
Republic of Iraq
Ministry of Higher Education
and Scientific Research
University of Babylon
College of Education For Pure Sciences
Department of Mathematics

A graduation project submitted to the Department of mathematics, in
partial fulfillment for the requirements for the award of the degree of

Bachelor of Mathematics

HUSSEIN ALAA HAMZAH

SUPERVISED BY
DR. LAMIS HAMMOUD

2023

I

 الرحيم الرحمن ا بسم
))َلَقدا ونآتَي وداود انملَيسا ولْمقَالَا ۖ◌ عو دمْالح لَّهي لا الَّذلَىٰ فضََّلَنع يركَث ّنم هادبع

يننمؤ١٥(ةالنمل اي))الْم(

 العظيم العلي ا صدق

II

DEDICATION

To my parents and to our family who made this accomplishment possible.

III

ACKNOWLEDGEMENT

Praise be to ALLAH who enabled us to complete
this work under his benediction.

Cordial thanks and deepest gratitude to our
supervisor (DR.Lamis Hammoud) for being assistance
and for the continuous encouragement and suggestions
from him which helped us to successfully complete this
project.

In addition, we would like to express my thanks to
the head of the Mathematics Department (Dr. Azal Musa
Jafar) for his continuous support and encouragement.
We would like to express our thanks to our
University for their encouragements and anyone helped

us.
Finally, sincere gratitude and appreciation and love
to our families for their encouragements and supports
and for all things they have given us.

IV

ABSTRACT
Singular Value Decomposition (SVD) is a powerful matrix factorization
technique that finds its applications in various domains such as linear
algebra, signal processing, image compression, recommender systems,
and data analysis. This comprehensive overview aims to provide a
detailed understanding of SVD, including its mathematical formulation,
computation methods, properties, and applications. Additionally, it
discusses related concepts and variations of SVD, and explores the
significance of SVD in modern data-driven technologies.

V

LIST OF FIGURES
Figure (1.1) rotation matrix 3

Figure (1.2)
the plots of x and t and the effect of

transformation on two sample vectors x1 and
x2 in x.

4

Figure (2.1) 3 summarizes all the steps required for SVD

VI

DEDICATION ||
ACKNOWLEDGEMENT |||
ABSTRACT |V
LIST OF FIGURES V

Chapter One 1
1-1 INTRODUCTION 2
1-2 Mathematical Formulation 4
1-2-1Matrix Represention 4
1-2-2 Eigenvalu and Eigenvector 7
1-2-3 Transpose 9
1-2-4 Dot Product 9
1-2-5 Paritioned Matrix 11
1-2-6 A basis for a vector space 11
Chapter Two 12
2-1 SVD 17
2-2 Computation Methods 17
2-2-1 Direct Methods Algorithm 17
2-2-2 Iterative Methods 18
2-2-3 Numerical Stability 19
2-3 Properties of SVD 19
Chapter Three 21
3-1 Dimensionality Reduced 21
3-2 Eigenfaces 22
References 23

.

VII

1

Chapter One
Singular Value Decomposition

2

1-1 Introduction
 Singular Value Decomposition (SVD) is a fundamental technique in
linear algebra and numerical analysis. It plays a crucial role in various
applications, including signal processing, image compression, data
analysis, and machine learning. The history of SVD can be traced back to
the early 19th century, with significant contributions from several
mathematicians and researchers.
The concept of SVD emerged from the study of matrices and their
properties. In the early 1800s, mathematicians were exploring the
properties of quadratic forms and seeking ways to diagonalize
them. Carl Friedrich Gauss made notable advancements in this
field, and his work laid the foundation for later developments in
matrix factorization techniques.
The modern formulation of SVD was introduced by Eugenio
Beltrami in the late 19th century. Beltrami proposed a method for
decomposing a matrix into three components: two orthogonal
matrices and a diagonal matrix. However, the term "Singular
Value Decomposition" was not explicitly used until much later.
In the early 20th century, significant contributions to SVD were
made by mathematicians such as David Hilbert and Wilhelm
Jordan. Hilbert studied the properties of integral equations and
their associated matrices, which led to the formulation of what is
now known as the singular value decomposition.

