XK >

&
&

<D & - I .

K (alad) Gagd) g Alad) andail) 3) 3 o

Y S&srpy ﬁ"’@p

5 Oiby dsala X
S &
S " <
X) o gle 4 g
& &
’ L) i X
< [<
% ol Gl e}‘ﬁ ?uﬁ X
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
< S
XX XX
XX XX
XX XX
XX XX
XX XX
XX XX
% . o %
g sdufUal) dy Craddl duiay g
XX XX
>{>< g J\’A ><><
% %
5 58NS Aa a Jud cilllalia (e g Jas g
: :
& s) 5
XX XX
% Leaa 1 £] 3 %
XX . & JAJ -e-e X
XX XX
XX XX
X XX
% %
XX - XX
X 2024 - 2023)
X XX
XX XX
3 3
%

&

$0d508503503508500504503500500508503503505005035035050050850350050050850350050508505050508508563503500508503505050050356350508508 56350500508 50350350508 500503503

9

50300390890350850850000K003308508508 50 50 50 50 50 5060360350505 0 8 0 5050503503030 08 0 50 5 5 50 505050 6 90

135005035045085035035035635035035050450850850850350850350850350450350350504508563508503508505085035085050850050350850050850850450350350850850350350850350450350850350450350350850850350350850350450350850504503503508508508503508502504500508505085

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

KK

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

zwwwwoooooooooowwwwwowooooooooowwwwwowowwww 6390850505508 5035050850503 508 5085008 508568508 5050908 508 5005000 ooz
s %
s %
s %
% s
% s
: 0l 2! :
S ¢
S ¢
;! X
S ¢
S ¢
E (e IS GBI g anall g A gl g A8 5 6l Bl) E
< A=l %
& ¢ &
S ¢
’ ol - " o ’
i das Il o LAY e g Al gl g Al N aly e ’
S ¢
S . . . ¢
: 5ol C Jal L Sl Ay e 5 el calalad)) 3
S ¢
S ¢
X Lok e curall o e Jd @ BY) 5 B8 e X
S ¢
& ¥
S . . " . ¢
£ A g Sal) daY prw e Je s bdde Jay %
XX .. XX
5 BTBS g
XX XX
§ R sl e §
XX XX
XX XX
% bl g Sl aladl s b 5 Slaad agS HUA e) &
% ol Sl i1
XX XX
3 3
XX XX
XX XX
XX XX
><>< . - “ ><><
¢ poa) giall agall 12 aSuoa) 5
XX XX
XX XX
XX XX
XX XX
3 3
3 3 %
'

imumwww»»w»wwwwwwwwwwwwwwwwwwwwo%&%%&%%&%&%&%&%&%&%&%&%&%&%%

9

50300390890350850850000K003308508508 50 50 50 50 50 5060360350505 0 8 0 5050503503030 08 0 50 5 5 50 505050 6 90

aaail) g S

| S s 4l 2aalld
sl 5 JSAN o e paiis
dana e ¢l 5) Gl

dad Gl ¢ g Oilaglaa e W atadd e S e
.~'!~S.~. !‘

Aadliad) al eliae) I SN e ackils LS

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

KK

O

5009085050508 508 50508 504 508508 50K 50501 508 508 50 50 508 508508 50K 50850500 50 508 508 50 560 50 50 503 50K 508508408 508508 5408 560 50 50 50504 50K 50K 508500 500308 50 50 S0 50

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<

<

<

<

<

<

<

<

<

<

<

<

<P

<P

<P

: LIST OF CONTENTS

X

g Section Subject Page
% Chapter One

$ 1.1 Introduction 9
4 1.2 Problem Statement 10
5 1.3 The Goal of "Lightweight Algorithm 11
& Chapter Two

g 2.1 Introduction 13
% 2.2 Lightweight Overview 14
s 2.3 Encryption 15
3 2.4 Decryption 15
s 2.5 Lightweight Algorithms Example 17
S 2.6 Methodology 20
% Chapter Three

% 3.1 Introduction 22
g 3.2 Design Proposed Approach 25
g Chapter Four

X 4.1 Expected Outcomes 29
E 4.2 Design of Project 30
) 4.3 Conclusion 30
) 4.4 References 31
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

%

% 5

X OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
%

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

List of Figures

No. of Figure Tittle of Figure Page
Figure 1 Structure of PRESENT 24
Figure 2 Permutation Layer: a mixing bit as 25

X OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
%

X

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

KK

ARSTRACT)

In today's digital era, ensuring the confidentiality and integrity of data has
become paramount. With the exponential growth of data generation and
transmission, the need for efficient yet secure encryption algorithms has
intensified. This study investigates the efficacy of the Present lightweight
algorithm in encrypting text files,

The Present algorithm is renowned for its simplicity, efficiency, and
robustness against various cryptographic attacks. Its lightweight nature
makes it suitable for resource-constrained environments without
compromising security. In this research, we analyze the performance of
the Present algorithm when applied to encrypting a text file of significant
size

Through extensive experimentation and analysis, we evaluate the
encryption speed, computational overhead, and security strength of the
Present algorithm in handling a 1MB text file. Furthermore, we assess its
resistance against common cryptographic attacks, such as brute force and
differential cryptanalysis

The results demonstrate that the Present algorithm efficiently encrypts
text files while maintaining a high level of security. It exhibits
commendable encryption speed and minimal computational overhead,
making it suitable for real-time applications and systems with limited
processing capabilities. Moreover, the algorithm showcases resilience
against various cryptographic attacks, affirming its suitability for
safeguarding sensitive data in diverse domains, including communication,
finance, and healthcare

This research contributes to the advancement of data security by
providing empirical evidence of the effectiveness of the Present
lightweight algorithm in encrypting text files. It underscores the
algorithm's viability as a practical solution for securing data in
contemporary digital environments, where the protection of information
assets is of utmost importance.

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

X

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

CHAPTER
ONE

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
;

KK

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

| | Introduction

Lightweight cryptography has gained significant attention due to the
proliferation of Internet of Things (loT) devices, wearable technologies,
and other resource-constrained environments where traditional
cryptographic algorithms may be impractical or too resource-intensive.
Lightweight algorithms are specifically designed to offer robust security
with minimal computational and memory requirements, making them
ideal for embedded systems with limited processing capabilities

The primary objectives of lightweight cryptography are to ensure data
confidentiality, integrity, and authentication while maintaining high
performance on devices with restricted resources. These algorithms often
employ streamlined designs, reduced key sizes, and optimized operations
to achieve efficient cryptographic operations without compromising
security

Several lightweight cryptographic algorithms have been proposed and
standardized to address the unique challenges posed by resource-
constrained environments. These algorithms encompass various
cryptographic primitives, including block ciphers, hash functions, and
authentication protocols, tailored to meet the specific needs of lightweight
applications.

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

19 Problem Sfatement

In today's digital landscape, the proliferation of data across various
platforms and networks has heightened concerns regarding data security.
The need to safeguard sensitive information from unauthorized access
and malicious attacks is more critical than ever. To address these
challenges, encryption techniques play a pivotal role in ensuring the
confidentiality and integrity of data during transmission and storage

However, traditional encryption algorithms often face limitations when
applied to resource-constrained environments or when dealing with
volumes of data. These limitations can include high computational
overhead, increased processing time, and a lack of scalability.
Consequently, there arises a need for lightweight encryption algorithms
that can efficiently secure data without compromising performance

The Present lightweight algorithm has emerged as a promising solution to
these challenges. With its simplicity, efficiency, and strong cryptographic
properties.

10

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

1.3 The Goal of "Lightweight Algorithm"

The Present algorithm aims to achieve many goals in the encryption and
data protection process, including

Encryption speed The Present algorithm is designed to be efficient in
terms of speed in encryption and decryption operations. This means that it
Is capable of processing large amounts of data very efficiently

Power of protection The Present algorithm provides a high level of
security and protection for encrypted data. Advanced technologies are
used to prevent any attempt to hack encrypted data

Data PreservationThe Present algorithm encrypts data in a structured and
.secure manner, which helps save data from unauthorized access

Ease of use The Present algorithm is easy to use, making it suitable for
use in a variety of applications and systems

In short, it can be said that the main goal of using the Present algorithm in
encryption is to provide high security, speed in encryption and decryption
processes, and to keep data securely and easily in use

11

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

X

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

CHAPTER
TWO

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

12

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
;

KK

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

21 Infroodnection

Java is a widely-used, high-level programming language known for its
platform independence, robustness, and versatility. Developed by Sun
Microsystems (now owned by Oracle Corporation) in the mid-1990s,
Java was designed with a focus on simplicity, object-oriented
programming, and portability, making it a popular choice for developing
a wide range of applications, from enterprise-level systems to mobile and
web applications

