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 شكر وتقدير
 

أعوام لابد لنا ونحن نخطوا خطوتنا الأخيرة في الحياة الجامعية من وقفه نعود الى 
قضيناها في رحاب الجامعة مع اساتذتنا الكرام الذين قدموا لنا الكثير باذلين جهودا 

 كبيره في بناء جيل الغد لتبعث الامة من جديد
 
على ما بذلته جهد لغرض  (أ.د. ازل جعفر)ثم أتوجه بجزيل الشكر وعظيم الامتنان الى 

عدتها لي بعمليتها فجزاها الله خير بحثي ومتابعتها لي بآرائها القيمة ومسا ىالاشراف عل
 الجزاء

 
 أقدسالى الذين حملوا  والمحبة والتقدير والامتنانوقبل ان نمضي نقدم آيات الشكر 

... الى جميع اساتذتها  والمعرفةرسالة في الحياة الى الذين مهدوا لنا طريق العلم 
 الافاضل
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Abstract 
 

The aim of this investigation is to determine a step-by-step solution to the 
Brachistochrone Problem, showing that Calculus of Variations is required to solve 
the problem, and that the quickest path between two points facilitated by gravity is 
the path of a cycloid. Ultimately, this investigation will show that differential 
equations and curricular knowledge in the field of Calculus (particularly the Euler-
Lagrange concept) can be employed to solve problems with real world applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

 
Chapter one: Introduction  

 
 

 
 
 
 
 
 
 
 
 



Imagine coming home from work one cold winter evening and finding in your mailbox a peculiar 
challenge from one of your classmates. It states: Find the quickest path between two points in 
space. Ha! You sneer at the utter simplicity of the problem before you, insulted that your classmate, a 
respected intellectual, would waste your time with this no-brainer. “It’s a straight line of course!” 
You shout with an expression of blind confidence, which quickly disappears as a small post-it note 
falls out from the envelope. 
 
The Brachistochrone problem, the simplest of problems in Calculus of Variations, was first posed 
by mathematician Johann Bernoulli in his 1696 Acta Eruditorium as a direct challenge to all 
European mathematicians. Privately, Isaac Newton was the first to receive the challenge in his 
mailbox as he came home one day from working at the Royal Mint. Using Fermat’s Theorem of 
Least Time, Newton solved the problem in a night, concluding using differential equations that the 
quickest path between two points in space was indeed a cycloid curve and not a straight line. 

 
You stand speechless, baffled by this seemingly incoherent and strange concept which threatened 
to expose the inherent flaw in your reasoning, and the flaw in your inherent being. Where did you 
go wrong? Was your logic incoherent? How could there have been any other answer but the 
obvious, a straight line!? You dart back into the house in frustration, determined to search up the 
full solution online. You find the exact statement of Bernoulli’s problem in Acta Eruditorum:  
1.1 Fermat’s Theorem of Least Time  

  Given two points A and B in the vertical plane, with A not lower than B, what is the curve 
traced out by a point ac ted on only by gravity, which starts at A and reaches B in the shortest 
time. [1] 
 
Below it is a reference to Fermat’s Theorem of Least Time: 

 
Fermat's principle or the principle of least time, named after French mathematician Pierre de 
Fermat, is the principle that the path taken between two points by a ray of light is the path that 
can be traversed in the least time [2] 

 
In other words, you discover that the first step to answering the Brachistochrone problem is to 
define the “quickest” path between two points A and B as the path which takes the shortest time, 
and not the path with the least distance because, under the influence of gravitational forces, objects 
in space must change velocity. Sounds reasonable enough! But you still refuse to admit defeat 
because you still don’t have a clear picture of how a curve can best a straight line. Well as an 
analogy, in the 21st century most people use a GPS to help them find the quickest route to their 
destination, but often the GPS doesn’t take into account that shorter routes may have a slower 
speed limit and therefore takes longer time to travel. The fastest route practically is often a highway, 
which is a much longer road, but takes shorter time to travel due to the faster speed limit. Now, 
applying this to travel on a two-dimensional plane by gravitational force only, the concept is the 
same. For over 300 years, the common misconception surrounding this classic problem in 



 

mathematics was that the shortest path was a straight line. However, as mathematics must 
ultimately shift from the theoretical to the practical, the straight-line solution does not work 
when gravity is taken into consideration. 
 1.2 The Five Mathematicians 
 