3

Further advancements in SVD came in the mid-20th century when
several researchers independently worked on related problems. In
1936, Hans Weyl introduced the concept of the generalized
singular value decomposition, which extended the theory of SVD
to arbitrary matrices.
During the 1960s, Alan Turing and John W. Wilkinson made
significant contributions to the practical implementation of SVD
algorithms. They developed efficient numerical algorithms for
computing the SVD of matrices, paving the way for its
widespread use in scientific and engineering applications.
Since then, SVD has become a powerful tool in various fields,
including image and signal processing, data compression,
recommendation systems, and latent semantic analysis. Its ability
to decompose a matrix into its constituent components provides
valuable insights into the underlying structure of the data.
Today, SVD is an integral part of many numerical libraries and
software packages, making it readily available for researchers,
engineers, and data scientists. It continues to be an active area of
research, with ongoing developments and refinements to improve
its computational efficiency and extend its applications.
.

.

4

1.2 Mathematical Formulation

1.2.1 Matrix Representation

To understand SVD we need to first understand the Eigenvalue
Decomposition of a matrix. We can think of a matrix A as a
transformation that acts on a vector x by multiplication to produce a new
vector Ax. We use [A]ij or aij to denote the element of matrix A at row i
and column j. If A is an m×p matrix and B is a p×n matrix, the matrix
product C=AB (which is an m×n matrix) is defined as:

[c]ij = cij = Ʃk=1 αikbkj
For example, the rotation matrix in a 2-d space can be defined as:

A =

This matrix rotates a vector about the origin by the angle θ (with
counterclockwise rotation for a positive θ). Another example is the
stretching matrix B in a 2-d space which is defined as:

B =

5

This matrix stretches a vector along the x-axis by a constant factor k but
does not affect it in the y-direction. Similarly, we can have a stretching
matrix in y-direction:

c =

As an example, if we have a vector

x =
then y=Ax is the vector which results after rotation of x by θ, and Bx is a
vector which is the result of stretching x in the x-direction by a constant
factor k.

Here the rotation matrix is calculated for θ=30⁰ and in the
stretching matrix k=3. Y is the transformed vector of x.

 By Python

Figure 1

6

Now we are going to try a different transformation matrix. Suppose
that

A =
However, we don’t apply it to just one vector. Initially, we have a circle
that contains all the vectors that are one unit away from the origin. These
vectors have the general form of

 x = where x2i +y2i = 1
Now we calculate t=Ax. So t is the set of all the vectors in x which have
been transformed by A.

Figure 2 shows the plots of x and t and the effect of transformation
on two sample vectors x1 and x2 in x.

7

 figure 2

The initial vectors (x) on the left side form a circle as mentioned before,
but the transformation matrix somehow changes this circle and turns it
into an ellipse.
The sample vectors x1 and x2 in the circle are transformed into t1 and t2
respectively. So:

t1 = Ax1 t2 = Ax2

1.2.2 Eigenvalues and Eigenvectors

 A vector is a quantity which has both magnitude and direction. The
general effect of matrix A on the vectors in x is a combination of rotation
and stretching. For example, it changes both the direction and magnitude
of the vector x1 to give the transformed vector t1. However, for vector x2
only the magnitude changes after transformation. In fact, x2 and t2 have
the same direction. Matrix A only stretches x2 in the same direction and

8

gives the vector t2 which has a bigger magnitude. The only way to
change the magnitude of a vector without changing its direction is by
multiplying it with a scalar. So if we have a vector u, and λ is a scalar
quantity then λu has the same direction and a different magnitude. So for
a vector like x2 in figure 2, the effect of multiplying by A is like
multiplying it with a scalar quantity like λ.

t2 = Ax2 =λx2
This is not true for all the vectors in x. In fact, for each matrix A, only
some of the vectors have this property. These special vectors are called
the eigenvectors of A and their corresponding scalar quantity λ is called
an eigenvalue of A for that eigenvector. So the eigenvector of an n×n
matrix A is defined as a nonzero vector u such that:

Au = λu
where λ is a scalar and is called the eigenvalue of A, and u is the
eigenvector corresponding to λ. In addition, if you have any other vectors
in the form of au where a is a scalar, then by placing it in the previous
equation we get:

A(au) =aAu = a λu = λ(au)
which means that any vector which has the same direction as the
eigenvector u (or the opposite direction if a is negative) is also an
eigenvector with the same corresponding eigenvalue.

