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1-INTrOduCTION 
Two point boundary value problems for ordinary 

differential equations arise in many branches of sciences 
and engineering. The existence of the solutions of the two 
point boundary value problems, either associated with 
system of linear or nonlinear ordinary differential equations 
and boundary conditions are specified at two points of the 
domain, depends on the domain considered for the 
solution of the problems. In most case it is impossible to 
obtain solutions of these problems using analytical 
methods which satisfy the given specified boundary 
conditions. In these cases we resort to approximate 
solutions and the last few decades have seen substantial 
progress in the development of approximate solutions of 
these problems. 

In the literature, there are many different methods and 
approaches such as method of integration and 
discretization which be used to derive the approximate 
solutions in the domain of these problems [1,2,3,4]. 
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In this article we proposed a method for the numerical 
solution of the boundary value problems of the form 

y′′(x) = f(x,y,y′), a < x < b, (1) 
 
 
subject to the boundary conditions 

y(a) = α and y(b) = β, 
where α and β are real constants and f is continuous on (x, 
y, y′) for all x ∈ [a,b] y,y′ ∈ ℜ. 
 
2-ThE ExpONENTIal dIffErENCE METhOd 

We defined N +1 finite numbers of nodal points of the 
domain [a,b], in which the solution of the problem (1) is 
desired, 
 as xi = a + ih, i = 0,1,2,........,N using uniform step length 
where. ℎ =  = =   = . Suppose we wish to 
determine numerical approximation  of the theoretical 
solution y(x) of the problem (1) at the nodal point xi, i = 
1,2,.....,N − 1 and denote as yi. Let fi denotes the 
approximation of the theoretical value of the source 
function f(x,y(x),y′(x)) at node x = xi, i = 0,1,2,.....,N . We 
can define other notations fi±1, yi±1, in the similar way 
used in this article. To develop the exponential difference 
method for the numerical solution of the problem (1), we 
need the following definitions: 

′ =    ,  (2) 
′ =   , (3) 

′ =   ,(4) 
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Define 
fi+1 = f(xi+1, yi+1, y'i+1),(5) 
fi -1 = f(xi -1, yi-1, y'i-1),(6) 
y'i = yi + ch(fi+1 – fi-1),(7) 
y'i = yi + dh(fi+1 – fi-1),(8) 
fi = f(xi, yi, y'i),(9) 

 
and 

fi = f(xi, yi, y'i).(10) 
We note that c and d from equations (7) and (8) 

respectively, are finite parameters to be determined. We 
proposed the exponential difference method for solving 
problem (1) numerically as, 
yi+1 – 2yi+yi-1= h2 fi exp ( ") ,fi ≠ 0,i = 1, 2,….. N (11). 
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3-dErIvaTION Of ThE METhOd 
By the Taylor series expansion about node x = xi, 

from (3) we have: 
yi+1= ′ −  ( ) − ( ) +  (ℎ ).  (12) 

Let us define  ± = ± , so from (5)we have 
fi+1 = −  ( ( ) + ( )) +  (ℎ ). (13) 

Similarly from (4) and (6), we have 
fi-1 = −  ( ( ) − ( )) +  (ℎ ).  (14) 

By the Taylor series expansion of  ± about node x = xi 
and from (13) and (14), we have 
fi+1 − fi-1 = fi+1 − fi-1 + O(h4) 
On expanding (1) in Taylor series about x = xi, then 
substitute in (7) together with (15), we have 

y'i = y'i + h2(2c +    ) ( ) + O(h4)  (16) 
y'i will provide fourth order approximation for y′ if we 
choose parameter c in (16) such that 

2c +    = 0 
c = −     (17) 

Thus from (16) and (17) we have find , a fourth order 
approximation for yi′ i.e 

y'i = y'i + O(h4)   (18) 
 
So from (9) and (18), we have 

fi = fi + O(h4)   (19) 
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Let us define 
f"i =   (20) 

Using the approximations defined above, we can prove 
that fi+1 + fi−1 − 2fi will provide a fourth order approximation 
for fi+1 + fi−1 − 2fi if we choose parameter d=  in (8) i.e 

y'i = y'i −    h (fi+1 − fi-1)  (21) 
Thus 

 =  + O(h2)  (22) 
Finally, following the idea. for the source function f(x,y), 
from (11), we proposed our fourth order exponential 
difference method for solving problem (1) numerically as, 
yi+1 − 2yi-1 = h2 fi exp ( ), 
fi ≠ 0, I = 1,2,…..N – 1 
For each nodal point x = xi, i = 1,2,....,N − 1, we will obtain 
a system of nonlinear equations given by (23). 
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4-lOCal TruNCaTION ErrOr 
from equations (19),(20) and (22), by Taylor 
series expansion of f on each node x = xi ,we 
have 

ℎ "
12 =  + −  2  

12  
+ −  2  

12  

=  ℎ ( ) +  ℎ12 ( )
12 "  

From (23) and (24), the truncation error Ti at the 
nodal point x = xi may be written as [8,12,13], 

T= yi+1 − 2yi-1 − h2 fi exp ( ( ) ), 
By the Taylor series expansion of y at nodal point x = xi 
and second order expansion of exponential function, we 
have 

                (25) 
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5-ExpONENTIal fINITE dIffErENCE METhOd 
A numerical comparison with existing finite 
difference method of same order  is made and this 
comparison indicates the efficiency of the 
exponential finite difference method for model 
problems. Comparison of maximum absolute errors 
in solution in Table 1-4, show that the exponential 
finite difference method has less discretization error 
and is definitely better than the finite difference 
method . Table 5 shows the accuracy and efficiency 
of the exponential finite difference method for 
solving linear problem numerically. Note that for 
small N, method  yield good results except in model 
problems 2 and 4. However, as the N becomes 
larger, the exponential finite difference method 
shows less error than the method . It is an 
advantage of the exponential finite difference 
method over existing method . 
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6-NuMErICal rESulTS 
To illustrate our method and demonstrate its 
computationally efficiency, we consider some model 
problems. In each case, we took uniform step size 
h. In Table 1 - Table 5, we have shown the 
maximum absolute error (MAY), computed for 
different values of N and is defined as 

