
 وزارة التعليم العالي و البحث العلمي

 جامعة بابل

 كلية علوم البنات

 قسم علوم الحاسوب

 بحث تقدمت به الطالبة:

حميد محمدنور

 كجزء من متطلبات نيل درجة البكالوريوس

 الاشراف:

.م. زهراء عبد محمدم

2024 - 2023

Enhancing Data Security: Implementing

the Present Lightweight Algorithm for

Encrypting

2

 بسم الله الرحمن الرحيم

3

 الاهـــــــــــــــــــداء

الى خالق اللوح و القلم و باري الذر و النسم و خالق كل شيء من

 العدم

 الامة ..الى نبي الرحمة الى من بلغ الرسالة و ادى الامانة و نص

 الى السادات الاطهار و عروته الوثقى.. اهل بيت النبوة

الى مراد قلبي و الاقرب لي من نفسي المغيب عن الابصار..

 صاحب العصر و الزمان)عج(

الى من علمني ان الدنيا كفاح و سلاحها العلم و المعرفة الى الذي لم

احتي و نجاحي ...ابي ر لاجل شيء الى من سعى باييبخل علية

 العزيز

 الى ذات القلب النقي ..

الى من اوصاني بها الرحمن برا و احسانا الى من سعت و عانت

 من اجلي ..امي الحبيبة

الى من اشاركهم لحظاتي و يفرحون لنجاحي اخوتي و اساتذتي

 الكرام ..

 اهديكم هذا الجهد المتواضع

4

 الشكر والتقدير

وفقنا في اتمام هذا البحث العلمي و نحمد الله الذي

 الذي الهمنا الصحة و العافية و العزيمة .

 فالحمد لله حمدا كثيرا

 نتقدم بجزيل الشكر و التقدير الى

 الست زهراء عبد محمد

على كل ما قدمته لنا من معلومات و توجيهات قيمه

ساهمت في اثراء موضوع دراستنا في جوانبها

 المختلفة. .

تقدم بجزيل الشكر الى اعضاء لجنة المناقشةكما ن

5

Section Subject Page

1.1 Introduction 9

1.2 Problem Statement 10

1.3 The Goal of "Lightweight Algorithm 11

2.1 Introduction 13

2.2 Lightweight Overview 14

2.3 Encryption 15

2.4 Decryption 15

2.5 Lightweight Algorithms Example 17

2.6 Methodology 20

3.1 Introduction 22

3.2 Design Proposed Approach 25

4.1 Expected Outcomes 29

4.2 Design of Project 30

4.3 Conclusion 30

4.4 References 31

6

No. of Figure Tittle of Figure Page

Figure 1 Structure of PRESENT 24

Figure 2 Permutation Layer: a mixing bit as 25

7

In today's digital era, ensuring the confidentiality and integrity of data has

become paramount. With the exponential growth of data generation and

transmission, the need for efficient yet secure encryption algorithms has

intensified. This study investigates the efficacy of the Present lightweight

algorithm in encrypting text files,

The Present algorithm is renowned for its simplicity, efficiency, and

robustness against various cryptographic attacks. Its lightweight nature

makes it suitable for resource-constrained environments without

compromising security. In this research, we analyze the performance of

the Present algorithm when applied to encrypting a text file of significant

size

Through extensive experimentation and analysis, we evaluate the

encryption speed, computational overhead, and security strength of the

Present algorithm in handling a 1MB text file. Furthermore, we assess its

resistance against common cryptographic attacks, such as brute force and

differential cryptanalysis

The results demonstrate that the Present algorithm efficiently encrypts

text files while maintaining a high level of security. It exhibits

commendable encryption speed and minimal computational overhead,

making it suitable for real-time applications and systems with limited

processing capabilities. Moreover, the algorithm showcases resilience

against various cryptographic attacks, affirming its suitability for

safeguarding sensitive data in diverse domains, including communication,

finance, and healthcare

This research contributes to the advancement of data security by

providing empirical evidence of the effectiveness of the Present

lightweight algorithm in encrypting text files. It underscores the

algorithm's viability as a practical solution for securing data in

contemporary digital environments, where the protection of information

assets is of utmost importance.

8

CHAPTER

ONE

9

Lightweight cryptography has gained significant attention due to the

proliferation of Internet of Things (IoT) devices, wearable technologies,

and other resource-constrained environments where traditional

cryptographic algorithms may be impractical or too resource-intensive.