One of Java's key features is its "Write Once, Run Anywhere" principle,
facilitated by the Java Virtual Machine (JVM). Java source code is
compiled into bytecode, which is platform-independent and can be
executed on any device that has a JVM, eliminating the need for
recompilation and allowing Java applications to run on various operating
systems, including Windows, macQOS, Linux, and more

Java offers a rich standard library, providing developers with a vast
collection of pre-built classes and methods to simplify common
programming tasks and accelerate development. Additionally, its strong
type system, automatic memory management through garbage collection,
and exception handling mechanisms contribute to creating robust and
reliable applications

Over the years, Java has evolved and adapted to the changing
technological landscape, introducing new features and enhancements to
support modern development practices, such as functional programming
with lambda expressions, modular programming with the Java Platform
Module System (JPMS), and improved performance optimizations

13

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

2°) Y aohtwerioht ()verview

The applications and services that need secure communication, they also
need speed in completing commands. In the end, these applications
operate on the principle of real time. This is not achieved by traditional
encryption algorithms, which require high costs of memory, processors
and energy. So, it is lightweight algorithms that will solve this problem
[5]. Therefore, NIST, “the National Institute of Standards and
Technology”, and (ISO / IEC), “the International Organization for
Standardization / International Electrotechnical Commission”, provided a
set of conditions for the encryption algorithm to be considered suitable
for real-time applications. Limited memory and are battery powered
devices are the properties of these devices. Often these devices have
limited memory and not large, in addition to their limited capacity, as
they work on batteries. Therefore, well-known conventional methods
such as AES may not be useful for these devices. AES method, for
example, is a good method for security, but it cannot work on these
devices because it requires a lot of memory. So, the solution was that
NIST had arrived using algorithms called lightweight algorithms that had
a high degree of security [3, 6]. In the context of talking about this topic,
NIST launched an initiative some time ago to standardize and evaluate
lightweight algorithms for coding. Whereas, NIST is trying to address
existing standards that are no longer acceptable. NIST has invited
researchers to submit their algorithms for consideration according to
criteria, and the submission period has expired. The accepted algorithms
went through several qualifiers until the moment of writing the paper
reached 27 methods. NIST has announced that the date to announce the
algorithms candidates for the final qualifiers will be announced at the end
of February 2021. It also asked those interested in the topic to enter its
site and add their comments to each algorithm, and it will take into
account all comments

14

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

73 KNCRYPIHION

Encryption is a method used to secure information by converting it into
an unreadable format, known as cipher text, using an encryption
algorithm and an encryption key. This process ensures that only
authorized parties can access and understand the original information

There are two main types of encryption: symmetric and asymmetric

1. Symmetric Encryption: In symmetric encryption, the same key is

used for both encryption and decryption. This means that the sender and

the receiver must share the same secret key. Popular symmetric

encryption algorithms include AES (Advanced Encryption Standard),
.(DES (Data Encryption Standard), and 3DES (Triple DES

2. Asymmetric Encryption: Asymmetric encryption uses a pair of
keys: a public key and a private key. The public key is used for
encryption, while the private key is used for decryption. This allows for
secure communication without sharing a secret key beforehand. RSA (
Rivest -Shamir- Adleman) and ECC (Elliptic Curve Cryptography) are
common asymmetric encryption algorithms.

7 4 ecrvonfion

Is the process of converting encrypted data or cipher text back into its
original, readable form using the appropriate decryption key. It's the
reverse operation of encryption and is essential for retrieving and
.understanding the original information after it has been encrypted

There are two primary types of decryption methods, depending on the
encryption technique used

1.Symmetric Decryption: In symmetric decryption, the same secret

key used for encryption is also used for decryption. Both the sender and

receiver need to have access to this secret key to encrypt and decrypt

messages. The symmetric decryption algorithm performs the inverse

operation of the encryption algorithm, transforming cipher text back into
.plaintext

15

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

KK

2.Asymmetric Decryption: Asymmetric decryption involves two
different keys: a public key and a private key. The cipher text, encrypted
with the public key, can only be decrypted using the corresponding
private key. This method allows for secure communication without
sharing a secret key beforehand. The most common asymmetric
.decryption algorithms include RSA and ECC

