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The Weather PredicMon



بسم الله الرحمن الرحيم

  وَمَا أوُتِيتمُ مِّنَ الْعِلْمِ إلِاَّ قَليِلًا

صدق الله العلي العظيم

85 الاسراء 
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الشكر والتقدير

نحمد الله الذي وفقنا في اتمام ھذا البحث العلمي و 

الذي الھمنا الصحة والعافیة والعزیمة. 

فالحمد D حمدا كثیرا 

نتقدم بجزیل الشكر والتقدیر الى 

الدكتورة اسراء ھادي عبید 

على كل ما بذلتھ من معلومات وتوجیھات 

كما نتقدم بجزیل الشكر الى اعضاء الجنة المناقشة 
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الاهـــــــــــــــــــداء

    

الى خالق اللوح و القلم و باري الذر و النسم و خالق كل شيء من العدم 
الى من بلغ الرسالة و ادى الامانة و نص الامة ..الى نبي الرحمة 

الى السادات الاطھار و عروتھ الوثقى.. اھل بیت النبوة 

 (الى مراد قلبي و الاقرب لي من نفسي المغیب عن الابصار.. صاحب العصر و الزمان (عج

الى من علمني ان الدنیا كفاح و سلاحھا العلم و المعرفة الى الذي لم یبخل علیة بإي  شيء الى 
من سعى لاجل راحتي و نجاحي ...ابي العزیز 

 .. الى ذات القلب النقي

الى من اوصاني بھا الرحمن برا و  احسانا الى من سعت و عانت من اجلي ..امي الحبیبة 

 .. الى من اشاركھم لحظاتي و یفرحون لنجاحي اخوتي و اساتذتي الكرام

اھدیكم ھذا الجھد المتواضع 
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Abstract 

Weather predic,on is crucial for various sectors such as agriculture, 

avia,on, and disaster management. Tradi,onal methods have 

limita,ons in terms of accuracy and computa,onal efficiency. This 

project explores the use of Feed Forward Neural Networks (FFNN) for 

weather predic,on, leveraging historical weather data to predict future 

condi,ons. The results demonstrate the poten,al of neural networks in 

providing accurate weather forecasts. 
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CHAPTRR 
ONE  

Introduc6on to Weather Predic6on 
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Weather predic,on, or meteorology, involves forecas,ng future atmospheric 
condi,ons based on the analysis of current and historical data. Accurate weather 
predic,ons are vital for various sectors, including agriculture, avia,on, shipping, 
and disaster management. Effec,ve weather forecas,ng can mi,gate risks 
associated with extreme weather events, op,mize agricultural prac,ces, and 
enhance the safety and efficiency of transporta,on systems. 

Importance of Weather Predic6on 

Agriculture: Farmers rely on weather forecasts to plan ac,vi,es such as plan,ng, 
irriga,on, and harves,ng. Accurate predic,ons help in reducing crop losses and 
improving yield. 

Disaster Management: Early warnings of severe weather condi,ons, such as 
hurricanes, floods, and tornadoes, can save lives and minimize property damage 
by allowing for ,mely evacua,on and preparedness measures. 

Avia6on and Marine Opera6ons: Weather forecasts are crucial for the safety and 
scheduling of flights and marine voyages. They help in naviga,ng storms, 
managing air traffic, and ensuring the safety of passengers and cargo. 

Daily Ac6vi6es: Rou,ne decisions made by individuals and businesses, from 
commu,ng to planning events, also depend on reliable weather forecasts. 

Tradi,onal Weather Predic,on Methods 

Numerical Weather Predic6on (NWP): Uses mathema,cal models based on 
physical laws governing the atmosphere. These models require significant 
computa,onal resources and exper,se to interpret complex interac,ons between 
atmospheric variables. 