Lightweight algorithms are specifically designed to offer robust security

with minimal computational and memory requirements, making them

ideal for embedded systems with limited processing capabilities

The primary objectives of lightweight cryptography are to ensure data

confidentiality, integrity, and authentication while maintaining high

performance on devices with restricted resources. These algorithms often

employ streamlined designs, reduced key sizes, and optimized operations

to achieve efficient cryptographic operations without compromising

security

Several lightweight cryptographic algorithms have been proposed and

standardized to address the unique challenges posed by resource-

constrained environments. These algorithms encompass various

cryptographic primitives, including block ciphers, hash functions, and

authentication protocols, tailored to meet the specific needs of lightweight

applications.

10

In today's digital landscape, the proliferation of data across various

platforms and networks has heightened concerns regarding data security.

The need to safeguard sensitive information from unauthorized access

and malicious attacks is more critical than ever. To address these

challenges, encryption techniques play a pivotal role in ensuring the

confidentiality and integrity of data during transmission and storage

However, traditional encryption algorithms often face limitations when

applied to resource-constrained environments or when dealing with

volumes of data. These limitations can include high computational

overhead, increased processing time, and a lack of scalability.

Consequently, there arises a need for lightweight encryption algorithms

that can efficiently secure data without compromising performance

The Present lightweight algorithm has emerged as a promising solution to

these challenges. With its simplicity, efficiency, and strong cryptographic

properties.

11

The Present algorithm aims to achieve many goals in the encryption and

data protection process, including

 Encryption speed The Present algorithm is designed to be efficient in

terms of speed in encryption and decryption operations. This means that it

is capable of processing large amounts of data very efficiently

Power of protection The Present algorithm provides a high level of

security and protection for encrypted data. Advanced technologies are

used to prevent any attempt to hack encrypted data

 Data PreservationThe Present algorithm encrypts data in a structured and

secure manner, which helps save data from unauthorized access .

Ease of use The Present algorithm is easy to use, making it suitable for

use in a variety of applications and systems

In short, it can be said that the main goal of using the Present algorithm in

encryption is to provide high security, speed in encryption and decryption

processes, and to keep data securely and easily in use

12

CHAPTER

TWO

13

 Java is a widely-used, high-level programming language known for its

platform independence, robustness, and versatility. Developed by Sun

Microsystems (now owned by Oracle Corporation) in the mid-1990s,

Java was designed with a focus on simplicity, object-oriented

programming, and portability, making it a popular choice for developing

a wide range of applications, from enterprise-level systems to mobile and

web applications

One of Java's key features is its "Write Once, Run Anywhere" principle,

facilitated by the Java Virtual Machine (JVM). Java source code is

compiled into bytecode, which is platform-independent and can be

executed on any device that has a JVM, eliminating the need for

recompilation and allowing Java applications to run on various operating

systems, including Windows, macOS, Linux, and more

Java offers a rich standard library, providing developers with a vast

collection of pre-built classes and methods to simplify common

programming tasks and accelerate development. Additionally, its strong

type system, automatic memory management through garbage collection,

and exception handling mechanisms contribute to creating robust and

reliable applications

Over the years, Java has evolved and adapted to the changing

technological landscape, introducing new features and enhancements to

support modern development practices, such as functional programming

with lambda expressions, modular programming with the Java Platform

Module System (JPMS), and improved performance optimizations

14

The applications and services that need secure communication, they also

need speed in completing commands. In the end, these applications

operate on the principle of real time. This is not achieved by traditional

encryption algorithms, which require high costs of memory, processors

and energy. So, it is lightweight algorithms that will solve this problem

[5]. Therefore, NIST, “the National Institute of Standards and

Technology”, and (ISO / IEC), “the International Organization for

Standardization / International Electrotechnical Commission”, provided a

set of conditions for the encryption algorithm to be considered suitable

for real-time applications. Limited memory and are battery powered

devices are the properties of these devices. Often these devices have

limited memory and not large, in addition to their limited capacity, as

they work on batteries. Therefore, well-known conventional methods

such as AES may not be useful for these devices. AES method, for

example, is a good method for security, but it cannot work on these

devices because it requires a lot of memory. So, the solution was that

NIST had arrived using algorithms called lightweight algorithms that had

a high degree of security [3, 6]. In the context of talking about this topic,

NIST launched an initiative some time ago to standardize and evaluate

lightweight algorithms for coding. Whereas, NIST is trying to address

existing standards that are no longer acceptable. NIST has invited

researchers to submit their algorithms for consideration according to

criteria, and the submission period has expired. The accepted algorithms

went through several qualifiers until the moment of writing the paper

reached 27 methods. NIST has announced that the date to announce the

algorithms candidates for the final qualifiers will be announced at the end

of February 2021. It also asked those interested in the topic to enter its

site and add their comments to each algorithm, and it will take into

account all comments

15

Encryption is a method used to secure information by converting it into

an unreadable format, known as cipher text, using an encryption

algorithm and an encryption key. This process ensures that only

authorized parties can access and understand the original information

There are two main types of encryption: symmetric and asymmetric

 1. Symmetric Encryption: In symmetric encryption, the same key is

used for both encryption and decryption. This means that the sender and

the receiver must share the same secret key. Popular symmetric

encryption algorithms include AES (Advanced Encryption Standard),

DES (Data Encryption Standard), and 3DES (Triple DES.)