:Steps to Decryption

1. Select the Correct Decryption Key: Ensure you have the correct
.decryption key that matches the encryption key used to encrypt the data

2. Apply the Decryption Algorithm: Use the appropriate decryption
algorithm along with the decryption key to transform the cipher text back
.Into plaintext

3. Retrieve the Original Data: Once the decryption process is
completed, the original data or plaintext will be obtained, making it
.readable and understandable

Is the process of converting encrypted data or cipher text back into its
original, readable form using the appropriate decryption key. It's the
reverse operation of encryption and is essential for retrieving and
understanding the original information after it has been encrypted

There are two primary types of decryption methods, depending on the
:encryption technique used

1.Symmetric Decryption: In symmetric decryption, the same secret

key used for encryption is also used for decryption. Both the sender and

receiver need to have access to this secret key to encrypt and decrypt

messages. The symmetric decryption algorithm performs the inverse

operation of the encryption algorithm, transforming cipher text back into
.plaintext

2.Asymmetric Decryption: Asymmetric decryption involves two
different keys: a public key and a private key. The cipher text, encrypted
with the public key, can only be decrypted using the corresponding
private key. This method allows for secure communication without
sharing a secret key beforehand. The most common asymmetric
.decryption algorithms include RSA and ECC

16

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

Steps to Decryption:

1. Select the Correct Decryption Key: Ensure you have the correct
.decryption key that matches the encryption key used to encrypt the data

2. Apply the Decryption Algorithm: Use the appropriate decryption
algorithm along with the decryption key to transform the cipher text back
.Into plaintext

3. Retrieve the Original Data: Once the decryption process is completed,
the original data or plaintext will be obtained, making it readable and
understandable.

It's crucial to keep decryption keys secure and confidential, just like
encryption keys. Unauthorized access to the decryption key can
compromise the security of the encrypted data and expose sensitive

.nformation

Decryption plays a vital role in cyber security, ensuring that authorized
parties can access and understand encrypted data while keeping it
.protected from unauthorized access and potential threats

) 5§ gohtwerioht Alcorithme Kxamnle

symmetric type of cipher. The entry of information into encryption
methods of this type is in the form of blocks (for example, 64 or 128
bits). Of the methods defined in this type that are lightweight are:
Bibliography, Glossary, Katan , Clefia and Present. The other group of
symmetric encryption methods is stream cipher. This type of encryption
forms the information entering the algorithm in a flow rather than in
blocks. This means that the data is entered bit by bit. Examples of this
type that are lightweight algorithms are: LEA,PRESENT,AES

17

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

KK

287101 KA

The LEA algorithm, known as a light encryption algorithm, is a block
cipher algorithm. It started in 128-bit format and was used to provide
confidentiality and protection to cloud computing that is defined as high-
speed environments. It has also been used in mobile devices and the
Internet of things. The data blocks in this algorithm can be in three shapes
which are 128, 192 and finally 256 bits. It has been tested and found to be
faster than AES algorithm, from 1.5 to 2. This algorithm has been
certified and considered within the standards of 1SO / IEC 29192- 2: 2019
which provides for information security and lightweight coding [8]. 4.2.

I8 AKSN

AES (Advanced Encryption Standard) algorithm is an advanced
encryption algorithm widely used in protection and security. AES was
developed as an alternative to the older DES (Data Encryption Standard)
algorithm due to its high robustness and resistance to attacks.

AES uses three different key sizes: 128-bit, 192-bit, and 256-bit. Starting
from plaintext, the encryption process in AES takes place through several
rounds of Substitute Bytes, Shift Rows, Mix Columns, and Add Round
Key.

During the encryption rounds, the secret key is combined in a complex
manner with the clear text data, and the encryption processes are repeated
for several rounds (10 rounds for a 128-bit key, 12 rounds for a 192-bit
key, and 14 rounds for a 256-bit key) to encrypt the data effectively and
securely.