As early as Galileo Galilei, the Brachistochrone problem has been studied and debated. 
Galileo's version of the problem was finding the straight line from a point A to a point B in the 
vertical line in which it would reach the quickest. To do this he calculated the time taken for 
the point to move from A to B in a straight line. He then proved that the point would reach B 
quicker if it first traveled to C then to B, where C was a point on a circle. [3] 

 Figure 1: Galileo’s solution [5] 
 

 
 
Although Galileo was correct in assuming that a circular arc corresponds to a faster travel, he had not 
quite arrived at the correct solution, the Brachistochrone curve. It wasn’t until 58 years later when Johann 
Bernoulli formally posed the problem that five correct solutions were determined, each using a different 
method. The five solutions came from Johann Bernoulli himself, his brother and rival Jacob Bernoulli, his 
companion L’Hopital, his teacher Gottfried Leibniz, and finally, Isaac Newton. Upon publishing the 
problem, Johann and Leibniz tempted Newton by saying: 
 
“There are fewer who are likely to solve our excellent problems, aye, fewer even among the very 
mathematicians who boast that [they]... have wonderfully extended its bounds by means of the golden 
theorems which (they thought) were known to no one, but which in fact had long previously been 
published by others." [1]  
When Newton solved the question in one night and sent his solution to Johann Bernoulli 
without a sender name, Bernoulli said “Ahh... I recognize the lion by his paw.” [4].  
Eventually, the development of Calculus of Variations, a version of Calculus created by 
Leonard Euler specifically to define the terms of the Brachistochrone problem, combined 
elements in each of the five solutions to formulate the more modern solution we now 
recognize as the Euler- Lagrange method. This investigation will focus only on the method 
Euler-Lagrange as it is arguably the most powerful solution we have today. 



 

1.3   Brainstorming 
 
Before we delve into the complexities of Calculus of Variations, it is important to view the 
Brachistochrone problem as an intuitive concept. Suppose we want to find the quickest path 
from A to B when they are both at ground level. Clearly, a rolling object such as a bead will 
take an infinitely large amount of time to get from A to B. In other words, it will never make 
the trip because according to the law of conservation of energy, the bead needs to change 
heights in order to gain energy. We can quickly see that a straight line cannot be the solution. 

 
Figure 2: Straight Line from A to B [5] 

 

 
Considering a rectangular or triangular path, 

Figure 3: Rectangular and Triangular paths  
 
 
 
 
 
 
 
 
 
 These wouldn’t work either despite satisfying the law of conservation of energy because they 
both require that the bead change direction instantaneously. In the rectangular path, the object 
must make a 90 degrees’ direction change as it descends and ascends again, while in the 
triangular path, the object must make a sharp turn at the bottom of the triangle. The only way 
for the object to travel the full path and change directions instantaneously in both paths is if 
there is an infinite amount of energy applied to the object. Therefore, it can be concluded that 
the quickest path cannot contain angled points, or kinks and corners in the A-B interval. In terms 
of Calculus, any paths with the potential to be a Brachistochrone must be continuous and 
differentiable between A and B. But there are infinitely many different differentiable paths 
between A and B so how do we choose the best one? Well first we have to define any path from A 
to B (A is not lower than B keep in mind) in terms of an equation. 

 
If the distance of any type of path between points A and B is d, then the velocity of any object 
along that path would be: 

=  ,  =  



 

According to the Law of Conservation of Energy, the total mechanical energy of any 
object travelling from A to B must be constant:  

=  1
2 =  

= 2  
According to the Pythagorean Theorem, 

 
Figure 4: Sample Curve of Any path from A to B, graphed on MacBook Pro Grapher 

 
 

= +  
= +  Dividing all terms by dx, 
= +

√  
= +

√  
 ́ + 1   

If we look at this equation closely, we see that it resembles the formula for the arc length of a 
graph, which is what we want because essentially, the arc length formula can be used to 
determine the length of any path from A to B in a 2-D plane: 

 
 



 

2  

= 1 + ( )  
 
Hence, substituting  = ′2 + 1  and  =         into the equation, 

= + 1
2 = 1

2
+ 1  

Already, this equation shows that for any path between A and B, defined by the graph of y, 
the 

time taken to travel the path varies by  . Unlike a normal function where the dependent 
variables x and y vary, this time the whole function varies. In short, this is known as a “functional” 
group and is an integral part to the method using Calculus of Variations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Chapter two :Calculus of Variations  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2.1 The Euler-Lagrange Equation 
 
Calculus of Variations was first used by Euler, who collaborated with J. L. Lagrange to 
generalize Newton’s solution to the Brachistochrone problem. It is defined as using “calculus to 
find the maxima and minima of a function which depends for its values on another function or a 
curve.” [3]. Generally, we can solve for the minimum time taken to travel from point A 
to B t=    minimizing the function ( ) =  

To minimize ( ) , we will use the fundamental Euler-Lagrange Equation [5]: 
− = 0 

In this case, F is the function we are trying to minimize. 
 
