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ABSTRACT  
Singular Value Decomposition (SVD) is a powerful matrix factorization 
technique that finds its applications in various domains such as linear 
algebra, signal processing, image compression, recommender systems, 
and data analysis. This comprehensive overview aims to provide a 
detailed understanding of SVD, including its mathematical formulation, 
computation methods, properties, and applications. Additionally, it 
discusses related concepts and variations of SVD, and explores the 
significance of SVD in modern data-driven technologies. 
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Chapter One 
Singular Value Decomposition 
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1-1  Introduction 
     Singular Value Decomposition (SVD) is a fundamental technique in 
linear algebra and numerical analysis. It plays a crucial role in various 
applications, including signal processing, image compression, data 
analysis, and machine learning. The history of SVD can be traced back to 
the early 19th century, with significant contributions from several 
mathematicians and researchers. 
The concept of SVD emerged from the study of matrices and their 
properties. In the early 1800s, mathematicians were exploring the 
properties of quadratic forms and seeking ways to diagonalize 
them. Carl Friedrich Gauss made notable advancements in this 
field, and his work laid the foundation for later developments in 
matrix factorization techniques. 
The modern formulation of SVD was introduced by Eugenio 
Beltrami in the late 19th century. Beltrami proposed a method for 
decomposing a matrix into three components: two orthogonal 
matrices and a diagonal matrix. However, the term "Singular 
Value Decomposition" was not explicitly used until much later. 
In the early 20th century, significant contributions to SVD were 
made by mathematicians such as David Hilbert and Wilhelm 
Jordan. Hilbert studied the properties of integral equations and 
their associated matrices, which led to the formulation of what is 
now known as the singular value decomposition. 
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Further advancements in SVD came in the mid-20th century when 
several researchers independently worked on related problems. In 
1936, Hans Weyl introduced the concept of the generalized 
singular value decomposition, which extended the theory of SVD 
to arbitrary matrices. 
During the 1960s, Alan Turing and John W. Wilkinson made 
significant contributions to the practical implementation of SVD 
algorithms. They developed efficient numerical algorithms for 
computing the SVD of matrices, paving the way for its 
widespread use in scientific and engineering applications. 
Since then, SVD has become a powerful tool in various fields, 
including image and signal processing, data compression, 
recommendation systems, and latent semantic analysis. Its ability 
to decompose a matrix into its constituent components provides 
valuable insights into the underlying structure of the data. 
Today, SVD is an integral part of many numerical libraries and 
software packages, making it readily available for researchers, 
engineers, and data scientists. It continues to be an active area of 
research, with ongoing developments and refinements to improve 
its computational efficiency and extend its applications. 
. 
 
. 
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1.2 Mathematical Formulation 

 
1.2.1 Matrix Representation 

To understand SVD we need to first understand the Eigenvalue 
Decomposition of a matrix. We can think of a matrix A as a 
transformation that acts on a vector x by multiplication to produce a new 
vector Ax. We use [A]ij or aij to denote the element of matrix A at row i 
and column j. If A is an m×p matrix and B is a p×n matrix, the matrix 
product C=AB (which is an m×n matrix) is defined as: 

[c]ij = cij = Ʃk=1 αikbkj 
For example, the rotation matrix in a 2-d space can be defined as: 

 
A =  

This matrix rotates a vector about the origin by the angle θ (with 
counterclockwise rotation for a positive θ). Another example is the 
stretching matrix B in a 2-d space which is defined as: 

B =  
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This matrix stretches a vector along the x-axis by a constant factor k but 
does not affect it in the y-direction. Similarly, we can have a stretching 
matrix in y-direction: 

c =  

 
As an example, if we have a vector 

x =  
then y=Ax is the vector which results after rotation of x by θ, and Bx is a 
vector which is the result of stretching x in the x-direction by a constant 
factor k. 

Here the rotation matrix is calculated for θ=30⁰ and in the 
stretching matrix k=3. Y is the transformed vector of x. 

 By Python 
 

 
 
 
 
 
 

Figure 1 
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Now we are going to try a different transformation matrix. Suppose 
that 
 

A =  
However, we don’t apply it to just one vector. Initially, we have a circle 
that contains all the vectors that are one unit away from the origin. These 
vectors have the general form of 

 x =  where  x2i +y2i = 1 
Now we calculate t=Ax. So t is the set of all the vectors in x which have 
been transformed by A.  
 