Thanks to its strong encryption and resistance to attacks, the AES
algorithm is used for a wide range of

18

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

X

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

% L
% L
% L
% L
% L
X AES Design g
<) <
§ 128 bit = _ .
: = | Secret Key Plain Text :
< <
< <
< <
< <
< <
< i %
< } <
& 128 bit ——‘ &
: Cipher Text :
< <
< <
< <
< <
< <
< <
< <
< , <
&) 53 PRKSKNY) P
< <
< <
& It is one of the lightweight encryption methods that was developed in ¢
< . .
¢ France by the Orange Laboratory as well as the German University ¢
¢ Bochum in addition to the Technical University of Denmark in 2007. It is ¢
¢ an algorithm characterized by small size as it is 2.5 times smaller than 2
s AES [9]. The size of the input data is 64 bits, and it has been developed to s
g be either 80 or 128 bits. Also, in this method, the single S-Box is only 4- g
g bit by 4-bit size. It is also known that the goal of lightweight algorithms is g
g for safety with less power consumption and less memory, and this is what g
g the PRESENT method has been incorporated into it by 10S / IES [5]. g
g Figure 1 showing the Structure of PRESENT algorithm g
XX XX
3 R %
2) 2
X 2% X
><>< AV ><><
X £ XX
X XX
X XX
X XX
% - : - %
& /a) (M) &
; i =], :
X £
3 4/ 1, %
% ' %
Ongmna Encryption Encrypton De o tion ')v3 nal
g text , text g2 text g
X XX
XX XX
3 3
% 19 3
14 %
3.............m.m...........m.....m...m.........m.. 0503500508508 50 5050500 50K 5050840500508 50 50 S0 S0 500 50K 900K 500

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

76 Methodoloov

PLA Implementation: Develop a Java implementation of the PLA based
on its specifications. Implement encryption and decryption functions
.capable of processing text files efficiently

Scalability Evaluation: Create a testing framework to assess PLA's
scalability by encrypting and decrypting text files of increasing sizes.
Measure the algorithm's performance in terms of memory usage and

.processing time

Performance Analysis: Benchmark PLA's encryption and decryption
speeds using different file sizes. Analyze the results to identify potential
.bottlenecks and optimize the algorithm for improved performance

Security Assessment: Conduct a comprehensive security analysis to
evaluate PLA's resistance against brute force, differential cryptanalysis,
and other potential attacks. Validate the algorithm's cryptographic

.Sstrength when applied to text files

Integration and Testing: Integrate the PLA implementation into a user-
friendly application with intuitive interfaces for file encryption and
decryption. Perform extensive testing, including unit tests, integration
tests, and user acceptance tests, to ensure the application's functionality
and reliability.

20

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

X

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

CHAPTER
THREE

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

21

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
;

KK

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

3.1 Introduction

Present offers a viable option for encrypting text data in scenarios where
computational resources are limited or where fast encryption and
decryption are required. However, despite its potential benefits, there
remain several key issues and challenges that need to be addressed when
.employing the Present algorithm for text encryption

One significant challenge is the scalability of the Present algorithm when
encrypting text files. While Present is known for its efficiency in small-
scale applications, its performance may degrade when tasked with
encrypting text files of considerable size, such as those exceeding 1MB.
This scalability issue can lead to increased encryption times and
computational overhead, potentially impacting the overall system

.performance and user experience

Moreover, there may be concerns regarding the security strength of the
Present algorithm when applied to text encryption. Although Present is
designed to resist various cryptographic attacks, including differential and
linear cryptanalysis, its effectiveness against sophisticated attacks on
text files warrants further investigation. Ensuring the robustness and
resilience of Present in real-world scenarios with extensive text data is

.essential for its widespread adoption and deployment

Therefore, the primary objective of this study is to address the scalability
and security challenges associated with using the Present lightweight
algorithm for encrypting text data, particularly focusing on files. By
conducting comprehensive analyses and experiments, this research aims
to evaluate the performance, efficiency, and security of Present in
handling text files, thereby providing valuable insights into its practical
applicability and effectiveness as a data encryption solution.

22

X OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
%

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

3.2 Design Proposed Approach

Key 80 or 128

addRoundKey

Figure 1: Structure of PRESENT
. In the starting the key is kept in a register given as K.

. For each round (R), which 31 rounds, the 64-bit key that will be
used in this round the most significant 64-bits of the current K.

After that, the Key will be updating as follows:

1. 61 times of rotating the key bit positions.

2. The kiokiski7kiskis bits of K are XORed with the round
counter. (first round 1 = 00001 and last round 31 = 11111).

3. The last four bits are inserted over the S-Box.

. Add-Round-Key: EX-ORing between the block of plaintext (each
4-bit as block) and the K.