Sta6s6cal Methods: Involves analyzing historical weather data to iden,fy paQerns 
and trends. Techniques like regression analysis and ,me series forecas,ng are 
commonly used. 
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Related work  

The field of weather predic,on has seen substan,al advancements over the past 

few decades, driven by improvements in computa,onal power, data collec,on 

methods, and predic,ve modeling techniques. This sec,on reviews significant 

developments in tradi,onal weather predic,on methods, the rise of machine 

learning approaches, and the specific applica,on of neural networks in weather 

forecas,ng. 

Tradi6onal Weather Predic6on Methods 

Numerical Weather Predic,on (NWP) models, such as the Global Forecast System 

(GFS) and the European Centre for Medium-Range Weather Forecasts (ECMWF), 

rely on solving complex mathema,cal equa,ons that describe the physical state of 

the atmosphere. These models use ini,al condi,ons derived from current 

observa,onal data and simulate the atmosphere's future state through ,me 

integra,on. Although NWP models have proven to be accurate in many scenarios, 

they require substan,al computa,onal resources and are constrained by the 

resolu,on of the grid used in simula,ons (Bauer et al., 2015). 

Before the widespread adop,on of NWP, sta,s,cal methods were commonly 

employed for weather forecas,ng. These methods involve the analysis of 

historical weather data to iden,fy paQerns and rela,onships between different 

meteorological variables. Techniques such as mul,ple linear regression, 

autoregressive integrated moving average (ARIMA), and principal component 

analysis (PCA) have been u,lized to predict weather variables (Wilks, 2011). 
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However, these methods o]en struggle to capture the complex and nonlinear 

interac,ons present in atmospheric data. 

Machine Learning Approaches 

The applica,on of machine learning (ML) techniques to weather predic,on has 

garnered significant aQen,on in recent years, driven by the availability of large 

datasets and advancements in computa,onal power. 

Support Vector Machines (SVM) have been used for classifica,on and regression 

tasks in weather predic,on. For example, Hong and Pai (2007) employed SVMs to 

predict typhoon intensity, demonstra,ng the method's effec,veness in handling 

nonlinear rela,onships. 

Random Forests, an ensemble learning method, have been applied to weather 

predic,on due to their robustness and ability to handle large datasets. Random 

Forests can provide insights into the importance of different features in predic,on 

tasks. Lakshmanan et al. (2015) used Random Forests to improve severe weather 

predic,on, showing significant improvements over tradi,onal methods. 

K-Nearest Neighbors (KNN) has also been used for short-term weather predic,on. 

Its simplicity and effec,veness in capturing local data paQerns make it suitable for 

forecas,ng variables like temperature and precipita,on. However, KNN can be 

computa,onally intensive, especially with large datasets (Tveito et al., 2008). 

Neural Networks in Weather Predic6on 
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Neural networks, par,cularly deep learning models, have emerged as powerful 

tools for weather predic,on due to their ability to model complex and nonlinear 

rela,onships. 

Feed Forward Neural Networks (FFNN) are among the simplest forms of neural 

networks used for weather predic,on. They consist of mul,ple layers of neurons, 

with each layer fully connected to the next. Researchers have used FFNNs to 

predict various weather parameters, such as temperature and precipita,on. For 

instance, Gardner and Dorling (1998) applied FFNNs to forecast air pollu,on 

levels, which are closely related to weather condi,ons. 

Project problem  

This project aims to address the challenge of improving weather predic,on 

accuracy by exploring the applica,on of a Feed Forward Neural Network (FFNN). 

Tradi,onal methods such as Numerical Weather Predic,on (NWP) and sta,s,cal 

techniques have limita,ons in capturing complex atmospheric paQerns. Machine 

learning approaches, par,cularly neural networks, offer the poten,al to overcome 

these limita,ons by learning from historical weather data. By developing and 

evalua,ng an FFNN model for weather predic,on, this project seeks to contribute 

to the advancement of forecas,ng techniques, ul,mately enhancing decision-

making across various sectors reliant on accurate weather forecasts. 