2. Asymmetric Encryption: Asymmetric encryption uses a pair of

keys: a public key and a private key. The public key is used for

encryption, while the private key is used for decryption. This allows for

secure communication without sharing a secret key beforehand. RSA (

Rivest -Shamir- Adleman) and ECC (Elliptic Curve Cryptography) are

common asymmetric encryption algorithms.

 is the process of converting encrypted data or cipher text back into its

original, readable form using the appropriate decryption key. It's the

reverse operation of encryption and is essential for retrieving and

understanding the original information after it has been encrypted.

There are two primary types of decryption methods, depending on the

encryption technique used

 1.Symmetric Decryption: In symmetric decryption, the same secret

key used for encryption is also used for decryption. Both the sender and

receiver need to have access to this secret key to encrypt and decrypt

messages. The symmetric decryption algorithm performs the inverse

operation of the encryption algorithm, transforming cipher text back into

plaintext .

16

 2.Asymmetric Decryption: Asymmetric decryption involves two

different keys: a public key and a private key. The cipher text, encrypted

with the public key, can only be decrypted using the corresponding

private key. This method allows for secure communication without

sharing a secret key beforehand. The most common asymmetric

decryption algorithms include RSA and ECC.

Steps to Decryption :

 1. Select the Correct Decryption Key: Ensure you have the correct

decryption key that matches the encryption key used to encrypt the data .

 2. Apply the Decryption Algorithm: Use the appropriate decryption

algorithm along with the decryption key to transform the cipher text back

into plaintext .

 3. Retrieve the Original Data: Once the decryption process is

completed, the original data or plaintext will be obtained, making it

readable and understandable .

 is the process of converting encrypted data or cipher text back into its

original, readable form using the appropriate decryption key. It's the

reverse operation of encryption and is essential for retrieving and

understanding the original information after it has been encrypted

There are two primary types of decryption methods, depending on the

encryption technique used :

 1.Symmetric Decryption: In symmetric decryption, the same secret

key used for encryption is also used for decryption. Both the sender and

receiver need to have access to this secret key to encrypt and decrypt

messages. The symmetric decryption algorithm performs the inverse

operation of the encryption algorithm, transforming cipher text back into

plaintext .

 2.Asymmetric Decryption: Asymmetric decryption involves two

different keys: a public key and a private key. The cipher text, encrypted

with the public key, can only be decrypted using the corresponding

private key. This method allows for secure communication without

sharing a secret key beforehand. The most common asymmetric

decryption algorithms include RSA and ECC.

17

Steps to Decryption:

 1. Select the Correct Decryption Key: Ensure you have the correct

decryption key that matches the encryption key used to encrypt the data .

 2. Apply the Decryption Algorithm: Use the appropriate decryption

algorithm along with the decryption key to transform the cipher text back

into plaintext .

3. Retrieve the Original Data: Once the decryption process is completed,

the original data or plaintext will be obtained, making it readable and

understandable.

It's crucial to keep decryption keys secure and confidential, just like

encryption keys. Unauthorized access to the decryption key can

compromise the security of the encrypted data and expose sensitive

information .

Decryption plays a vital role in cyber security, ensuring that authorized

parties can access and understand encrypted data while keeping it

protected from unauthorized access and potential threats .

:

symmetric type of cipher. The entry of information into encryption

methods of this type is in the form of blocks (for example, 64 or 128

bits). Of the methods defined in this type that are lightweight are:

Bibliography, Glossary, Katan , Clefia and Present. The other group of

symmetric encryption methods is stream cipher. This type of encryption

forms the information entering the algorithm in a flow rather than in

blocks. This means that the data is entered bit by bit. Examples of this

type that are lightweight algorithms are: LEA,PRESENT,AES

18

 The LEA algorithm, known as a light encryption algorithm, is a block

cipher algorithm. It started in 128-bit format and was used to provide

confidentiality and protection to cloud computing that is defined as high-

speed environments. It has also been used in mobile devices and the

Internet of things. The data blocks in this algorithm can be in three shapes

which are 128, 192 and finally 256 bits. It has been tested and found to be

faster than AES algorithm, from 1.5 to 2. This algorithm has been

certified and considered within the standards of ISO / IEC 29192- 2: 2019

which provides for information security and lightweight coding [8]. 4.2.