. Substitution Layer:
i S-Box is input 4-bit and output 4-bit. o The input is formed as Table 1 to get output

23

% OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

$50d5085085035085085085080d50850db0d50d50d50dSadbedSadb0d50d sadbed adbed5ad SadbadSadidiad SadbadsadSadadadbadiadSadiodSadidiadSadbodadbadsad adhedadsdiad adbed5adhadbdsels

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

C‘S‘6‘B‘9‘O‘A‘D‘3‘E‘F‘8‘4‘7‘1

Table 1: S-Box

k'i-i—l 4 P4 PP POPPPPOD ;; PODPP

* Permutation Layer: a mixing bit as Figure 2.

24

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

X OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

9

50300390890350850850000K003308508508 50 50 50 50 50 5060360350505 0 8 0 5050503503030 08 0 50 5 5 50 505050 6 90

Step 1
Key

This key is used in encrypting the PRESENT algorithm
because of the great power of this key in establishing
cryptographic operations securely. A strong key must be
used to ensure that the data is secure and cannot be easily
hacked or decrypted. This key was chosen based on
considerations of security and efficiency in encrypting
data using the PRESENT algorithm.

This key is used in encryption and decryption as it
consists of 256 bits

Step 2
encryption

To encrypt a given text using the PRESENT algorithm,
you must specify the appropriate key that will be used in
the encryption process. Then the data to be encrypted is
selected and the PRESENT algorithm is applied to it
according to the rules and steps specified in the
algorithm. This converts the original data into an
encrypted form and a set of steps to restore the original
text. The PRESENT algorithm is used in many security
and cryptographic applications where good performance
and high resistance to attacks are desirable features

Step 3

Decreption

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

25

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

KK

O

5009085050508 508 50508 504 508508 50K 50501 508 508 50 50 508 508508 50K 50850500 50 508 508 50 560 50 50 503 50K 508508408 508508 5408 560 50 50 50504 50K 50K 508500 500308 50 50 S0 50

9

50300390890350850850000K003308508508 50 50 50 50 50 5060360350505 0 8 0 5050503503030 08 0 50 5 5 50 505050 6 90

To decrypt ciphertext using the PRESENT algorithm, the
following steps can be followed:

1. Select the encrypted data: You must select the
ciphertext you wish to decrypt using the PRESENT
algorithm.

2. Determine the correct key: The correct key originally
used in the encryption process must be determined to
ensure correct decryption.

3. Implementing the PRESENT algorithm: The
PRESENT algorithm is implemented using encrypted
data and the key to get the original text.

4. Recover the original text. When the process is
completed, the original text encrypted in the previous
step will be obtained.

26

<50890K50850K50856K 50K 501 X 50 500 40 60 560 560 560 5 50 x xR x50 40 60 S0 S0 56 5 900 90K K X 50 500 40 60 S0 50 56 503 50K 508508 500 508 40 560 560 S0 50 50 508 508508508500 508 540 560 560 S0 5050 508 508500500508 508 540 560 0 50 50 50 50K 50450850050 S0 50

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

0d508503503503508508505050050050050450850850850850850850350350S0dS0dS0d505050050050¢504508508508508560350505050d50d50505050500500500500508508508508560356035085005x

X

0308308008005 50 503503 503 5003505000800K00K508508 308050 50 505 50 5060085050000 00K 000085 50 5 5050503603000 0080800800850 0K 083080

CHAPTER
FOUR

150d5035085045085085035050850850504305035050850830500508505035035005035050450500505050350500505050830508504503508500508503508505035085085085050850350350350504505035005050450503503508504505035050850450350850508503503508505085

27

<
<
<
<
<
>
S
S
S
S
S
<
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
;

KK

X KO K XK IO K XK KKK XK KKK XK KKK XK 0K 0K K ok ok ok ok ok oK >€><%%%%%%%%%%%%%%%%%%%%%%%M