Note: In Calculus of Variations,  denotes the partial derivative of a function (basically, you 
are only taking the derivative of the desired variable, or part of the function). 

Applying the equation F=f( ) = ́  to the Euler-Lagrange equation and using conventional 
calculus rules of derivation 
 

=  
 
  

LHS: 

= +  

= + −  

= + (− ) 

∴ = − ( + ) 

 
RHS: 
 To evaluate  , we will first evaluate the function F in terms of y’, and then derive it in 
terms of x. 



 

= + 1  
 

= 1 1 +  
 

= 1 1
2 1 + 2  

 
∴  =

1 +
 

Taking the derivative of  with respect to x, 
 = ( )  

Using substitution to simplify the process, we let a=y, b=y’ and c=y’’. Hence, 
 

= (1 + ) 
Now, we   must   use   the   quotient   rule   to   differentiate.  (x)=b , and let v 
(x)= (1 + ). Hence, s’(x)=c and using the product rule, 

( ) = 1
2 − 1

2 1 + + √ 1
2 (1 + ) 2  

=  √ 2√ + ( ) √1 + (√1 + )
2 (1 + )  

( ) =  2 + (1 + )
2 (1 + )  

Applying the quotient rule, 

=
(1 + ) − ( 2 + (1 + )

2 (1 + ) )
(1 + )  

= 1
(1 + )

2 (1 + ) − 2 − (1 + )
2 (1 + )  

= 1
(1 + ) 1 + − 2  

∴ = 1
1 +

(1 + − 2 ) 

 



 

LHS=RHS: 
=  

− 1
2

+ 1 = 1
1 + 1 + − 2  

Using the same substitution, a=y, b=y’ and c=y’’, 

− 1
2

+ 1 = 1
(1 + ) 1 + − 2  

(1 + ) − 1
2

+ 1
32

= 1 + − 2  

 
 

(1 + ) − 1
2

+ 1
32

+ 2 = 1 +  

1 + = −(1 + )
2 + 2  

1 + = −1
2  

2 = −1 −  
∴ 2 ∗ + 1 + = 0 

The proceeding step after we have reached this equation is where the difficulty arises. As with all 
higher order differential equations, they are extremely difficult to solve, however, we can still 
simplify this equation to a second-order differential equation. Here was Euler’s method:  
 
If we multiply the equation by y’, then: 

2 ∗ ∗ + + = 0 
Essentially, if we work backwards from the product rule, we find that: 

( + ∗ ) = 2 ∗ ∗ + +  
Therefore, if we integrate the original equation, 

2 ∗ ∗ + +  = 0  
( + ∗ ) =  
+ ∗ =  



 

Solving for y’, 
 

= −  

= −  
 
Now that we have expressed y’ in terms of y, which must remember is the equation of the path 
between points A and B, we have to somehow substitute y’ out of the equation. This can be done 
using parametric equations, since we can’t express y in terms of y’, we have to express it in 
terms of another variable. In this case, that variable is the angle of descent of an object. 
 
 
 
 
 Figure 5: Adding a parameter, ∅ graphed on Macbook Pro Grapher 
 

 
 
 
 
Since this graph is the generalization for any curve that establishes a path between points A 
and B, we can define our answer in terms of these parameters, specifically the angle ∅. 

