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Abstract :

Stiff differential equations refer to a type of ordinary differential
equations where the solution exhibits widely varying time scales. These
equations often arise in systems with reactions or processes
characterized by significantly different rates. Stiffness poses challenges
for numerical solvers as it requires small step sizes to capture the fast
and slow dynamics accurately. Specialized methods, such as implicit
schemes or stiff solvers like Gear's method, are employed to efficiently
solve stiff ODEs. Understanding and effectively handling stiff
differential equations are crucial in various fields, including chemical

kinetics, biological systems, and physical simulations
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1- Introduction

In common engineering applications such as fast equilibrium reactions,
catalysis, adsorption and evaporation the solution of systems of stiff
ordinary differential equations is of key importance. In an attempt to
solve such systems of equations encountered in CFD applications

a standalone software module, Stiff ODE Suite, was developed and
coupled to the commercial CFD code FLUENT v12.1, Ansys inc. The
functionality of the hybrid software package was validated for usage in
common engineering applications.

The Stiff ODE Suite software package is based on an adaptive time step
maximum fifth order Backwards Differential Formulation. Said
algorithm introduces a validated and versatile stiff and non-stiff ODE
solver potentially outperforming MATLABs ODE15s. Functioning as a
standalone module the Stiff ODE Suite is however best applied in a
hybrid scheme with FLUENT v12.1 or other compatible CFD codes.
Such hybrid couplings vastly increase the applicability of otherwise
limited CFD codes.

The Stiff ODE Suite was used to with satisfactory accuracy predict
solution pH in neutralization of hydrochloric acid using a sodium
carbonate solution. The water auto proteolysis is an extremely fast
equilibrium reaction posing a significant challenge to any

chemical reaction engineering solver. The Stiff ODE Suite also enabled
the simulation of rapid humidification of dry heated air using a water
droplet jet in a pipe segment.

In this simulation the Stiff ODE Suite proved capable of coupling fast
mass and heat transfer between phases in multiphase applications.

By introduction of the Stiff ODE Suite the CFD engineer is able to use
much larger time steps in transient simulations than the time scale of the
stiff system of ODEs governing the solution.
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In addition the software module largely extends the applicability of
FLUENT v12.1 since the user is no longer limited to what can be
described using the graphical user inter phase

2- Stiff ODE Suite mathematical formulation

The system of equations solvable in the Stiff ODE Suite framework is
presented on a general form in equation.

y=~£fyt), yty)=Y, yGF\SN

However not restricted to autonomous problem formulations the Stiff
ODE Suite gains additional numerical precision by assuming time
independency resulting in the code itself being optimized according to
equation. Note the differences in the formulation of the derivatives. As
most conceivable real physical systems are autonomous this limitation
results in numerical gains with no obvious drawbacks.
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In order to solve the system of equations in equation 2.50 a general
algorithm is needed. The Stiff ODE Solver is based on a variable order
Backwards Differential Formulation (BDF) similar to the algorithm used
in ODE15s in MATLAB. Equation 2.51 outlines the BDF formulation.
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For stiff systems of equations, which essentially is why Stiff ODE Suite
was constructed to begin with, K=¢ 1 and 0 2 K =. q denotes the order
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of the BDF formulation and varies between 1 and 5 depending on
system characteristics. In each time step the non linear system of
equations

G(yn) Ya— hnﬂn_cf(tn'yn )_an
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In solving this system of equations the Stiff ODE Suite uses a Newton
iteration scheme outlined.

M(Yn(ma-la = Y nim) )+ G(.yn(m:)= 0

The algorithm itself, originally proposed by Bill Gear, is advanced and
regarded as one of the

most versatile solution strategies to stiff systems of ordinary differential
equations available.

The solution methodology is to initially decompose the integration time
[0,T] into non equidistant time steps shown in equation. On each time
step equation inserted into essentially forms an independently solvable
predictor equation shown in.
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Using the approximate solution p

n y at time 7 ¢ as an initial guess in iterating equation
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results in the real intermediate solution z y at time n ¢ . With both
solutions available a local truncated error can be constructed and
compared to a predefined user specified value. In the case of too large an
error the algorithm will as a first measure if possible increase the order
of the BDF formulation. Secondly it will decrease the internal time step
and the solution procedure is repeated. The interested reader is referred
to the thorough work of Stabrowski for a full description of the BDF
based algorithm.

Summing up the algorithm the Stiff ODE Suite supplies a versatile
solution strategy via automatically adapted time steps, an economical
solution methodology via problem specific BDF order and a most
importantly reliable performance comparable with or better than
ODEIl5s.

It should be noted that considerable effort has been put into validating
the functionality of the standalone solver as introduced by the Stiff ODE
Suite. No discrepancies in the algorithm or code have yet been found.

[4]

1. General Formulation: The system of ODEs is represented as:

dy/dt = (y, t), y(0) = y0

where y is a vector of dependent variables, t is the independent variable
(time), f 1s the vector-valued function representing the right-hand side of
the ODEs, and y0 is the initial condition vector.