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

.. 4.1 Introduction

This chapter presents the results that are achieved from executing the
project system's steps that described in chapter three. These results are
explained in section (4.2). This project produces some conclusions with
working on the system are listed in section (4.3). The future works are
presented at the end of this chapter in section (4.4) of what the futurity
ideas can be adopted by researchers to develop this project and introduces

a more benefit to the other students

28

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

0o g0 00008008 000080800800800800G0%

4.2 Design of project

S Desktop - Eclipse IDE = a X
File Edit Source Refactor Navigate Search Project Run Window Help
OB G B0 Q- U@ E-BESP A RE T HE 0D O Q B|§
[& Package Explarer 3 E|& 8 =B Msjaax [0 Problems @ Javadoc [} Declaration EJ Console g g
» i noorha package ikmdhnfgbd; X% EPEAE rE-o-®
) sa (3) [Java Application] CAL p2\p lipsejustj.openjdk hotspotjre-full win32.x86_ ¢
import java.ucil.Scanner; Enter the plaintext (64 bits) in hexadecimal format ‘B
public class sa { 5]
// Define a class for the byte structuze
© static class Byte { 3
byte nibblel; a-
byte nibblez; o=
e Byte (byte nibblel2, byte nibble22) {
this.nibblel = nibblelZ;
this.nibble2 = nibblelZ;
3
3
static byte[] 5= {0xC, 0x5, Oxé, 0xB, &
static byte[] invs = {0x5, OxE, OxF, 0x3,
= static byte[] 2= {0, 1§, 32, 48, 1, 17,
4, 20, 36, 52, 5, 21, v
8, 24, 40, 56, 9, 25, 4 »
12, 28, 44, €0, 13, 24, 45, oL, 1%, 3U, %o, &2, 15, 31, 4/, b3}
= public statie void main(String[] args) (
// Declare variables for the plaintext and the key
String plaintext, key:
// Get input for vhe plaintext and the key
Scanner scanner = new Scanner (System.in):
System.omt.println("Enter the plaintext (64 bits) in hexadecimal format”):
plaintext = scanner.nextLine();
‘ ¥

?D 25°C

s bl

cePazeo Aac SwE olte

' Desktop - Eclipse IDE = a X
File Edit Source Refactor MNavigate Search Project Run Window Help

O-E & SRR -0- Q- AU H G- IAB AP A RETIHF O C S| Q is|E

t§ Package Explorer X S|le g =8 Deajpax %) Problems @ Javadoc [, Declaration E) Console % -]
» [2 noorhs package ikmdnnighd: X% GEREE ra-9-2
R R sa (3) [Java Application] C:\Users\alnaseem?.p2\pool\plugins\org.eclipse.justj.openjdichotspot.jre full win32.x86_ &

import java.util.Scanner; Enter the plaintext (64 bits) in hexadecimal format ‘B

el Gl S Enter the key (30 bits) in hexadecimal format 2

// Define a class for the byte structure .

static class Byte { - a

byte nibblel: o=

byte nibbleZ; L

Byte (byte nibblelZ
this.nibblel
this.nibble2

byte nibble2z) {

static byte[] 5= {0xC, 0x5, Oxé, 0x3, O:

static byte[] invs = {0x5, OxE, OxF, Ox3,

static byte[] 2= {0, 1§, 32, 48, 1, 17,
4, 20, 36, 52, 5, 21, v
8, 24, 40, 56, 9, 25, 4 »
1z, 28, 44, €0, 13, 2Y, 43, oli, 1%, 3U, 46, b, 15, 31, %/, 631}

public static void main(String[] args) {

// Declare variables for the plaintext and the key
String plaintext, key;

// Get input for the plaintext and the key

Scanner scanner = new Scanner (System.in);:

5 System.out.println("Enter the plaintext (€4 bits) in hexadecimal format");
plaintext = scanner.nextline();:

et
ww

o

& A NG A Q) @ r-ri?-lgfr‘w a

0 =c

anas ol

Q Search % '..& L - c

c@a

1

29

C50K508504 50850354 5080 x X 50 00 40 60 560 560 50 50 90K K xR X 510 40 60 S0 60 5 5 900 90 K X 50 540 40 60 S0 S 50 500 50K 508508500 508 540 560 560 S0 050 50K 508508 500508508 540 560 560 0 5050 50K 508508508500 5408 560 60 508 50 560050 50K

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
0%
0%
0%
0%
0%
0%
0%
5%
8%
8%
8%
8%
8%
8%
2%
2%
2%
2%
2%
0%
2%
%

oo 008008008 0008008 00800800000

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

S Desktop - Eclipse IDE - o X
File Edit Source Refactor Navigate Search Project Run Window Help
[mif &7 B0 Q- -QR-HG BB P g Prgl-orerormr Qs
[# Package Explorer X Sle 8§ =0 Msajva x [£1 Problems @ Javadoc [@ Declaration & Console X & s
> I noorha 1 package ikmdhnfgbd; CR IR [m =
2 lipse just
s import java.util.Scamner: @
2
=

static byte[] 5= {OxC, 0x5, 0x6, 0x8, O:
static byte[] iavs = {05, OxE, OxF, Oxg,
static bytel] 2= {0, 1§, 32, 48, 1, 17,