Figure 2 shows the plots of x and t and the effect of transformation 
on two sample vectors x1 and x2 in x. 
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             figure 2 
 

The initial vectors (x) on the left side form a circle as mentioned before, 
but the transformation matrix somehow changes this circle and turns it 
into an ellipse. 
The sample vectors x1 and x2 in the circle are transformed into t1 and t2 
respectively. So: 

t1 = Ax1 t2 = Ax2 

 
1.2.2 Eigenvalues and Eigenvectors 
   
      A vector is a quantity which has both magnitude and direction. The 
general effect of matrix A on the vectors in x is a combination of rotation 
and stretching. For example, it changes both the direction and magnitude 
of the vector x1 to give the transformed vector t1. However, for vector x2 
only the magnitude changes after transformation. In fact, x2 and t2 have 
the same direction. Matrix A only stretches x2 in the same direction and 
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gives the vector t2 which has a bigger magnitude. The only way to 
change the magnitude of a vector without changing its direction is by 
multiplying it with a scalar. So if we have a vector u, and λ is a scalar 
quantity then λu has the same direction and a different magnitude. So for 
a vector like x2 in figure 2, the effect of multiplying by A is like 
multiplying it with a scalar quantity like λ. 

t2 = Ax2 =λx2 
This is not true for all the vectors in x. In fact, for each matrix A, only 
some of the vectors have this property. These special vectors are called 
the eigenvectors of A and their corresponding scalar quantity λ is called 
an eigenvalue of A for that eigenvector. So the eigenvector of an n×n 
matrix A is defined as a nonzero vector u such that: 

Au = λu 
where λ is a scalar and is called the eigenvalue of A, and u is the 
eigenvector corresponding to λ. In addition, if you have any other vectors 
in the form of au where a is a scalar, then by placing it in the previous 
equation we get: 

A(au) =aAu = a λu = λ(au) 
which means that any vector which has the same direction as the 
eigenvector u (or the opposite direction if a is negative) is also an 
eigenvector with the same corresponding eigenvalue. 
 
For example, the eigenvalues of 

B =  
are λ1=-1 and λ2=-2 and their corresponding eigenvectors are: 
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u1 =      u2 =  
and we have: 
 

Bu1 = λ1u1  Bu2 = λ2u2 
 

This means that when we apply matrix B to all the possible vectors, it 
does not change the direction of these two vectors (or any vectors which 
have the same or opposite direction) and only stretches them. So for the 
eigenvectors, the matrix multiplication turns into a simple scalar 
multiplication.  
 
1.2.3 Transpose 
 
The transpose of the column vector u (which is shown by u superscript T) 
is the row vector of u (in this article sometimes I show it as uT). The 
transpose of an m×n matrix A is an n×m matrix whose columns are 
formed from the corresponding rows of A. For example if we have 
 

C  
then the transpose of C is: 

cT =  
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So the transpose of a row vector becomes a column vector 
with the same elements and vice versa. In fact, the element in 
the i-th row and j-th column of the transposed matrix is equal 
to the element in the j-th row and i-th column of the original 
matrix. So 

[AT]ij = [A]ji 
The transpose has some important properties. First, the transpose of the 
transpose of A is A. So: 

(AT) = A 
In addition, the transpose of a product is the product of the transposes in 

the reverse order. 
(AB)T = BT AT 

To prove it remember the matrix multiplication definition: 
 

[AB]ij = Ʃk=1 aikbkj 
and based on the definition of matrix transpose, the left side is: 

[(AB)T]ij =[AB]ji = Ʃ k=1 ajkbki 
and the right side is 
[BTAT]ij = Ʃk=1[BT]ik[AT]jk = Ʃk=1[B]ki[A]kj = Ʃk=1ajkbki 
so both sides of the equation are equal. 
 
1.2.4 Dot product 
The dot product v • w of two vectors and the length || v|| = √ .  
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1.2.5 Partitioned matrix 
 
When calculating the transpose of a matrix, it is usually useful to show it 
as a partitioned matrix. 
1.2.6 A Basis for a Vector Space 
A basis for a vector space is a sequence of vectors with two properties 
The basis vectors are linearly independent and they span the space. 
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Chapter Two 
Singular Value Decomposition (SVD) 

2.1 SVD 
 
 Let A be an m×n matrix and rank A = r. So the number of non-zero 
singular values of A is r. Since they are positive and labeled in decreasing 
order, we can write them as 

σ1 ≥ σ2 ≥ … σn 
v1     v2  …vn 

where 
σr+1= σr+2  = σn=0 

 
We know that each singular value σi is the square root of the λi 
(eigenvalue of ATA), and corresponds to an eigenvector vi with the same 
order. Now we can write the singular value decomposition of A as: 

A = UƩVT 
where V is an n×n matrix that its columns are vi. So: 