 
Therefore, 

= −  
 



 

= −  

tan ∅ == −  
Converting this to parametric form, 

(sin ∅
cos ∅) = −  

  
 

tan ∅ == −  
 

Converting this to parametric form, 
(sin ∅
cos ∅) = −  

( − )( ∅) = ( ∅)  ( )( ∅) = [( ∅) + ( ∅) ] ( )( ∅) =  
Simplifying ( ∅) = ∅, 

= (1 − cos 2∅)
2  

 
Solving for the x-coordinate using the Chain Rule, 

∅ = ∗ ∅ 
 

= − ́    ∅ = ∗ sin 2∅ = ∗ 2 sin ∅ cos ∅ 

∅ = − ( ∗ 2 sin ∅ cos ∅) 

Substituting in = ( )( ∅) , 

∅ = ( )(sin ∅)
− ( )(sin ∅) ( ∗ 2 sin ∅ cos ∅) 



 

∅ = (sin ∅)
1 − (sin ∅) ( ∗ 2 sin ∅ cos ∅) 

∅ = (2 )(sin ∅)  

∅ = (1 − cos 2∅) 
= (1 − cos 2∅)  

= (∅ − 1
2  2∅) 

= 2 (2∅ − sin 2∅) 
In summary, the two parametric equations that define the path of least time are: 

1. = (2∅ − sin 2∅) 
2. = ( ∅) 

The exciting discovery of these two parametric equations surprised the five mathematicians 
because they resemble the very well-known equations of a cycloid, which is a curve that is 
created by drawing out the path of a point on the circumference of a circle rolling on a flat 
surface. What was amazing about the cycloid was that it was the solution to the Brachistochrone 
problem, the solution that Galileo came close to when he proposed that a circular arc path would 
yield the fastest travel time. A cycloid is not a circle, but it is definitely a Brachistochrone curve, 
and the following calculations will prove why. 

 
       2.2 The equation of a cycloid 

 
Figure 6: The cycloid [6] 

 
So far, using Calculus of Variations, we have shown that in the process of minimizing 
the time of travel between two points, we have come across the two parametric 
equations of a cycloid: 

1. = (2∅ − sin 2∅) 



 

2. = ( ∅) 
But how do we know these equations define a cycloid? Well, if we consider that a 
cycloid is created by rotating a circle along a flat surface, then we know that the point 
on the circumference of the circle we are tracing will be moving clockwise. Knowing 
that the co-ordinates of a circle are defined by x = rcos ∅, and = rsin ∅, then moving 
clockwise means that the co-ordinates change to = − sin ∅ and = cos ∅. 
Furthermore, because the circle that draws out the cycloid moves in the positive 
direction along the x-axis, this yields the equation that allows t to represent the angle the 
circle has moved: 

∆ = 2 ∅
2  

= − sin ∅ + ∅ 
= (∅ − sin ∅) 

 
              As for the y-coordinate, we must assume that the center of the circle is at (r , r) so that the bottom            

of the cycloid is on the x-axis. Hence: 
  
 = − cos ∅  = (1 − cos ∅) Now, we have proven that the equations we derived earlier are indeed equations for the cycloid. As we 
can see, the equations have the exact same form, with = . In other words, C is equal to the diameter of 
the circle which drew the cycloid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Chapter three: Application 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 3.1 Solving for time of travel 
 
So, much like how Bernoulli, Newton, Lagrange, and Euler discovered each in their own way that the 
solution to the Brachistochrone problem is indeed a cycloid, we have through this investigation shown 
that minimizing the time taken to travel from point A to B facilitated only by gravity will result in the 
cycloid equations. Intuitively, we also understand that in the real world, if an object were to roll down a 
straight ramp, it would require more time than if it rolled down a cycloid ramp. The only logical way to 
proceed would be to solve for the time that it actually takes for an object to travel down such a ramp in 
order to gain some quantifiable data. 
 
 So, if we recall the initial investigation of time of travel, we have the equation: 
 
 
 
 

= 1
2

+ 1  
 
 
Since we now know that the path must be a cycloid, we can use the differential equation for a cycloid we 
determined earlier to solve for time with respect to the parameters of the cycloid equation. We know: 
 
 
 
 

= = −  
And since C=2r from our exploration on cycloids, 
 

= 2 −  
 
 

2 − =  

 
Hence, substituting the cycloid differential equation into our initial equation for time, 
 

= 1
2

+ 1  
 



 

= 1
2

2 − + 1 ∗ 2 −  

 

= 1
2

2 − +
2 −  

= 1
2

2
(2 − )  

Rearranging the equation, 
 

= 1
2

−2
[ ( − ) − ]  

 
 
Substituting in = (1 − cos ∅) to the denominator [( − ) − ], 
 [( − ) − ] = ( − + sin ∅) −  

= ( ∅) −  = ( ∅ − 1) = − ∅ Simplifying the integral, 
 

= 1
2

2
∅  

 
Now, in order to integrate in terms of ∅, we must substitute dy with an equation in terms of d∅: 
 
Since = (1 − cos ∅), 

∅ = sin ∅ 
= ∅ ∅ 

Substituting = ∅ ∅, 
 

= 1
2

2
∅ sin ∅ ∅ 

= 1
2 √2  ∅ 

= ∗ ∅ 
Since r and ∅ are both variables for the parametric equations of the cycloid, we can now calculate the 



 

shortest time of travel between points A and B. We have officially solved the Brachistochrone problem as 
we now have an equation to represent the shortest time. 
 