4, 20, 36, 52, 5, 21,

n hevadecimal formacr):
e = B = = ¢ - = 0
e B Q sern Yo B2 = C 3 @ @ S & » ED OO0 ok

135005035045085035035035635035035050450850850850350850350850350450350350504508563508503508505085035085050850050350850050850850450350350850850350350850350450350850350450350350850850350350850350450350850504503503508508508503508502504500508505085

30

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

KK

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

43 (onclusion

By implementing the Present Lightweight Algorithm for encrypting
text files, this project aims to enhance data security in modern digital
environments. The combination of efficiency, scalability, and robust
security offered by PLA makes it a promising solution for safeguarding

sensitive information in various applications and industries.

4.4 Future Works Suggestions

It can be expected that developments in encryption technologies and
applications may make the use of the PRESENT algorithm in image
encryption possible in the future. Future use of image encryption using
the PRESENT algorithm could be essential in the context of applications
that require protection of sensitive images, such as digital medical
imaging or secure transmission of images over the Internet

By using appropriate encryption mechanisms, such as integrating the
PRESENT algorithm with existing image encryption techniques, the
security and confidentiality of data in images can be improved. This is
done by modifying the key generation as well as modifying the number of

cycles while maintaining security performance

31

OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK >€><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
§

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

4.4 References

https://www.iava.com/en/

<9
<9
<9
<9
<9
<9
<
<
<
<
<
>
9
9
9
9
X [1]
9
9
9
9
9
9
9
9
9
9
3 [2]
9
9
9
9
g [3]
9
9
9
9
9
9
9
9
9
9
3 [4]
9
.
.
.
.
.
.
83
E [5]
.3
.3
.3
3
9 [6]
.
.
g
S [7]
.
.
.
X [8]
.
83
.3
.3
.3
.3
.3
.3
%

T. Sharma, "Lightweight Encryption Algorithms, Technologies,
and Architectures in Internet of Things: A Survey," in Innovations
in Computer Science and Engineering:

Springer, 2020, pp. 341-351.

K. Acharya et al., "Analysis of Cryptographic Algorithms for
Network Security," vol. 3, no. 2, pp. 130-135, 2013.

[. Bhardwaj et al., "A review on lightweight cryptography
algorithms for data security and authentication in [oTs," in 2017
4th International Conference on Signal Processing, Computing
and Control (ISPCC), 2017, pp. 504-509: IEEE.

A. Shah et al., "A survey of lightweight cryptographic algorithms
for 1ot-based applications," in Smart Innovations in
Communication and Computational Sciences:

Springer, 2019, pp. 283-293.

S. Aruna et al., "Lightweight Cryptography Algorithms for IoT
Resource-Starving Devices," pp. 139-169, 2020.

T. Eisenbarth et al, "A survey of lightweight-cryptography
implementations," vol. 24, no. 6, pp. 522-533, 2007.

C. S. R. CENTER. Lightweight Cryptography. Available:

https://csrc.nist.gov/projects/lightweight-cryptography

D. Hong et al., "LEA: A 128-bit block cipher for fast encryption on
common processors," in International Workshop on Information
Security Applications, 2013, pp.

3-27: Springer.

32

X OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

*
*
*
*
*
*
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
X
X
X
X
X
X
0%
0%
0%
0%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0%
0%
0%
0%
X
X
0%
%

https://www.java.com/en/
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

903905903003 5035035050850000K00050850850850 50 50 505 50 50603608 5050080000K008308308 00800 - 5 6050603503060 K08 0808 50 0 5 5 505050 50 60

[9] A. Bogdanov et al., "PRESENT: An Ultra-Lightweight Block
Cipher," Berlin, Heidelberg, 2007, pp. 450-466: Springer Berlin
Heidelberg.

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
S
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2%
2%
2%
X
X
X
%

33

S
S
S
S
S
S
S
S
S
S
S
S
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
&5
S
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
;

% OO KKK IO KK XXX O KKK KKK XK K KKK K KK XK ><><%%%%%%%%%%%%%%%%%%%%%%%M

