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لقُْرْآنِ   ِ ُ الحَْق ۗ وَلاَ تعَْجَلْ  ِ ُ المَْ عََالىَ ا فَ
ُهُ ۖ وَقُل رب زِدْنيِ  ْلِ أنَ یقُْضىَٰ إِليَْكَ وَحْ مِن قَ

  ِلمًْا
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ي العزز ار..... وا كل اف لمني العطاء بدون انتظار.إلى من أحمل أسمه  لهيبة والوقار.. إلى من    إلى من كل الله 

سمتي في   إلى ملاكي في الحياة.. إلى معنى الحب وإلى معنى الحنان والتفاني.. إلى 
ائها سر  لىالحياة وسر الوجود إلى من كان د انها بلسم جرا إلى أ   نجا وح

ة   الحبایب... أمي الحب
... إلى من شاروني حضن الأم وبهم استمد   إلى من هم اقرب أليّ من رو

  عزتي واصراري إخوتي وأخواتي
ل أن تنير لنا الطریق، إلى من شجعني ووقف بجانبي ترقت من أ   إلى الشموع التي ا

  را ووفاء.حتى نهایة الطریق... أساتذتي تقد
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اب الجامعة مع  يرة في الحياة الجامعية من وقفة نعود إلى أعوام قضيناها في ر لابد لنا ونحن نخطو خطواتنا الأ

دید ل الغد لتبعث الأمة من  بيرة في بناء ج ودا  ذلين بذ  ير  ك ن قدموا لنا ا كرام ا  أساتذتنا ا
ت الشكر  ل أن نمضي تقدم أسمى آ ن حملوا أقدس رسا في الحياةوق ر والمحبة إلى ا نان والتقد م و إلى  

دوا لنا طریق العلم والمعرفة ......إلى جميع أساتذتنا الأفاضل ن   ا
كتور لشكر ا ار  ةكما وأخص  رت  تمعي طي فترة انجاز البحث ولما قدم الوقوفهاف لي من نصائح قيمة آ

كلببحثي حتى خرج بهذا الش  
 

الباحث         
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Chapter one 
introduction 

Mitchell Feigenbaum: 
Feigenbaum was born in Philadelphia, Pennsylvania,  to Jewish 
emigrants from Poland and Ukraine. He attended Samuel J. Tilden High 
School, in Brooklyn, New York, and the City College of New York. In 
1964 he began his graduate studies at the Massachusetts Institute of 
Technology (MIT). Enrolling for graduate study in electrical 
engineering, he changed his area to physics. He completed his doctorate 
in 1970 for a thesis on dispersion relations, under the supervision of 
Professor Francis E. Low. After short positions at Cornell 
University (1970–1972) and the Virginia Polytechnic Institute and State 
University (1972–1974), he was offered a longer-term post at the Los 
Alamos National Laboratory in New Mexico to study turbulence in 
fluids. Although a complete theory of turbulent fluids remains to be 
established, his research led him to study chaotic maps.  In 1983, he was 
awarded a MacArthur Fellowship; and in 1986, alongside Rockefeller 
University colleague Albert Libchaber, he was awarded the Wolf Prize 
in Physics "for his pioneering theoretical studies demonstrating the 
universal character of non-linear systems, which has made possible the 
systematic study of chaos". He was a member of the Board of Scientific 
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Governors at The Scripps Research Institute. He was Toyota Professor 
at Rockefeller University from 1986 until his death.  
his achievements: 
Some mathematical mappings involving a single linear parameter 
exhibit the apparently random behavior known as chaos when the 
parameter lies within certain ranges. As the parameter is increased 
towards this region, the mapping undergoes bifurcations at precise 
values of the parameter. At first there is one stable point, then 
bifurcating to an oscillation between two values, then bifurcating again 
to oscillate between four values and so on. In 1975, Dr. Feigenbaum, 
using the small HP-65 calculator he had been issued, discovered that the 
ratio of the difference between the values at which such 
successive period-doubling bifurcations occur tends to a constant of 
around 4.6692...[3] He was able to provide a mathematical argument of 
that fact, and he then showed that the same behavior, with the same 
mathematical constant, would occur within a wide class of mathematical 
functions, prior to the onset of chaos.[4]This universal result enabled 
mathematicians to take their first steps to unraveling the apparently 
intractable "random" behavior of chaotic systems. The "ratio of 
convergence" measured in this study is now known as the 
first Feigenbaum constant.  
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The logistic map is a prominent example of the mappings that 
Feigenbaum studied in his noted 1978 article: Quantitative Universality 
for a Class of Nonlinear Transformations.  
Feigenbaum's other contributions include the development of important 
new fractal methods in cartography, starting when he was hired by 
Hammond to develop techniques to allow computers to assist in drawing 
maps. The introduction to the Hammond Atlas (1992) states 
Using fractal geometry to describe natural forms such as coastlines, 
mathematical physicist Mitchell Feigenbaum developed software 
capable of reconfiguring coastlines, borders, and mountain ranges to fit a 
multitude of map scales and projections. Dr. Feigenbaum also created a 
new computerized type placement program which places thousands of 
map labels in minutes, a task that previously required days of tedious 
labor In another practical application of his work, he 
founded Numerix with Michael Goodkin in 1996. The company's initial 
product was a software algorithm that dramatically reduced the time 
required for Monte Carlo pricing of exotic financial 
derivatives and structured products. Numerix remains one of the leading 
software providers to financial market participants. 
The press release made on the occasion of his receiving the Wolf 
Prize summed up his works: 
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The impact of Feigenbaum's discoveries has been phenomenal. It has 
spanned new fields of theoretical and experimental mathematics ... It is 
hard to think of any other development in recent theoretical science that 
has had so broad an impact over so wide a range of fields, spanning both 
the very pure and the very applied 
 