 The Brachistochrone curve equation can be used to demonstrate a variety of properties. First and 
foremost, we can show that the time required to travel down a Brachistochrone curve is indeed faster than 
the time required to travel down a straight ramp. If we set points A (0,0) and B (1, -1) in 2-D space as the 
start and end points of travel (note the y coordinate of B must be lower or equal to the y-coordinate of A 
in order to make a ramp), then we can draw a cycloid connecting the points with the following equation:  
 
Using systems of equations and the parametric equations of a cycloid, 
 
Since point B (1 , -1) 
 
Y: 1= (1 − cos ∅) 
X: -1= (∅ − sin ∅) 
 
Hence, Y: = ( ∅)  
Substituting this into X: -1= (∅ − sin ∅), 
 
-1= ( ∅)(∅ − sin ∅) 
 

: 1
(1 − cos ∅) (∅ − sin ∅) + 1 = 0 

 
Figure 7: Graphed using Macbook Pro Grpher 
 

 From analyzing this graph, it is clear that the x-intercept occurs at ∅ ≈ −2.4 in radians. Hence, solving for 
r, 



 

= 1
(1 − cos(−2.4)) 0.58  

 
Using r=0.58 units and ∅ ≈ −2.4 rad to solve the time of travel (considering that the gravitational 
acceleration of any object on the earth is 9.81m* ), 
 

= ∗ ∅ = 0.58
9.81 ∗ −2.4 = 0.5836 0.5.8  

 
Generally, this is a much shorter time than if an object were to slide down a ramp from point A (0,0) to B 
(1, -1). 
  3.2 Real World Applications 
 
There are many real-world applications to the Brachistochrone curve, for example, an extension of the 
curve is the concept of the Tautochrone curve or Isochrone curve which is basically a Brachistochrone 
curve that demonstrates the Tautochrone property. The Tautochrone property is satisfied when objects 
rolling down a cycloidal ramp regardless of where they start, take the same amount of time to reach the 
bottom of the ramp. This makes every point on the cycloid ramp isochronous, hence the name Isochrone.  
 
 
Figure 8: Tautochrone Property [6] 
 
 
 

  
As you can see, the balls on this ramp, regardless of where they started rolling from, will reach the bottom 
at exactly the same time. With the Tautochrone property, the real world applications could include: 
building creative roller coasters, industrial applications where mechanical operations must be timed 
perfectly, or in the field of physics and motion. The one largest limitation to the investigation of 
Brachistochrone curves is that they only work when gravity is the only force pushing an object down a 



 

cycloid ramp, which rarely is ever the case unless you are conducting the experiment in an isolated setting 
such as a laboratory. On a large scale, where air resistance, friction, and other parasitic forces hinder the 
experiment, the accuracy of the ideal model may be subject to error.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Conclusion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 Conclusion  
 
The marvel of mathematics is how a simple problem can lead to complex and often unfathomable 
concepts and solutions. The Brachistochrone curve, what started out as a simple challenge to deduce the 
shortest path between two objects in space facilitated by gravity, turned into a whole field of mathematics 
called Calculus of Variations. Overall, we can conclude that it is the inquisitive curiosity and insatiable 
hunger that scientists and mathematicians have for defining and discerning the world that allows for such 
elegant and sophisticated evolutions. 
 
 Through this investigation in which I have employed the very fundamental, yet crucial skills of calculus, 
I have by extension and not by purpose, inadvertently gained the knowledge on how to solve partial 
differentiation equations and how to represent equations in parametric form. And that is the desire to 
explore independently. All brilliant mathematicians have done it their own way, and this is just my first 
step into that same realm of discovery. 
 
 The journey to discovery does not end here, however, because throughout this investigation, I have 
jarringly come to realize my own shortcomings and mathematical flaws such as forgetting to square root 
or changing a positive sign to a negative sign. These all cost me days of frustration and irritation. 
 
 In the future, I will stand by the principle that the best math’s is explored independently, but the 
occasional challenge wouldn’t hurt. 
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