2. Time Independency Assumption: To improve numerical precision,
the Stiff ODE Suite assumes time independency, resulting in the
code optimization. This assumption does not restrict the suite to
autonomous problems.




3. Backwards Differential Formulation (BDF): The Stiff ODE Solver
uses a variable order BDF algorithm, similar to MATLAB's
ODEI15s. The BDF formulation is given by:

> [ai yn + hi f(yn)] = yn+1

where ai and hi are coefficients, yn and yn+1 represent the solutions at
time tn and tn+1, respectively, and f(yn) is the evaluation of the
derivative function at yn.

4. Nonlinear System of Equations: In each time step, a nonlinear
system of equations is constructed and solved using a Newton
iteration scheme. The system of equations is given by:

Z [’Yl (Yﬂﬂ -yn - hi f(yn—}—l))] =

where vi are coefficients and f(yn+1) is the evaluation of the derivative
function at yn+1.

5. Newton Iteration Scheme: The Newton iteration scheme is used to
solve the nonlinear system of equations and obtain the solution
yn+1. It involves computing the Jacobian matrix J and performing
iterations until convergence.

. Predictor Equation: For each time step, a predictor equation is
formed using the BDF formulation, which can be solved
independently to obtain an initial guess for the solution at tn+1.

. Error Control: After obtaining both the predictor solution and the
actual solution, a local truncated error is calculated and compared
to a predefined user-specified value. If the error is too large, the
algorithm may increase the BDF order or decrease the internal time
step to improve accuracy.

Applications The Stiff ODE Suite aims to provide a versatile and
efficient solution strategy for stiff systems of ODEs by adapting time
steps, selecting problem-specific BDF orders, and ensuring reliable
performance comparable to or better than MATLAB's ODE135s solver.
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For a more detailed description of the BDF-based algorithm, you can
refer to the work of Stabrowski, as mentioned in the excerpt.

Further details are given in section 5.1.

With the time step or the lack thereof determined the actual theory
behind the FLUENT - Stiff ODE Suite coupling can be outlined.
Theoretically a control volume in the computational domain can be

regarded as a small semi-continuous batch reactor governed by equation
2.60.

'ﬂ%dV+¥-p@?-dA=qSF¢Vo-dA+ [S,dV (2. 60)
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Additional information on the terms in the equation outlined above is to
be found in section 2.2. In this case the term of interest is the source

term F S as it describes generation and decay of a species @ due to
chemical reactions or any other physical event.

The proposed method behind the Stiff ODE Suite is both versatile and
stable and uses the large benefits of linearizing the source term on the
time step at hand. In figure 2.1 an arbitrary system reaching equilibrium
on a very small time scale is illustrated.
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Figure 2.1 Characteristic behavior of a rapidly equilibrated system

As seen in figure 2.1 the equilibrium is reached on a scale of nano
seconds. Without using the Stiff ODE Suite this means that FLUENT
needs to progress with a time step of equivalent size in order to resolve
the extremely rapid change occurring on this time scale. In addition

experience shows that even at a time step of this magnitude the solution
will tend to be unstable. Using the Stiff ODE Suite makes it possible to
resolve the source term S® and the simulation can hence progress with a
time step determined by the flow instead of the fast reactions in the
system. Characteristically the flow time step is in the vicinity of 1ms
rather than 1ns giving a hint of the computational benefits of using the
Stiff ODE Suite.




Example 1:

A kinetics problem: The following kinetics problem, given by
Robertson, is frequently used as an illustrative example. It involves the
following three nonlinear rate equations:

J'i - _-04}'1 + 104}'3}'3

yh =04y, -10%y,y; -3.107 y3

3 =3.107y3

The initial values at f = 0 are

0= »0)=y;0)=0

Since Xy =0 the solution must satisfy Xy =1

dentically. This identity can be used as an error check

Here we intend to solve this problem with the BDF method and use the
chord of iteration method with the user-supplied Jacobian (MITER=1).
J=¢&f /6y Suppose a local error bound of EPS = 107, and control
absolute error IERROR=1). We choose an initial step size
of HO=10". The use of MITER=1 requires that the Jacobian be
calculated and programmed. This is given by




The final value of t is 40. So we consider taking output at £ =4 x 10",

where k=-1,0, 1, 2, .... These will be the values of the argument
TOUT.

The following coding, together with the EPISODE package, can be used
to solve this problems with the options described above.




The output of the above program in tabular form is as follows

Table 2 : MF=21, EPS=10"°

i §

H

Y,

Y,

Y3

SUM(Y)-

0.4E+00

0.4E+01

0.4E+02

0.4E+03

0.4E+04

0.4E+05

0.4E+07

0.4E+10

0.16E+00

0.56E+00

0.23E+01

0.20E+02

0.24E+03

0.33E+04

0.38E+06

0.12E+10

0.98517E+00

0.90552E+00

0.71582E+00

0.45051E+00

0.18320E+00

0.38986E-01

0.50319E-03

0.54561E-06

0.33864E-04

0.22405E-04

0.91851E-05

0.89423E-06

0.16219E-06

0.20660E-08

0.37316E-11

0.14794E-01

0.94462E-01

0.28417E+00

0.54949E+00

0.81680E+00

0.96101E+00

0.99948E+00

0.10000E+01

-0.4E-15

-0.5E-15

We see that the equilibrium values are

yl=y2=0,y3=1

and that the approach

to equilibrium is quite slow. Here we note that the time step, H, rises
steadily with time,

T. We also observe that the code generated negative and thus physically
incorrect answers

during the last decade. This reflects instability, or a high sensitivity of
the problem to

numerical errors at late t, and will, if the integration is continued, lead to

ansSwers

diverging

to+x .