AES (Advanced Encryption Standard) algorithm is an advanced

encryption algorithm widely used in protection and security. AES was

developed as an alternative to the older DES (Data Encryption Standard)

algorithm due to its high robustness and resistance to attacks.

AES uses three different key sizes: 128-bit, 192-bit, and 256-bit. Starting

from plaintext, the encryption process in AES takes place through several

rounds of Substitute Bytes, Shift Rows, Mix Columns, and Add Round

Key.

During the encryption rounds, the secret key is combined in a complex

manner with the clear text data, and the encryption processes are repeated

for several rounds (10 rounds for a 128-bit key, 12 rounds for a 192-bit

key, and 14 rounds for a 256-bit key) to encrypt the data effectively and

securely .

Thanks to its strong encryption and resistance to attacks, the AES

algorithm is used for a wide range of

19

 It is one of the lightweight encryption methods that was developed in

France by the Orange Laboratory as well as the German University

Bochum in addition to the Technical University of Denmark in 2007. It is

an algorithm characterized by small size as it is 2.5 times smaller than

AES [9]. The size of the input data is 64 bits, and it has been developed to

be either 80 or 128 bits. Also, in this method, the single S-Box is only 4-

bit by 4-bit size. It is also known that the goal of lightweight algorithms is

for safety with less power consumption and less memory, and this is what

the PRESENT method has been incorporated into it by IOS / IES [5].

Figure 1 showing the Structure of PRESENT algorithm

20

PLA Implementation: Develop a Java implementation of the PLA based

on its specifications. Implement encryption and decryption functions

capable of processing text files efficiently .

Scalability Evaluation: Create a testing framework to assess PLA's

scalability by encrypting and decrypting text files of increasing sizes.

Measure the algorithm's performance in terms of memory usage and

processing time .

Performance Analysis: Benchmark PLA's encryption and decryption

speeds using different file sizes. Analyze the results to identify potential

bottlenecks and optimize the algorithm for improved performance .

Security Assessment: Conduct a comprehensive security analysis to

evaluate PLA's resistance against brute force, differential cryptanalysis,

and other potential attacks. Validate the algorithm's cryptographic

strength when applied to text files .

Integration and Testing: Integrate the PLA implementation into a user-

friendly application with intuitive interfaces for file encryption and

decryption. Perform extensive testing, including unit tests, integration

tests, and user acceptance tests, to ensure the application's functionality

and reliability.

21

CHAPTER

THREE

22

 Present offers a viable option for encrypting text data in scenarios where

computational resources are limited or where fast encryption and

quired. However, despite its potential benefits, there decryption are re

remain several key issues and challenges that need to be addressed when

employing the Present algorithm for text encryption .

One significant challenge is the scalability of the Present algorithm when

-encrypting text files. While Present is known for its efficiency in small

scale applications, its performance may degrade when tasked with

encrypting text files of considerable size, such as those exceeding 1MB.

ed encryption times and This scalability issue can lead to increas

computational overhead, potentially impacting the overall system

performance and user experience .

Moreover, there may be concerns regarding the security strength of the

esent is Present algorithm when applied to text encryption. Although Pr

designed to resist various cryptographic attacks, including differential and

linear cryptanalysis, its effectiveness against sophisticated attacks on

text files warrants further investigation. Ensuring the robustness and

world scenarios with extensive text data is -real resilience of Present in

essential for its widespread adoption and deployment .

Therefore, the primary objective of this study is to address the scalability

and security challenges associated with using the Present lightweight

algorithm for encrypting text data, particularly focusing on files. By

conducting comprehensive analyses and experiments, this research aims

to evaluate the performance, efficiency, and security of Present in

handling text files, thereby providing valuable insights into its practical

applicability and effectiveness as a data encryption solution.

23

Figure 1: Structure of PRESENT

• In the starting the key is kept in a register given as K.

• For each round (R), which 31 rounds, the 64-bit key that will be

used in this round the most significant 64-bits of the current K.

• After that, the Key will be updating as follows:

1. 61 times of rotating the key bit positions.

2. The 𝑘19𝑘18𝑘17𝑘16𝑘15 bits of K are XORed with the round

counter. (first round 1 = 00001 and last round 31 = 11111).