 
Bifurcation diagram of the logistic map. Feigenbaum noticed in 1975 that the quotient of 

successive distances between bifurcation events tends to 4.6692... 
 
Behind the Feigenbaum Constant: 
It’s called the Feigenbaum constant, and it’s about 4.6692016. And it 
shows up, quite universally, in certain kinds of mathematical—and 
physical—systems that can exhibit chaotic behavior. 
It became a defining discovery in the history of chaos theory. But when 
it was first discovered, it was a surprising, almost bizarre result, that 
didn’t really connect with anything that had been studied before. 
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Somehow, though, it’s fitting that it should have been Mitchell 
Feigenbaum—who I knew for nearly 40 years—who would discover it. 
Trained in theoretical physics, and a connoisseur of its mathematical 
traditions, Mitchell always seemed to see himself as an outsider. He 
looked a bit like Beethoven—and projected a certain stylish sense of 
intellectual mystery. He would often make strong assertions, usually 
with a conspiratorial air, a twinkle in his eye, and a glass of wine or a 
cigarette in his hand. 
He would talk in long, flowing sentences which exuded a certain erudite 
intelligence. But ideas would jump around. Sometimes detailed and 
technical. Sometimes leaps of intuition that I, for one, could not follow. 
He was always calculating, staying up until 5 or 6 am, filling yellow 
pads with formulas and stressing Mathematica with elaborate algebraic 
computations that might run for hours. 
He published very little, and what he did publish he was often 
disappointed wasn’t widely understood. When he died, he had been 
working for years on the optics of perception, and on questions like why 
the Moon appears larger when it’s close to the horizon. But he never got 
to the point of publishing anything on any of this. 
For more than 30 years, Mitchell’s official position (obtained essentially 
on the basis of his Feigenbaum constant result) was as a professor at 
the Rockefeller University in New York City. (To fit with Rockefeller’s 
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biological research mission, he was themed as the Head of the 
“Laboratory of Mathematical Physics”.) But he dabbled elsewhere, 
lending his name to a financial computation startup, and becoming 
deeply involved in inventing new cartographic methods for 
the Hammond World Atlas. 
Mitchell's discovery: 
The basic idea is quite simple. Take a value x between 0 and 1. Then 
iteratively replace x by a x (1 – x). Let’s say one starts from x = , and 
takes a = 3.2. Then here’s what one gets for the successive values of x: 

 
 
 
 
 