Objec6ves of the Project 

This project aims to explore the applica,on of FFNNs in weather predic,on, 
focusing on: 
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Developing a FFNN model: Designing and training a neural network to predict key 
weather variables such as temperature, humidity, wind speed, and atmospheric 
pressure. 

Evalua6ng model performance: Assessing the accuracy and reliability of the FFNN 
model using various evalua,on metrics. 

Comparing with tradi6onal methods: Benchmarking the FFNN model against 
tradi,onal weather predic,on methods to highlight its advantages and poten,al 
limita,ons. 

By leveraging the capabili,es of FFNNs, this project seeks to contribute to the 
ongoing efforts in enhancing weather forecas,ng techniques, ul,mately leading to 
more reliable and accurate weather predic,ons. 

Project Layout 

This project on weather predic,on using a Feed Forward Neural Network (FFNN) 

encompasses several key sec,ons. It begins with an introduc,on highligh,ng the 

importance and objec,ves of weather forecas,ng. The literature review covers 

tradi,onal methods like Numerical Weather Predic,on (NWP) and sta,s,cal 

techniques, and explores machine learning approaches, including various neural 

networks. The methodology details data collec,on, preprocessing, network 

architecture, training, and evalua,on metrics. Implementa,on outlines the tools, 

environment, and code used. Results sec,on presents the model's performance, 

while the discussion analyzes findings, challenges, and comparisons with exis,ng 

methods. The conclusion summarizes the project's contribu,ons and suggests 

future research direc,ons. References and appendices provide suppor,ng 

documenta,on and code lis,ngs 
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CAPTER 
TWO 
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Challenges in Weather Predic6on 

Complexity of the Atmosphere: The atmosphere is a chao,c system with 

numerous interac,ng variables. Small changes in ini,al condi,ons can lead to 

significant differences in outcomes, a phenomenon known as the buQerfly effect. 

Data Quality and Availability: Accurate forecasts depend on high-quality, real-,me 

data from various sources, including weather sta,ons, satellites, and radar 

systems. Missing or erroneous data can degrade the quality of predic,ons. 

Computa,onal Limita,ons: NWP models require immense computa,onal power 

to solve the complex equa,ons governing atmospheric dynamics. This limits their 

ability to provide ,mely forecasts, especially for short-term predic,ons. 

Advancements in Machine Learning for Weather Predic6on 

The advent of machine learning (ML) has introduced new possibili,es for weather 

predic,on. ML algorithms can analyze large datasets to iden,fy paQerns and make 

predic,ons without explicitly programming the physical laws. This capability is 

par,cularly advantageous for capturing non-linear rela,onships and complex 

interac,ons that tradi,onal models may struggle with. 
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Feed Forward Neural Networks (FFNN), a type of ar,ficial neural network, have 

shown great poten,al in weather predic,on. FFNNs consist of mul,ple layers of 

interconnected neurons, which can learn from historical weather data and make 

accurate predic,ons. The ability of FFNNs to handle large datasets and model 

complex paQerns makes them a promising tool for improving weather forecas,ng 

accuracy. 

Feed Forward Neural Networks 

A Quick Intro to Neural Networks 

Many problems in our daily lives that involve intelligence, paQern recogni,on, and 

object detec,on are challenging to automate, yet seem to be performed quickly 

and naturally by animals and young children. For example, how does a dog 

recognize its owner from a complete stranger? How does a child learn to 

understand the difference between an apple and an orange? The answers lie in 

the biological neural networks present in our nervous system. These networks do 

the computa,ons for us and look like this: 
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An “ar,ficial neural network” is a computa,on system that aQempts to mimic (or 

at the very least is inspired by) the neural connec,ons in our nervous system. 

Ini,ally, we used neural networks for simple classifica,on problems, but thanks to 

an increase in computa,on power, there are now more powerful architectures 

that can solve more complex problems. One of these is called a feedforward 

neural network 

 How Feedforward Neural Networks Work 

Feedforward neural networks were among the first and most successful learning 

algorithms. They are also called deep networks, mul,-layer perceptron (MLP), or 

simply neural networks. As data travels through the network’s ar,ficial mesh, each 

layer processes an aspect of the data, filters outliers, spots familiar en,,es and 

produces the final output. 