The accuracy of the above result can be verified in the usual way by

Re running the program with a smaller value of EPS=10" and nothing
else changed, the output in the tabular form is as follows

Table 3 : MF=21, EPS=10"*

T

H

Y:

Y2

Y:

SUM(Y)-

0.4E+00

0.4E+01

0.4E+02

0.4E+03

0.4E+04

0.4E+05

0.4E+07

0.4E+10

0.34E-01

0.14E+00

0.13E+01

0.82E+01

0.76E+02

0.88E+03

0.20E+06

0.67E+09

0.985172E+00

0.905519E+00

0.715827E+00

0.450519E+00

0.183202E+00

0.389834E-01

0.516813E-03

0.522363E-06

0.338641E-04

0.224048E-04

0.918552E-05

0.322290E-05

0.894237E-06

0.162177E-06

0.206835E-08

0.208942E-11

0.147940E-01

0.944589E-01

0.284164E+00

0.549478E+00

0.816797E+00

0.961016E+00

0.999483E+00

0.999999E+00

0.2E-15

0.5E-15

0.6E-15

0.8E-15

0.1E-14

0.9E-15

0.1E-14

0.1E-14

y3 EPS=10°

/ - The graph of the approximated solution of Example 1 (by using log scale)




Now we consider another example of stiff system of differential
equations which can be solved analytically.

Example 2: The system of initial-value problems

. | g 4
uy =9uy + 241~ +5cost ——smt, u, (0) =—
1 1 2 3 1 3

; 2 ) 1 . 2
us =—24uy —Sluy — 95 cosr+;sm f, u, (0) = -

has the unique solution

uy(t) =2e™" - e 3!

uy () =—e " + 3¢ 3N

The transient term ™" in the solution causes this system to be stiff.

The results, obtained by EPISODE are summarized in the following
table.




[.\'.“l"lr-'e'llf' :;

Approximated  Approximated Exact value Exact value

value of u, (f) of 2, (%) of u, ()

value of 2, (7)

0.666666666 0.666666666

1.79306146

1.42390205

1.13157624

0.90940824

0.73878794

0.49986115

0.27968063

-1.03200020

-0.87468033

-0.72499799

-0.60821345

-0.51565752

-0.37740429

-0.22989065

1.79306300

1.42390200

1.13157700

0.90940860

0.73878780

0.49986030

0.27967490

-1.03200200

-0.87468100

-0.72499860

-0.60821420

-0.51565770

-0.37740380

-0.22988780

(@) : The graph of the solutions for u;




3- Stiff differential equations have applications in various scientific
and engineering fields. Some common areas where stiff ODEs arise and
are studied include:

1. Chemical Kinetics: Stiff ODEs are frequently encountered in
modeling chemical reaction networks, where different reactions
occur at significantly different rates.

. Biological Systems: Stiff ODEs are used to model biochemical
networks and gene regulatory networks, where multiple reactions
or interactions occur simultaneously with different time scales.

. Physical Simulations: Stiff ODEs are relevant in simulating
physical systems, such as fluid dynamics, combustion processes,
and plasma physics, where the dynamics involve a wide range of
time scales.

. Circuit Simulation: Stiff ODEs are encountered in electrical circuit
simulations involving components with widely varying time
constants, such as capacitors, inductors, and transistors.

. Astrophysics and Cosmology: Stiff ODEs arise in modeling
complex systems like stellar evolution, galaxy formation, and the
early universe, where different physical processes occur with
different time scales.

. Control Systems: Stiff ODEs are used in the modeling and analysis
of control systems, where different components or subsystems
exhibit dynamics with varying time scales.

. Pharmacokinetics: Stiff ODEs are employed in pharmacokinetic
modeling, which involves studying the absorption, distribution,
metabolism, and excretion of drugs in the body. These processes
often occur at different rates and require stiff ODE models for
accurate simulations.




8. Environmental Modeling: Stiff ODEs find applications in
environmental modeling, such as atmospheric chemistry models,
climate models, and pollutant transport models. These systems
involve complex interactions with varying time scales.

. Power Systems: Stiff ODEs are relevant in power system analysis,
particularly in transient stability studies, where the dynamics of
generators, transmission lines, and loads exhibit different time
scales.

10. Population Dynamics: Stiff ODEs are used in studying
population dynamics, such as predator-prey models or
epidemiological models, where the rates of birth, death, and
interactions between species or individuals occur at different rates.
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