MAY = min |y(xj) – yj|. 
We have used Newton-Raphson iteration 

method to solve the system of nonlinear equations 
arised from equation (23). All computations were 
performed on a MS Window 2007 professional 
operating system in the GNU FORTRAN 
environment version 99 compiler (2.95 of gcc) on 
Intel Duo Core 2.20 Ghz PC. The solutions are 
computed on N-1 nodes and iteration is continued 
until either the maximum difference between two 
successive iterates is less than 10(−10) or the 
number of iteration reached 103. 
Problem 1.  

The first model problem is a nonlinear problem 
given by 

 
y"(x)= ( )  ( )  ,y(0) =0, y(1) =log   , x[0,1]. 
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The analytical solution is y(x)= log  .   . For 
comparison purpose, we computed the MAY . The 
MAY computed by both methods for different values 
of N are presented in Table 1. 
 
Problem2.  

 
The second model problem is a nonlinear 

problem 
y"(x) = y3-yy', y(1)=   , x[1,2]. 

The analytical solution is . For comparison purpose, 
we computed the MAY. The MAY computed by both 
methods for different values of N are presented in 
Table 2. 
 
 
 
 

Problem 3.  
The third model problem is a nonlinear problem 

given by 
y"(x) =   (y')2, y(0)=   

√ , x[0,1]. 
The analytical solution is y(x) =   

√ . For 
comparison purpose, we computed the MAY . 
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 The MAY computed by both methods for 
different values of N are presented in Table 3. 
 
Problem 4. 

 
The fourth model problem is a nonlinear 

problem given by 
y"(x) =    y'+ f(x),y(0)=0, y(1)= –3,  x[0,1]. 

where f(x) is calculated so that y(x)=1−(x2 + 1)2 is 
analytical solution. For comparison purpose, we 
also computed the MAY by the method in [17]. The 
MAY computed by both methods for different values 
of N are presented in Table 4. Problem 5. The fifth 
model problem is a general two points linear 
problem given by 

 
 
 

y"(x) =    ,y(0)=1, y(1)= exp(1),  x[0,1]. 
The analytical solution is y(x) = exp(x). Solving this 
model problem by method in [17], for each nodal point 
we obtained a system of linear equations. We applied 
Gauss-Seidel iterative for the solution of resulting system 
of linear equations. For comparison purpose, we 
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computed the MAY. The MAY computed by both methods 
for different values of N are presented in Table 5. 
 
Table1: Maximum absolute error in y(x)=log  .   for Problem 1. 
Method 

4                                 8                                16  
(23) 14916062 (-4)      86426735 (-6)      14901161(-7) 
[17] 94473362 (-5)      59604645 (-6)      59604645 (-7) 
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Table2: Maximum absolute error in y(x)=    for Problem 2. 
Method 

       4                           8                           16                       32      
(23) 19040373 (-5)     28049245 (-7)      19022758 (-7)   19022758 (-7) 
[17] 26351214 (-4)     56655786 (-5)      62916013 (-6)   32939408 (-7) 

 
 
 

Table3: Maximum absolute error in y(x)=   
√  for Problem 3. 

Method 
       4                           8                           16                       32      

(23) 36334609(-5)     15810301(-6)      39880490(-7)      80773226(-7) 
[17] 21770765(-6)     74650984 (-7)     14037788(-6)      21254630(-7) 

 
 
 
 

Table4: Maximum absolute error in y(x)=1–(x2 + 1)2 for 
Problem 4. 

Method 
       4                           8                           16                       32      

(23) 96634030(-4)     57965517(-5)      25331974(-6)       93132257(-9) 
[17] 74594378(-0)     14065456 (-0)     14402390(-1)      10793209 (-7) 
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Table5: Maximum absolute error in y(x)=exp(x)  for Problem 5. 
Method 

4                                 8                                16  
(23) 14901161 (-4)      59604645 (-6)      11920929 (-6) 
[17] 12397766 (-4)      83446503 (-6)      23841858 (-6) 
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Example Consider the two-point BVP: 

Y"= −y+ ( ) , −1 < x < 1, 
Y(−1) = Y(1) = (e + e −1)−1 = 0.324027137. 

 
The true solution is Y(t) = (et + e−t)-1. We applied 
the preceding finite-difference procedure to the 
solution of this BVP. The results are given in Table 
6 for successive doublings of N = 2/h. The nonlinear 
system was solved using Newton's method, as 
described in The initial guess was 

(xi) = (e + e −1)−1, i = 0, 1,..., N, 
based on connecting the boundary values by a 
straight line. The quantity 

dh = max | ( ) −  ( )| 
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Table6: Maximum absolute error in y(x)=exp(x)  for Problem 5. 
N=2/h Eh Ratio 

4 2.63e – 2   
8 5.87e – 3  4.48 
16 1.43e – 3  14.11 
32 355e – 4  4.03 
64 8.86e – 5  4.01 

 
was satisfied, the iteration was terminated. In all 
cases, the number of iterates com- puted was 5 or 
6. For the error, let 

Eh= max | ( ) − ( )| 
with yn the solution of (11.37) obtained with 
Newton's method. According to (11.38) Уп and 
(11.39), we should expect the values Eh to 
decrease by a factor of approximately 4 when h is 
halved, and that is what we observe in the table. 
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