V = [V1 V2  … vn] 
We call a set of orthogonal and normalized vectors an orthonormal set. 
So the set {vi} is an orthonormal set. A matrix whose columns are an 
orthonormal set is called an orthogonal matrix, and V is an orthogonal 
matrix. 
Σ is an m×n diagonal matrix of the form: 
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So we first make an r × r diagonal matrix with diagonal entries of σ1, σ2, 
…, σr. Then we pad it with zero to make it an m × n matrix. 
We also know that the set {Av1, Av2, …, Avr} is an orthogonal basis for 
Col A, and σi = ||Avi||. So we can normalize the Avi vectors by dividing 
them by their length: 

ui =  
|| || =  

|| || 1<i<r 
Now we have a set {u1, u2, …, ur} which is an orthonormal basis for Ax 
which is r dimensional. We know that A is an m × n matrix, and the rank 
of A can be m at most (when all the columns of A are linearly 
independent). Since we need an m×m matrix for U, we add (m-r) vectors 
to the set of ui to make it a normalized basis for an mdimensional space 
Rm (There are several methods that can be used for this purpose. For 
example we can use the Gram-Schmidt Process. However, explaining it 
is beyond the scope of this article). So now we have an orthonormal basis 
{u1, u2, … ,um}. These vectors will be the columns of U which is an 
orthogonal m×m matrix 

U = [u1 u2 … um] 
So in the end, we can decompose A as 
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We know that σi is a scalar; ui is an m-dimensional column vector, and vi 
is an n- ndimensional column vector. So each σiui viT is an m×n matrix, 
and the SVD equation decomposes the matrix A into r matrices with the 
same shape (m×n). 
First, let me show why this equation is valid. If we multiply both sides of 
the SVD equation by x we get: 

Ax = σu1vT1x + σ2u1vT2x + … + σrurvTrx 
We know that the set {u1, u2, …, ur} is an orthonormal basis for Ax. So 
the vector Ax can be written as a linear combination of them. 

Ax = a1u1 + a2u2 … arur 
and since ui vectors are orthogonal, each term ai is equal to the dot 
product of Ax and ui (scalar projection of Ax onto ui): 
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So each ai = σivTi x is the scalar projection of Ax onto ui, and if it is 
multiplied by ui, the result is a vector which is the orthogonal projection 
of Ax onto ui. The singular value σi scales the length of this vector along 
ui. Remember that in the eigendecomposition equation, each ui uTi was a 
projection matrix that would give the orthogonal projection of x onto ui. 
Here σivi ^T can be thought as a projection matrix that takes x, but 
projects Ax onto ui. Since it projects all the vectors on ui, its rank is 1. 
Figure 3 summarizes all the steps required for SVD. We start by picking a 
random 2-d vector x1 from all the vectors that have a length of 1 in x 
(Figure 3–1). Then we try to calculate Ax1 using the SVD method. 
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Figure 3 
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2.2 Computation Methods 
 
2.2.1 Direct Methods Algorithm 
 
The direct method for computing the SVD involves the following steps: 

1. Compute the eigenvalues and eigenvectors of the matrix ATA. 
2. Sort the eigenvalues in descending order and arrange the 

corresponding eigenvectors accordingly. 
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3. Form the singular values by taking the square root of the 
eigenvalues (after sorting) from step 2. 

4. Normalize the eigenvectors obtained in step 2 to obtain the 
columns of the matrix U. 

Compute the matrix V by using the formula V = A^TUΣ^(-1). 
It's important to note that the direct method for SVD can be 
computationally expensive for large matrices since it involves computing 
the eigenvalues and eigenvectors. In practice, iterative methods such as 
the Golub-Reinsch algorithm (also known as the bidiagonalization 
method) or the Lanczos algorithm are often preferred for efficient 
computation of the SVD. 
2.2.2 Iterative Methods. 
 
The iterative method of singular value decomposition (SVD) is an 
algorithmic approach to compute the SVD of a matrix by iteratively 
improving an initial estimate of the solution. The iterative method for 
SVD is typically faster and more memory-efficient than the direct 
method, especially for large matrices. 
One commonly used iterative method for SVD is the Golub-Reinsch 
algorithm, also known as the bidiagonalization method. The basic idea of 
this algorithm is to transform the input matrix A into bidiagonal form, 
which is a matrix with non-zero entries only on the diagonal and one 
subdiagonal (or superdiagonal), using a sequence of orthogonal 
transformations. The bidiagonal matrix is then reduced to a diagonal 
matrix through a sequence of Givens rotations, which are plane rotations 
that eliminate off-diagonal elements. The singular values of the input 
matrix can be obtained from the diagonal elements of the resulting 
diagonal matrix. 
The basic steps of the Golub-Reinsch algorithm are as follows: 

1. Compute the matrix ATA and its eigendecomposition ATA = 
VΛVT. 

2. Choose an initial orthogonal matrix Q and set B = QTA. 
3. Repeat the following steps until convergence:  
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Other iterative methods for SVD include the Lanczos algorithm, which is 
a variant of the power iteration method, and the implicitly restarted 
Arnoldi method, which is a variant of the Arnoldi iteration. These 
methods are typically more efficient than the Golub-Reinsch algorithm 
for large sparse matrices, but may be less stable or accurate for matrices 
with small singular values. 
 
