (I)  )  

|〈  , 〉| ‖ ‖  ≤  ‖ ‖      
|〈  , 〉| ≤  ‖ ‖ ‖ ‖ .     
Theorem 3 . 7 : [4] 
    Every inner product space is a normed space and hence a metric space. 
Proof :-  
Let (  , 〈.  ,   . 〉 ) is an Inner product space and Let the function ‖   ‖ ∶  →  is 
defined by ‖   ‖  =  〈 , 〉 ∀  ∈  To prove   ‖ .  ‖ is a norm on L   
(1) Since 〈  , 〉  ≥ 0 ∀  ∈  ⟹ ‖  ‖ = 〈 , 〉   ≥ 0  ∀  ∈     
(2) ‖  ‖ = 0 ⟺ 〈 , 〉 = 0 ⟺ 〈 , 〉 = 0 ⟺ = 0    
(3)  Let ∀  ∈     ∈      

‖∝ ‖ = 〈∝  , ∝ 〉 =∝∝ 〈  , 〉|∝|  ‖ ‖   
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Thus, ‖∝ ‖ = | |  ‖ ‖ 
(4)  T. P.   ‖ + ‖ ≤  ‖ ‖ + ‖ ‖ ∀  ,  ∈   
‖ + ‖ = 〈 +  , + 〉  
= 〈  , 〉 + 〈  , 〉 +  〈  , 〉 + 〈  , 〉  
‖ ‖ + 〈  , 〉 + 〈  , 〉 + ‖ ‖  
‖ ‖ + 2  〈  , 〉 + ‖ ‖  
≤ ‖ ‖ + 2 | 〈  , 〉| + ‖ ‖  
≤ ‖ ‖ + 2 ‖ ‖ ‖ ‖ + ‖ ‖        (by Cauchy Schwarz) 
= (‖ ‖ + ‖ ‖)   

ℎ , ‖ + ‖  ≤  ‖ ‖ +  ‖ ‖  
Theorem 3 . 8 : [1] 
Let ( , 〈 . ,.  〉) is an I. P. S. and ,  ∈ . Then  
(1) ‖ + ‖ =  ‖ ‖ + 2  〈  , 〉 +  ‖ ‖        (Polarization Identity) 
(2) ‖ + ‖ +  ‖ − ‖ = 2 ‖ ‖ + 2 ‖ ‖   (Law of parallelogram) 
Proof :-  
(1) ‖ + ‖ =  〈 +   , + 〉 

〈 ,  〉 + 〈 ,  〉 + 〈 ,  〉 + 〈 ,  〉   
  = ‖ ‖ + 〈 , 〉 + 〈 , 〉 + ‖ ‖    
  = ‖ ‖ + 2  〈 , 〉 + ‖ ‖    

(2)  T. P. ‖ + ‖ + ‖ − ‖ = 2 ‖ ‖ + 2 ‖ ‖   
By part (1), ‖ + ‖ = ‖ ‖ + 2  〈 , 〉  + ‖ ‖   
‖ − ‖ = 〈 −  , − 〉  
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= 〈 ,  〉 − 〈 ,  〉 − 〈 ,  〉 + 〈 ,  〉   
  = ‖ ‖ + 〈 , 〉 − 〈 , 〉 + ‖ ‖    
  = ‖ ‖ − 2  〈 , 〉 + ‖ ‖    (II) 

By Summing up (I) and (II) We get ‖ + ‖ + ‖ − ‖   
  = 2 ‖ ‖ + 2 ‖ ‖  
Remark 3 . 9 : 
    Any normed Linear space generated from inner product space must satisfies the 
two Laws of Theorem  3.8  
Definition 3. 10  Orthogonal Elements[3] 

     Let (L, 〈.  ,   . 〉) be an I. P. S. and x, y ∈ . Then x is said to be 
orthogonal on y (denoted by x   y) if and only if <  , ≥ . 
Example 3. 11[4] 
    Let =  is I. P. S. such that 〈  , 〉  =  +    is 
usual inner product ∀ =  (  , ) , = (  , )  ∈    
Let  =  (−6 , 3) , = (2 , −1) , = (1 , 2). 
Show that  ⊥  ,  ⊥          .  
Solution: 〈  , 〉  = 〈(−6 , 3), (1 , 2)〉   
    = -6 + 6 = 0 . Hence,  ⊥ . 
  