After a little transient, the values of x are periodic, with period 2. But 
what happens with other values of a? Here are a few results for this so-
called “logistic map”: 
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For small a, the values of x quickly go to a fixed point. For larger a they 
become periodic, first with period 2, then 4. And finally, for larger a, the 
values start bouncing around seemingly randomly. 
One can summarize this by plotting the values of x (here, 300, after 
dropping the first 50 to avoid transients) reached as a function of the 
value of a: 
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As a increases, one sees a cascade of “period doublings”. In this case, 
they’re at a = 3, a ≃ 3.449, a ≃ 3.544090, a ≃ 3.5644072. What 
Mitchell noticed is that these successive values approach a limit 
(here a∞ ≃ 3.569946) in a geometric sequence, with a∞ – an ~ δ–
n and δ ≃ 4.669. 
That’s a nice little result. But here’s what makes it much more 
significant: it isn’t just true about the specific iterated map x ⟶ a x (1 –
 x); it’s true about any map like that. Here, for example, is the 
“bifurcation diagram” for x ⟶ a sin(π ): 
The details are different. But what Mitchell noticed is that the positions 
of the period doublings again form a geometric sequence, with the exact 
same base: δ ≃ 4.669. It’s not just that different iterated maps give 
qualitatively similar results; when one measures the convergence rate 
this turns out be exactly and quantitatively the same—always δ ≃ 4.669. 
And this was Mitchell’s big discovery: a quantitatively universal feature 
of the approach to chaos in a class of systems. 
The Big Discovery: 
The Navier–Stokes equations are very hard to work with. In fact, to this 
day it’s still not clear how even the most obvious feature of turbulence—
its apparent randomness—arises from these equations. (It could be that 
the equations aren’t a full or consistent mathematical description, and 
one’s actually seeing amplified microscopic molecular motions. It could 
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be that—as in chaos theory and the Lorenz equations—it’s due to 
amplification of randomness in the initial conditions. But my own belief, 
based on work I did in the 1980s, is that it’s actually an intrinsic 
computational phenomenon—analogous to the randomness one sees in 
my rule 30 cellular automaton.) 
So how did Mitchell approach the problem? He tried simplifying it—
first by going from equations depending on both space and time to ones 
depending only on time, and then by effectively making time discrete, 
and looking at iterated maps. Through Paul Stein, Mitchell knew about 
the (not widely known) previous work at Los Alamos on iterated maps. 
But Mitchell didn’t quite know where to go with it, though having just 
got a swank new HP-65 programmable calculator, he decided to 
program iterated maps on it. 
Then in July 1975, Mitchell went (as I also did a few times in the early 
1980s) to the summer physics hang-out-together event in Aspen, CO. 
There he ran into Steve Smale—a well-known mathematician who’d 
been studying dynamical systems—and was surprised to find Smale 
talking about iterated maps. Smale mentioned that someone had asked 
him if the limit of the period-doubling cascade a∞ ≃ 3.56995 could be 
expressed in terms of standard constants like π and . Smale related 
that he’d said he didn’t know. But Mitchell’s interest was piqued, and he 
set about trying to figure it out. 
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He didn’t have his HP-65 with him, but he dove into the problem using 
the standard tools of a well-educated mathematical physicist, and had 
soon turned it into something about poles of functions in the complex 
plane—about which he couldn’t really say anything. Back at Los 
Alamos in August, though, he had his HP-65, and he set about 
programming it to find the bifurcation points an. 
The iterative procedure ran pretty fast for small n. But by n = 5 it was 
taking 30 seconds. And for n = 6 it took minutes. While it was 
computing, however, Mitchell decided to look at the an values he had so 
far—and noticed something: they seemed to be converging 
geometrically to a final value. 
At first, he just used this fact to estimate a∞, which he tried—
unsuccessfully—to express in terms of standard constants. But soon he 
began to think that actually the convergence exponent δ was more 
significant than a∞—since its value stayed the same under simple 
changes of variables in the map. For perhaps a month Mitchell tried to 
express δ in terms of standard constants. 
But then, in early October 1975, he remembered that Paul Stein had said 
period doubling seemed to look the same not just for logistic maps but 
for any iterated map with a single hump. Reunited with his HP-65 after a 
trip to Caltech, Mitchell immediately tried the map x ⟶ sin(x)—and 
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discovered that, at least to 3-digit precision, the exponent δ was exactly 
the same. 
He was immediately convinced that he’d discovered something great. 
But Stein told him he needed more digits to really conclude much. Los 
Alamos had plenty of powerful computers—so the next day Mitchell got 
someone to show him how to write a program in FORTRAN on one of 
them to go further—and by the end of the day he had managed to 
compute that in both cases δ was about 4.6692. 
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Chapter tow 
THE QUADRATIC FAMILY: 
A group of quadratic functions which all share a common characteristic 
is called family of quadratic functions. 
To know more about different families of quadratic functions, we have 
to know the different forms in which quadratic functions can be 
expressed.  
Let us come to know the different forms of quadratic functions.  
Different Forms of Quadratic Functions 
Quadratic functions can be expressed in the following three different algebraic 
forms.  
Standard form : f(x) = ax2 + bx + c 
Factored form : f(x) = a(x - r)(x - s) 
Vertex form : f(x) = a(x - h)2 + k 
In vertex form, vertex of the parabola is (h, k) and the axis of symmetry is x = h. 
Family of parabolas : 
A group of parabolas which all share a common characteristic.  
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Families of Quadratic Functions: 
Family 1 : 
If the values of a and b are varied in a quadratic function expressed in standard 
form, f(x)  =  ax2 + bx + c, a family of parabolas with the same y–intercept is 
created. 
Common characteristic  :   
Same y - intercept 
Family 2 : 
If the value of a is varied in a quadratic function expressed in factored form, 
f(x)  =  a(x - r)(x - s), a family of parabolas with the same x–intercepts and axis of 
symmetry is created. 
Common characteristic  : 
ame x - intercepts and Axis of symmetry 
Family 3 : 
If the value of a is varied in a quadratic function expressed in vertex form, 
f(x)  =  a(x - h)2 + k, a family of parabolas with the same vertex and axis of 
symmetry is created. 
Common characteristic  : 
 Same vertex and Axis of symmetry 
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What is astonishing is that this constant d∞ seems to be universal. "That is, for 
many families of one-humped functions like the family of quadratic functions, 
bifurcacions occur in such a regular fashion that the distances between successive 
pairs of Sifurcation points approach the very same value d! It is for this reason that 
d is called a universal constant. Morc particularly, it is referred to as the 
Feigenbaum constant, because Feigenbaum was the first to discover it and its 
universality, 
We conclude hy noting that the quadratic family (QU) is one of the most illustrious 
parametrized families. Its functions are easy to describe, and have properties many 
more complicated functions have. Moreover, there is an enormous wealth of 
information concerning the family, spurred in part by the captivating article in the 
magazine Nature by Robert May (1975). Books by Pierre Collet and JeanPierre 
Eckmann (1980) and by Chris Preston (1983) give detailed analysis of functions 
like quadratic functions. We will once again study properties of the family  
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Feigenbaum Constant: 
characterizes the geometric approach of the bifurcation parameter to its 
limiting value as the parameter  is increased for fixed . The plot above 
is made by iterating equation ( f(x)=1-µ|x|r ) with  several hundred times 
for a series of discrete but closely spaced values of , discarding the first 
hundred or so points before the iteration has settled down to its fixed 
points, and then plotting the points remaining 
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Asimilar plot that more directly shows the cycle may be constructed by 
plotting fn(x)-x as a function of µ. The plot above (Trott, pers. comm.) 
shows the resulting curves for n=1, 2, and 4. 
Let µ=1 be the point at which a period  2n-cycle appears, and denote the 
converged value by µ∞. Assuming geometric convergence, the 
difference between this value and µn  is denoted 