Feedforward neural networks are made up of the following: 

Input layer: This layer consists of the neurons that receive inputs and pass them 

on to the other layers. The number of neurons in the input layer should be equal 

to the aQributes or features in the dataset. 

Output layer: The output layer is the predicted feature and depends on the type 

of model you’re building. 

Hidden layer: In between the input and output layer, there are hidden layers 

based on the type of model. Hidden layers contain a vast number of neurons 
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which apply transforma,ons to the inputs before passing them. As the network is 

trained, the weights are updated to be more predic,ve.  

Neuron weights: Weights refer to the strength or amplitude of a connec,on 

between two neurons. If you are familiar with linear regression, you can compare 

weights on inputs like coefficients. Weights are o]en ini,alized to small random 

values, such as values in the range 0 to 1. 

To beQer understand how feedforward neural networks func,on, let’s solve a 

simple problem — predic,ng if it’s raining or not when given three inputs.  

x1 - day/night 

x2 - temperature 

x3 - month 

Let’s assume the threshold value to be 20, and if the output is higher than 20 then 

it will be raining, otherwise it’s a sunny day. Given a data tuple with inputs (x1, x2, 

x3) as (0, 12, 11), ini,al weights of the feedforward network (w1, w2, w3) as (0.1, 

1, 1) and biases as (1, 0, 0). 

Here’s how the neural network computes the data in three simple steps: 

1. Mul,plica,on of weights and inputs: The input is mul,plied by the assigned 

weight values, which this case would be the following: 

(x1* w1) = (0 * 0.1) = 0 

(x2* w2) = (1 * 12) = 12 

(x3* w3) = (11 * 1) = 11 
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2. Adding the biases: In the next step, the product found in the previous step is 

added to their respec,ve biases. The modified inputs are then summed up to a 

single value.  

(x1* w1) + b1 = 0 + 1 

(x2* w2) + b2 = 12 + 0 

(x3* w3) + b3 = 11 + 0 

  

Weighted sum = (x1* w1) + b1 + (x2* w2) + b2 + (x3* w3) + b3 = 23 

3. Ac,va,on: An ac,va,on func,on is the mapping of summed weighted input to 

the output of the neuron. It is called an ac,va,on/transfer func,on because it 

governs the incep,on at which the neuron is ac,vated and the strength of the 

output signal.  

4. Output signal: Finally, the weighted sum obtained is turned into an output 

signal by feeding the weighted sum into an ac,va,on func,on (also called transfer 

func,on). Since the weighted sum in our example is greater than 20, the 

perceptron predicts it to be a rainy day. 

The image below illustrates this process more clearly. 
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There are several ac,va,on func,ons for different use cases. The most commonly 

used ac,va,on func,ons are relu , tanh and so]max. Here’s a handy cheat sheet: 
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Calcula6ng the Loss 

In simple terms, a loss func,on quan,fies how “good” or “bad” a given model is in 

classifying the input data. In most learning networks, the loss is calculated as the 

difference between the actual output and the predicted output.  

Mathema,cally: 

loss = y_{predicted} - y_{original} 
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The func,on that is used to compute this error is known as loss func,on J(.). 

Different loss func,ons will return different errors for the same predic,on, having 

a considerable effect on the performance of the model.  

Gradient Descent 

Gradient descent is the most popular op,miza,on technique for feedforward 

neural networks. The term “gradient” refers to the quan,ty change of output 

obtained from a neural network when the inputs change a liQle. Technically, it 

measures the updated weights concerning the change in error. The gradient can 

also be defined as the slope of a func,on. The higher the angle, the steeper the 

slope and the faster a model can learn. 