For example, the eigenvalues of

B =
are λ1=-1 and λ2=-2 and their corresponding eigenvectors are:

9

u1 = u2 =
and we have:

Bu1 = λ1u1 Bu2 = λ2u2

This means that when we apply matrix B to all the possible vectors, it
does not change the direction of these two vectors (or any vectors which
have the same or opposite direction) and only stretches them. So for the
eigenvectors, the matrix multiplication turns into a simple scalar
multiplication.

1.2.3 Transpose

The transpose of the column vector u (which is shown by u superscript T)
is the row vector of u (in this article sometimes I show it as uT). The
transpose of an m×n matrix A is an n×m matrix whose columns are
formed from the corresponding rows of A. For example if we have

C
then the transpose of C is:

cT =

10

So the transpose of a row vector becomes a column vector
with the same elements and vice versa. In fact, the element in
the i-th row and j-th column of the transposed matrix is equal
to the element in the j-th row and i-th column of the original
matrix. So

[AT]ij = [A]ji
The transpose has some important properties. First, the transpose of the
transpose of A is A. So:

(AT) = A
In addition, the transpose of a product is the product of the transposes in

the reverse order.
(AB)T = BT AT

To prove it remember the matrix multiplication definition:

[AB]ij = Ʃk=1 aikbkj
and based on the definition of matrix transpose, the left side is:

[(AB)T]ij =[AB]ji = Ʃ k=1 ajkbki
and the right side is
[BTAT]ij = Ʃk=1[BT]ik[AT]jk = Ʃk=1[B]ki[A]kj = Ʃk=1ajkbki
so both sides of the equation are equal.

1.2.4 Dot product
The dot product v • w of two vectors and the length || v|| = √ .

11

1.2.5 Partitioned matrix

When calculating the transpose of a matrix, it is usually useful to show it
as a partitioned matrix.
1.2.6 A Basis for a Vector Space
A basis for a vector space is a sequence of vectors with two properties
The basis vectors are linearly independent and they span the space.

12

Chapter Two
Singular Value Decomposition (SVD)

2.1 SVD

 Let A be an m×n matrix and rank A = r. So the number of non-zero
singular values of A is r. Since they are positive and labeled in decreasing
order, we can write them as

σ1 ≥ σ2 ≥ … σn
v1 v2 …vn

where
σr+1= σr+2 = σn=0

We know that each singular value σi is the square root of the λi
(eigenvalue of ATA), and corresponds to an eigenvector vi with the same
order. Now we can write the singular value decomposition of A as:

A = UƩVT
where V is an n×n matrix that its columns are vi. So:

V = [V1 V2 … vn]
We call a set of orthogonal and normalized vectors an orthonormal set.
So the set {vi} is an orthonormal set. A matrix whose columns are an
orthonormal set is called an orthogonal matrix, and V is an orthogonal
matrix.
Σ is an m×n diagonal matrix of the form:

13

So we first make an r × r diagonal matrix with diagonal entries of σ1, σ2,
…, σr. Then we pad it with zero to make it an m × n matrix.
We also know that the set {Av1, Av2, …, Avr} is an orthogonal basis for
Col A, and σi = ||Avi||. So we can normalize the Avi vectors by dividing
them by their length:

ui =
|| || =

|| || 1<i<r
Now we have a set {u1, u2, …, ur} which is an orthonormal basis for Ax
which is r dimensional. We know that A is an m × n matrix, and the rank
of A can be m at most (when all the columns of A are linearly
independent). Since we need an m×m matrix for U, we add (m-r) vectors
to the set of ui to make it a normalized basis for an mdimensional space
Rm (There are several methods that can be used for this purpose. For
example we can use the Gram-Schmidt Process. However, explaining it
is beyond the scope of this article). So now we have an orthonormal basis
{u1, u2, … ,um}. These vectors will be the columns of U which is an
orthogonal m×m matrix

U = [u1 u2 … um]
So in the end, we can decompose A as

14

We know that σi is a scalar; ui is an m-dimensional column vector, and vi
is an n- ndimensional column vector. So each σiui viT is an m×n matrix,
and the SVD equation decomposes the matrix A into r matrices with the
same shape (m×n).
First, let me show why this equation is valid. If we multiply both sides of
the SVD equation by x we get:

Ax = σu1vT1x + σ2u1vT2x + … + σrurvTrx
We know that the set {u1, u2, …, ur} is an orthonormal basis for Ax. So
the vector Ax can be written as a linear combination of them.