2.2.3 Numerical Stability 
To enhance the numerical stability of SVD, it is advisable to preprocess 
the input data by scaling or normalizing it appropriately. This can help 
mitigate ill-conditioning and minimize the impact of round-off errors 
during the computation of the SVD. 
 
Overall, while iterative methods for SVD offer better numerical stability 
compared to the direct method, it's always a good practice to be aware of 
the properties of the input matrix, its condition number, and the potential 
effects of numerical errors to ensure accurate and reliable results. 
 
 

 
2.3 Properties of SVD 

 
2.3.1  Uniqueness and Existence 
 
Uniqueness and existence of svd 
The existence and uniqueness of singular value decomposition (SVD) are 
fundamental properties of this matrix factorization. 
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Existence: For any real or complex matrix A with dimensions m×n, an 
SVD always exists. This means that every matrix can be decomposed into 
the product of three matrices: U, Σ, and V^T, as follows: 
A = UΣV^T 
In this factorization, U is an m×m orthogonal matrix, Σ is an m×n 
diagonal matrix with non-negative real numbers on the diagonal (the 
singular values), and V^T is the transpose of an n×n orthogonal matrix V. 
The singular values are typically arranged in non-increasing order along 
the diagonal of Σ. 
Uniqueness: The uniqueness of the SVD lies in the orthogonality 
properties of the matrices U and V. While the singular values in Σ may 
differ, the singular vectors in U and V are uniquely determined up to a 
sign. This means that although there may be multiple valid SVDs for a 
given matrix, the singular vectors remain the same, apart from a possible 
sign change. 
To be precise, if (U, Σ, V^T) and (U', Σ', V'^T) are two SVDs of the same 
matrix A, then U and U' are both orthogonal, V and V' are both 
orthogonal, and Σ and Σ' have the same dimensions. Additionally, the 
corresponding singular values in Σ and Σ' are the same, except for a 
possible rearrangement in order. 
It's worth noting that for matrices with repeated singular values, the 
singular vectors associated with those singular values may not be unique. 
In such cases, there may be multiple valid SVDs that differ in the choice 
of singular vectors corresponding to the repeated singular values. 
Overall, while the singular values and their ordering may differ, the 
existence of SVD ensures that every matrix can be decomposed in the 
form A = UΣV^T, and the uniqueness property guarantees that the 
singular vectors, up to a sign, remain the same across different valid 
SVDs of the same matrix. 
 
 
2.3.2 The orthogonality property 
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The orthogonality property of the SVD arises from the properties of the 
matrices U and V. 
The matrix U is unitary, which means that UTU=I, where I is the identity 
matrix. This property implies that the columns of U form an orthonormal 
set, meaning that they are orthogonal to each other and have unit length. 
The matrix V is also unitary, VTV=I. Similarly to U, the columns of V are 
orthogonal to each other and have unit length. 
The orthogonality of the columns in U and V is crucial in the SVD 
because it allows for the representation of the original matrix A as a 
product of three matrices. These orthogonal matrices U and V enable the 
transformation of the original matrix A into a diagonal matrix ΣΣ. The 
columns of U and V define new coordinate systems in which the original 
matrix A can be decomposed into a scaling transformation represented by 
ΣΣ. 
In summary, the singular value decomposition provides an orthogonal 
decomposition of a matrix by expressing it as a product of three matrices: 
a matrix of left singular vectors (U), a diagonal matrix of singular values 
(ΣΣ), and a matrix of right singular vectors (V). The orthogonality of U 
and V ensures that the SVD retains the linear independence and 
orthogonality properties of the original matrix A. 
 
 
 

Chapter Three 
Applications of svd 

 
3.1 Dimensionality reduction 
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We can store an image in a matrix. Every image consists of a set of 
pixels which are the building blocks of that image. Each pixel represents 
the color or the intensity of light in a specific location in the image. In a 
grayscale image with PNG format, each pixel has a value between 0 and 
1, where zero corresponds to black and 1 corresponds to white. So a 
grayscale image with m×n pixels can be stored in an m×n matrix   
3.2 Eigenfaces 

  Eigenfaces is a method that is useful for face recognition and 
detection by determining the variance of faces in a collection of face 
images and use those variances to encode and decode a face in a machine 
learning way without the full information reducing computation and 
space complexity. 

3.3 Reducing noise 

SVD can be used to reduce the noise in the images.  
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