 
 
 
 

⊬  
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4. Hilbert  Space 
Definition 4. 1 [5] 
Hilbert space is an Inner product space ( , 〈.  ,   . 〉) which is a 
Banach space with respect to ‖ ‖ = 〈  , 〉 . 
 
Example 4. 2[5] 
Consider the I. P. S. (  , 〈.  ,   . 〉)  (  , 〈.  ,   . 〉)  such that   
〈 , 〉  =    ℎ  = (  , … , ), = (  , … , )

∈   (  ).  
Show that (  , 〈.  ,   . 〉)  (  , 〈.  ,   . 〉)  is Hilbert space  
Solution: 

 〈  , 〉  =  = | |  = ‖ ‖  
From Example , (   ) is a Banach space w.r.t.  
‖ ‖ =  〈  , 〉 , and thus , (  , 〈.  ,   . 〉)(   , 〈.  ,   . 〉) is a 
Hilbert space. 
 
Example 4. 3[5] 
The space −1 , 1  with the inner product defined by 〈 , 〉  

= ( )  ( )        . 
Solution: Let  
   0     if     −1 ≤ ≤ 0 

 (x) =    nx     if       0 < <  
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1     if     ≤ ≤ 1  
‖ −  ‖ =  〈 −   , −  〉  
Suppose  >   , ℎ   <   .  We must find ( ) −
 ( )   
   0     if     −1 ≤ ≤ 0 

 (x) =    nx     if       0 < <  
1     if     ≤ ≤ 1  

  and    0     if     −1 ≤ ≤ 0 
 (x) =    mx     if       0 < <  

1     if     ≤ ≤ 1  
     0     if     −1 ≤ ≤ 0 

 (x) =     
1     if     0 < ≤ 1  

Thus, f ∉  −1 , 1 .   ℎ , 〈 〉 is not convergent in 
 −1 , 1  .  . .,  The space is not Hilbert space. 

 
Remark  4. 4 [5] 
Every Hilbert space is a Banach space but the converse is not 
true. For example, the space    ,   ℎ ‖ ‖ =

 | ( )|: ∈ ,  
is Banach space. However,   ,  is not a Hilbert space since 
it does not Satisfy parallel gram Law; that is ‖. ‖ cannot be 
obtained from inner product. 
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The Gram 4. 5  [5] 
We define the projection operator by  
  ( ) =  〈 , 〉

〈 , 〉   ,  
Where 〈 , 〉 denotes the inner product of the vectors  v and  u . 
This operator projects the vector v orthogonally onto the line 
spanned by vector u. If  u = o, we define    ( ): =  0   i. e. 
the projection map  is the zero map, sending every vector 
to the zero vector. 
The Gram – Schmidt process then works  as follows  

=   ,      =  ‖ ‖   
=  −   ( ) ,   =  ‖ ‖    

 =  ‖ ‖  
=  −   ( ) -   ( )   
=  −   ( ) −  ( ) −  ( ),    
=  ‖ ‖  

=  −   ( ),                                 =  ‖ ‖ . 
The sequence    , …  ,   is the required system of orthogonal 
vectors, and the normalized vectors   , … ,    from an 
orthonormal set. The calculation of the sequence  , …  ,    is 
know as, Gram- Schmidt orthogonalization. 
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While the calculation of  the sequence   , … ,  is know as 
Gram- Schmidt orthonormalization as the vectors are 
normalized.  
Example 4. 6 [5] 
 Euclidean space  
Consider the following set of vectors in  (with the 
conventional inner product). 

=  = 31 , =  22 . 
Now, perform Gram- Schmidt, to obtain an orthogonal set of 
vectors. 

= =  31  
= − ( ) =  22 −  22 = 22  − 8

10  31  
= −215615 .  
We check the vectors  and  are indeed orthogonal  
 〈 , 〉 = 〈 31  , −215615 〉 =  − +  = 0  
Noting that if the dot product of two vectors is o then they are 
orthogonal. 
For non- zero vectors, we can then normalize the vectors by 
dividing out their sizes as shown above. 

= 1
√10 31  

= 1
4025

 −215615 = 1
√10 −13 . 
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Theorem 4. 7 [5] 
Let V be an inner product space and    be a finite- dimensional 
subspace of V. Then any vector ∈  is uniquely represented as 

= +  , where ∈     ⊥    
The component P is the orthogonal projection of the vector x 
onto the subspace  . The distance from x to the subspace  is 
‖ ‖.  
If  , …  ,  is an orthogonal basis for  then. 