Ax = a1u1 + a2u2 … arur
and since ui vectors are orthogonal, each term ai is equal to the dot
product of Ax and ui (scalar projection of Ax onto ui):

15

So each ai = σivTi x is the scalar projection of Ax onto ui, and if it is
multiplied by ui, the result is a vector which is the orthogonal projection
of Ax onto ui. The singular value σi scales the length of this vector along
ui. Remember that in the eigendecomposition equation, each ui uTi was a
projection matrix that would give the orthogonal projection of x onto ui.
Here σivi ^T can be thought as a projection matrix that takes x, but
projects Ax onto ui. Since it projects all the vectors on ui, its rank is 1.
Figure 3 summarizes all the steps required for SVD. We start by picking a
random 2-d vector x1 from all the vectors that have a length of 1 in x
(Figure 3–1). Then we try to calculate Ax1 using the SVD method.

16

Figure 3

17

2.2 Computation Methods

2.2.1 Direct Methods Algorithm

The direct method for computing the SVD involves the following steps:

1. Compute the eigenvalues and eigenvectors of the matrix ATA.
2. Sort the eigenvalues in descending order and arrange the

corresponding eigenvectors accordingly.

18

3. Form the singular values by taking the square root of the
eigenvalues (after sorting) from step 2.

4. Normalize the eigenvectors obtained in step 2 to obtain the
columns of the matrix U.

Compute the matrix V by using the formula V = A^TUΣ^(-1).
It's important to note that the direct method for SVD can be
computationally expensive for large matrices since it involves computing
the eigenvalues and eigenvectors. In practice, iterative methods such as
the Golub-Reinsch algorithm (also known as the bidiagonalization
method) or the Lanczos algorithm are often preferred for efficient
computation of the SVD.
2.2.2 Iterative Methods.

The iterative method of singular value decomposition (SVD) is an
algorithmic approach to compute the SVD of a matrix by iteratively
improving an initial estimate of the solution. The iterative method for
SVD is typically faster and more memory-efficient than the direct
method, especially for large matrices.
One commonly used iterative method for SVD is the Golub-Reinsch
algorithm, also known as the bidiagonalization method. The basic idea of
this algorithm is to transform the input matrix A into bidiagonal form,
which is a matrix with non-zero entries only on the diagonal and one
subdiagonal (or superdiagonal), using a sequence of orthogonal
transformations. The bidiagonal matrix is then reduced to a diagonal
matrix through a sequence of Givens rotations, which are plane rotations
that eliminate off-diagonal elements. The singular values of the input
matrix can be obtained from the diagonal elements of the resulting
diagonal matrix.
The basic steps of the Golub-Reinsch algorithm are as follows:

1. Compute the matrix ATA and its eigendecomposition ATA =
VΛVT.

2. Choose an initial orthogonal matrix Q and set B = QTA.
3. Repeat the following steps until convergence:

19

Other iterative methods for SVD include the Lanczos algorithm, which is
a variant of the power iteration method, and the implicitly restarted
Arnoldi method, which is a variant of the Arnoldi iteration. These
methods are typically more efficient than the Golub-Reinsch algorithm
for large sparse matrices, but may be less stable or accurate for matrices
with small singular values.

2.2.3 Numerical Stability
To enhance the numerical stability of SVD, it is advisable to preprocess
the input data by scaling or normalizing it appropriately. This can help
mitigate ill-conditioning and minimize the impact of round-off errors
during the computation of the SVD.

Overall, while iterative methods for SVD offer better numerical stability
compared to the direct method, it's always a good practice to be aware of
the properties of the input matrix, its condition number, and the potential
effects of numerical errors to ensure accurate and reliable results.

2.3 Properties of SVD

2.3.1 Uniqueness and Existence

Uniqueness and existence of svd
The existence and uniqueness of singular value decomposition (SVD) are
fundamental properties of this matrix factorization.