3. The last four bits are inserted over the S-Box.

• Add-Round-Key: EX-ORing between the block of plaintext (each

4-bit as block) and the K.

• Substitution Layer:

• S-Box is input 4-bit and output 4-bit. o The input is formed as Table 1 to get output

24

0 1 2 3 4 5 6 7 8 9 A B C D E F

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1: S-Box

• Permutation Layer: a mixing bit as Figure 2.

25

Step 1

Key

This key is used in encrypting the PRESENT algorithm

because of the great power of this key in establishing

cryptographic operations securely. A strong key must be

used to ensure that the data is secure and cannot be easily

hacked or decrypted. This key was chosen based on

considerations of security and efficiency in encrypting

data using the PRESENT algorithm.

This key is used in encryption and decryption as it

consists of 256 bits

Step 2

encryption

To encrypt a given text using the PRESENT algorithm,

you must specify the appropriate key that will be used in

the encryption process. Then the data to be encrypted is

selected and the PRESENT algorithm is applied to it

according to the rules and steps specified in the

algorithm. This converts the original data into an

encrypted form and a set of steps to restore the original

text. The PRESENT algorithm is used in many security

and cryptographic applications where good performance

and high resistance to attacks are desirable features

Step 3

Decreption

26

To decrypt ciphertext using the PRESENT algorithm, the

following steps can be followed:

1. Select the encrypted data: You must select the

ciphertext you wish to decrypt using the PRESENT

algorithm.

2. Determine the correct key: The correct key originally

used in the encryption process must be determined to

ensure correct decryption.

3. Implementing the PRESENT algorithm: The

PRESENT algorithm is implemented using encrypted

data and the key to get the original text.

4. Recover the original text: When the process is

completed, the original text encrypted in the previous

step will be obtained.

27

CHAPTER

FOUR

28

This chapter presents the results that are achieved from executing the

project system's steps that described in chapter three. These results are

explained in section (4.2). This project produces some conclusions with

working on the system are listed in section (4.3). The future works are

presented at the end of this chapter in section (4.4) of what the futurity

ideas can be adopted by researchers to develop this project and introduces

a more benefit to the other students

29

30

31

By implementing the Present Lightweight Algorithm for encrypting

text files, this project aims to enhance data security in modern digital

environments. The combination of efficiency, scalability, and robust

security offered by PLA makes it a promising solution for safeguarding

sensitive information in various applications and industries.

4.4 Future Works Suggestions

It can be expected that developments in encryption technologies and

applications may make the use of the PRESENT algorithm in image

encryption possible in the future. Future use of image encryption using

the PRESENT algorithm could be essential in the context of applications

that require protection of sensitive images, such as digital medical

imaging or secure transmission of images over the Internet

By using appropriate encryption mechanisms, such as integrating the

PRESENT algorithm with existing image encryption techniques, the

security and confidentiality of data in images can be improved. This is

done by modifying the key generation as well as modifying the number of

cycles while maintaining security performance

32

[1] T. Sharma, "Lightweight Encryption Algorithms, Technologies,

and Architectures in Internet of Things: A Survey," in Innovations

in Computer Science and Engineering:

Springer, 2020, pp. 341-351.

[2] K. Acharya et al., "Analysis of Cryptographic Algorithms for

Network Security," vol. 3, no. 2, pp. 130-135, 2013.

[3] I. Bhardwaj et al., "A review on lightweight cryptography

algorithms for data security and authentication in IoTs," in 2017

4th International Conference on Signal Processing, Computing

and Control (ISPCC), 2017, pp. 504-509: IEEE.

[4] A. Shah et al., "A survey of lightweight cryptographic algorithms

for iot-based applications," in Smart Innovations in

Communication and Computational Sciences:

Springer, 2019, pp. 283-293.

[5] S. Aruna et al., "Lightweight Cryptography Algorithms for IoT

Resource‐Starving Devices," pp. 139-169, 2020.

[6] T. Eisenbarth et al., "A survey of lightweight-cryptography

implementations," vol. 24, no. 6, pp. 522-533, 2007.

[7] C. S. R. CENTER. Lightweight Cryptography. Available:

https://csrc.nist.gov/projects/lightweight-cryptography

[8] D. Hong et al., "LEA: A 128-bit block cipher for fast encryption on

common processors," in International Workshop on Information

Security Applications, 2013, pp.

3-27: Springer.

https://www.java.com/en/
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

33

[9] A. Bogdanov et al., "PRESENT: An Ultra-Lightweight Block

Cipher," Berlin, Heidelberg, 2007, pp. 450-466: Springer Berlin

Heidelberg.