=  〈  , 〉
〈  , 〉  + 〈  , 〉

〈  , 〉  + ⋯ +  〈  , 〉
〈  , 〉   .  

 
Theorem 4. 8  [4] [ The projection theorem ] 
Let  CH be a Hilbert subspace and Let ∈ . Then  

1. There exists a unique element   ∈    (called the 
projection of x onto  ) such that. 
‖ − ‖ =  ∈  ‖ − ‖  
Where ‖ . ‖ is the norm generated by the inner product 
associated with H. 

2.  is (uniquely) characterized by  
( − ) ∈  

Proof: 
 In order to prove part 1 we being by noting that  .  
Since it is a Hilbert subspace, is both complete and convex. 
Now fix ∈   and define  
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=  ∈  ‖ − ‖   
Clearly d exists since the set of squared norms ‖ − ‖  is a set 
of real numbers bounded below by o. Now since d is the greatest 
lower bound of ‖ − ‖   there exists a sequence ( )  from 

 such that, for each ∈ > 0 , there exists an   such that  
‖ − ‖  ≤ +  

For all ≥  . we now want to show that any such sequence 
( ) is a Cauchy sequence. For that purpose, define  

=  −  
=  −  

Now applying the parallelogram identity to u and v , we get. 
‖2 − − ‖ + ‖ − ‖  2(‖ − ‖ + ‖ − ‖  ) 

Which may be manipulated to become. 
4 − 1

2 ( − ) + ‖ − ‖
= 2(‖ − ‖ + ‖ − ‖  ) 

Now since  is convex, ( + ) ∈  and consequently  
− ( + ) ≥  . It follows that  

‖ − ‖ ≤  2(‖ − ‖ + ‖ − ‖  ) − 4  
Now consider any >  , choose a corresponding  such that 
 ‖ − ‖  ≤ +   14   ≥  (such an  exists we 
have seen).  
Then, for all n , m ≥  ,  ℎ   
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‖ − ‖ ≤  2(‖ − ‖ + ‖ − ‖  ) − 4  ≤  
     Hence ( ) is a Cauchy sequence. By the completeness of  , 
It converges to some element ∈  . By the continuity of the 
inner product, 
 ‖ −  ‖ =  . Hence  is the projection we seek. To show 
that  is unique, consider another projection ∈  and the 
sequence (  ,  , ,  , , , … ) . By the argument above, this is a 
Cauchy sequence. But then   =  . Hence (1) is proved . The 
proof of part (2) comes in two parts.  
First we show that any  that satisfies also satisfies.  
Suppose, then, that  satisfies. Define     = −  and 
consider an element   = +∝   where  ∈  and  ∝∈ . 
Since  is a vector space, it follows that  ∈  . Now since   
satisfies , y is no closer to x then   is. Hence  
 

‖ ‖ ≤  ‖ − ∝ ‖ = ( −∝  , − ∝ ) = 
= ‖ ‖ +∝ ‖ ‖ − 2 ∝ (  , ) 

Simplifying, we get  
0 ≤∝  = ‖ ‖ − 2 ∝ ( , ) 

This is true for a u scalars ∝  .  In particular, set  
∝ = (  , ) . We get       0 ≤  ( , )  (‖ ‖ − 2) 

For this to be true for all ∈  we must have (w , z) = o  
      For all  ∈  such that  ‖ ‖ < 2. But then (why 2) we 
must have 
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 (w, z) = o for all ∈  . Hence  ∈  . Now we went to 
prove the converse , i. e.  that if   satisfies, then it also satisfies. 
Thus consider an element  ∈   which and Let ∈  . 
Mechanical calculation reveal that.  

‖ − ‖ = ( − + − , − + − ) = 
= ‖ − ‖ + ‖ − ‖ + ( −  , − ) = 

Now since ( −  ) ∈  and ( − ) ∈   (recall that   is 
recta space), the last term disappears , and our minimization 
problem becomes (disregarding the con-stant term ‖ − ‖ ) 

∈ ‖ − ‖ 
Clearly   solves this problem (Nate that it doesn't matter for the 
solution whether we minimize a norm or its square) Indeed. 
Since   ‖ − ‖ = 0 implies  =   we may conclude that: f 
Same   , then it is the unique solution. 
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Figure 1: The relationship between Hilbert's 
space and other spaces. 
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