20

Existence: For any real or complex matrix A with dimensions m×n, an
SVD always exists. This means that every matrix can be decomposed into
the product of three matrices: U, Σ, and V^T, as follows:
A = UΣV^T
In this factorization, U is an m×m orthogonal matrix, Σ is an m×n
diagonal matrix with non-negative real numbers on the diagonal (the
singular values), and V^T is the transpose of an n×n orthogonal matrix V.
The singular values are typically arranged in non-increasing order along
the diagonal of Σ.
Uniqueness: The uniqueness of the SVD lies in the orthogonality
properties of the matrices U and V. While the singular values in Σ may
differ, the singular vectors in U and V are uniquely determined up to a
sign. This means that although there may be multiple valid SVDs for a
given matrix, the singular vectors remain the same, apart from a possible
sign change.
To be precise, if (U, Σ, V^T) and (U', Σ', V'^T) are two SVDs of the same
matrix A, then U and U' are both orthogonal, V and V' are both
orthogonal, and Σ and Σ' have the same dimensions. Additionally, the
corresponding singular values in Σ and Σ' are the same, except for a
possible rearrangement in order.
It's worth noting that for matrices with repeated singular values, the
singular vectors associated with those singular values may not be unique.
In such cases, there may be multiple valid SVDs that differ in the choice
of singular vectors corresponding to the repeated singular values.
Overall, while the singular values and their ordering may differ, the
existence of SVD ensures that every matrix can be decomposed in the
form A = UΣV^T, and the uniqueness property guarantees that the
singular vectors, up to a sign, remain the same across different valid
SVDs of the same matrix.

2.3.2 The orthogonality property

21

The orthogonality property of the SVD arises from the properties of the
matrices U and V.
The matrix U is unitary, which means that UTU=I, where I is the identity
matrix. This property implies that the columns of U form an orthonormal
set, meaning that they are orthogonal to each other and have unit length.
The matrix V is also unitary, VTV=I. Similarly to U, the columns of V are
orthogonal to each other and have unit length.
The orthogonality of the columns in U and V is crucial in the SVD
because it allows for the representation of the original matrix A as a
product of three matrices. These orthogonal matrices U and V enable the
transformation of the original matrix A into a diagonal matrix ΣΣ. The
columns of U and V define new coordinate systems in which the original
matrix A can be decomposed into a scaling transformation represented by
ΣΣ.
In summary, the singular value decomposition provides an orthogonal
decomposition of a matrix by expressing it as a product of three matrices:
a matrix of left singular vectors (U), a diagonal matrix of singular values
(ΣΣ), and a matrix of right singular vectors (V). The orthogonality of U
and V ensures that the SVD retains the linear independence and
orthogonality properties of the original matrix A.

Chapter Three
Applications of svd

3.1 Dimensionality reduction

22

We can store an image in a matrix. Every image consists of a set of
pixels which are the building blocks of that image. Each pixel represents
the color or the intensity of light in a specific location in the image. In a
grayscale image with PNG format, each pixel has a value between 0 and
1, where zero corresponds to black and 1 corresponds to white. So a
grayscale image with m×n pixels can be stored in an m×n matrix
3.2 Eigenfaces

 Eigenfaces is a method that is useful for face recognition and
detection by determining the variance of faces in a collection of face
images and use those variances to encode and decode a face in a machine
learning way without the full information reducing computation and
space complexity.

3.3 Reducing noise

SVD can be used to reduce the noise in the images.

23

References:

[1]GILBERT STRANG, (2009), INTRODUCTION TO LINEAR
ALGEBRA, WELLESLEY - CAMBRIDGE PRESS
[2] Stewart, G. W. (1998). Matrix algorithms, volume II:
Eigensystems. SIAM.
[3] Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra.
SIAM.
[4] Van Loan, C. F. (2000). Computational frameworks for the fast
Fourier transform. Society for Industrial and Applied
Mathematics
[5] Golub, G. H., & Van Loan, C. F. (2012). Matrix computations.
JHU Press.
[6] Brand, M. (2006). Fast low-rank modifications of the thin singular
value decomposition. Linear algebra and its applications, 415(1), 20-
30.
[7] Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding
structure with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM review, 53(2), 217-288