lim→  μ∞ − μ =  
where Γ is a constant and > 1 is a constant now known as the 
Feigenbaum constant. Solving for  gives 

= lim→  μ  − μ  
μ  − μ  

 

(Rasband 1990, p. 23; Briggs 1991). An additional constant , defined as 
the separation of adjacent elements of period doubled attractors from 
one double to the next, has a value 

= lim→   
 
 

 
where   is the value of the nearest cycle element to 0 in the 2n cycle 
(Rasband 1990, p. 37; Briggs 1991) 
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For equation (1) with r=2, the onsets of bifurcations occur at μ = 0.75 , 
1.25, 1.368099, 1.39405, 1.399631, ..., giving convergents to  for n=1, 
2, 3, ... of 4.23374, 4.5515, 4.64617, .... 
For the logistic map, 

 =4.669201609102990 
Γ  =2.637 
μ∞ =3.569945672 

 2.502907875 
(OEIS A006890, A098587, and A006891; Broadhurst 1999; Wolfram 
2002, p. 920), where  is known as the Feigenbaum constant and  is the 
associated "reduction parameter 
Briggs (1991) calculated  to 84 digits, Briggs (1997) to 576 decimal 
places (of which 344 were correct), and Broadhurst (1999) to 1018 
decimal places. It is not known if the Feigenbaum constant  is 
algebraic, or if it can be expressed in terms of other mathematical 
constants (Borwein and Bailey 2003, p. 53). 
Briggs (1991) calculated  to 107 digits, Briggs (1997) to 576 decimal 
places (of which 346 were correct), and Broadhurst (1999) to 1018 
decimal places. 
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Amazingly, the Feigenbaum constant  and associated reduction 
parameter  are "universal" for all one-dimensional maps f(x) if f(x) has 
a single locally quadratic maximum. This was conjecture by 
Feigenbaum, and demonstrated rigorously by Lanford (1982) for the 
case r=2, and by Epstein (1985) for all r 14. 
More specifically, the Feigenbaum constant is universal for one-
dimensional maps if the Schwarzian derivative 
 
 
is negative in the bounded interval (Tabor 1989, p. 220). Examples of 
maps which are universal include the Hénon map, logistic map, Lorenz 
attractor, Navier-Stokes truncations, and sine map xn+1=a sin Πxn The 
value of the Feigenbaum constant can be computed explicitly using 
functional group renormalization theory. The universal constant also 
occurs in phase transitions in physics. 
The value of  for a universal map may be approximated from functional 
group renormalization theory to the zeroth order by solving 
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which can be rewritten as the quintic equation 
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