Advantages of feed forward Neural Networks 

• Machine learning can be boosted with feed forward neural networks' 

simplified architecture. 

• Mul,-network in the feed forward networks operate independently, with a 

moderated intermediary. 

• Complex tasks need several neurons in the network. 

• Neural networks can handle and process nonlinear data easily compared to 

perceptrons and sigmoid neurons, which are otherwise complex. 

• A neural network deals with the complicated problem of decision 

boundaries. 
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• Depending on the data, the neural network architecture can vary. For 

example, convolu,onal neural networks (CNNs) perform excep,onally well 

in image processing, whereas recurrent neural networks (RNNs) perform 

well in text and voice processing. 

• Neural networks need graphics processing units (GPUs) to handle large 

datasets for massive computa,onal and hardware performance. Several 

GPUs get used widely in the market, including Kaggle Notebooks and 

Google Collab Notebooks. 

Applica6ons of feed forward neural networks 
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CHAPTER  

THREE 
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  Methodology 

Data Collec6on 

Historical weather data, including temperature, humidity, wind speed, 

and atmospheric pressure, was collected from reliable sources such as 

the Na,onal Oceanic and Atmospheric Administra,on (NOAA). 

Data Preprocessing 

Data Cleaning: Handling missing values and outliers. 

Normaliza,on: Scaling features to a uniform range. 

Feature Selec,on: Iden,fying relevant features for predic,on. 

Neural Network Architecture 

A Feed Forward Neural Network was designed with the following 

architecture: 
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Input Layer: Receives historical weather data. 

Hidden Layers: Two hidden layers with ReLU ac,va,on func,ons. 

Output Layer: Predicts the future weather condi,on, using a linear 

ac,va,on func,on for regression tasks. 

Model Training 

Loss Func,on: Mean Squared Error (MSE). 

Op,mizer: Adam op,mizer, chosen for its efficiency in handling large 

datasets. 

Training: The model was trained on 80% of the data, with 20% reserved 

for valida,on. 
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Evalua6on Metrics 

Mean Absolute Error (MAE) 
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Dataset 

A Dataset is a set or collec,on of data. This set is normally presented in 

a tabular paQern. Every column describes a par,cular variable. And 

each row corresponds to a given member of the data set, as per the 

given ques,on. This is a part of data management. 

Types of Datasets 

In Sta,s,cs, we have different types of data sets available for different 

types of informa,on. They are: 

. Numerical data sets 

. Bivariate data sets 

. Mul,variate data sets 

. Categorical data sets 

. Correla,on data sets 

   Data Preprocessing 

Data preprocessing 
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Predic.onFNNtest Training



Data preprocessing/prepara,on/cleaning is the process of detec,ng 

and correc,ng (or removing) corrupt or inaccurate records from a 

dataset, or and refers to iden,fying incorrect, incomplete, irrelevant 

parts of the data and then modifying, replacing, or dele,ng the dirty or 

coarse data  

From: Computa,onal Intelligence for Mul,media Big Data on the Cloud 

with Engineering Applica,ons, 2018. 

    

What is feed-forward in neural networks? 

The feed-forward model is the simplest type of neural network because 

the input is only processed in one direc,on. The data always flows in 

one direc,on and never backwards, regardless of how many buried 

nodes it passes through. 
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CHAPTER  

FOUR  
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  Results 

Training Performance 

The FFNN showed a steady decrease in training and valida,on loss, 

indica,ng effec,ve learning. 

Predic6on Accuracy 

  

  

A result of 80% was obtained. 
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0.  20. 6.1.    2.1.      2:Sun 

0.3.   11.1. 3.3.  2.6.    1:rain 

02. 612. 84. 7.         4:drizzle 

3.6.  6.7.  -0.6.  4.2.    3:snow 

  

Discussion 

The FFNN demonstrated strong performance in predic,ng weather 

condi,ons, outperforming some tradi,onal methods. The ability to 

capture non-linear rela,onships contributed significantly to its accuracy. 
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