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1-INTRODUCTION

Two point boundary value problems for ordinary
differential equations arise in many branches of sciences
and engineering. The existence of the solutions of the two
point boundary value problems, either associated with
system of linear or nonlinear ordinary differential equations
and boundary conditions are specified at two points of the
domain, depends on the domain considered for the
solution of the problems. In most case it is impossible to
obtain solutions of these problems using analytical
methods which satisfy the given specified boundary
conditions. In these cases we resort to approximate
solutions and the last few decades have seen substantial
progress in the development of approximate solutions of
these problems.

In the literature, there are many different methods and
approaches such as method of integration and
discretization which be used to derive the approximate
solutions in the domain of these problems [1,2,3,4].



In this article we proposed a method for the numerical
solution of the boundary value problems of the form

y'(x) =f(x,y,y'),a<x<b, (1)

subject to the boundary conditions

y(@=a and y(b)=p,
where a and 8 are real constants and f is continuous on (X,
y, y') forall x € [a,b] y,y' € .

2-THE EXPONENTIAL DIFFERENCE METHOD

We defined N +1 finite numbers of nodal points of the
domain [a,b], in which the solution of the problem (1) is
desired,
as xi=a+ih i=012,..... ,N using uniform step length

where. h = b;}—a = x, = a and xy = b. Suppose we wish to

determine numerical approximation of the theoretical
solution y(x) of the problem (1) at the nodal point x;, i =
1,2,.....N — 1 and denote as y,. Let fi denotes the
approximation of the theoretical value of the source
function f(x,y(x),y'(x)) at node x = x;, i = 0,1,2,.....,N . We
can define other notations fx1, yx1, in the similar way
used in this article. To develop the exponential difference
method for the numerical solution of the problem (1), we
need the following definitions:

it1—yi_
y’i _ Yi 2h3’l 1, (2)
3Yit1—4Yit+ Vi
y’i+1 — 1+1 Zhl l 1, (3)

' _ Vit1—4Yit3yi1
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Define
fiv1 = (X1, Yir1, Y'is1),(5)
fi-1=1(Xi-1, Yi1, ¥'i1),(6)
Y'i=yi+ ch(fus —1i1),(7)
Y'i=yi+ dh(fis —f1),(8)
fi = (X, i ¥'),(9)

and

fi=1(x, y, y).(10)

We note that ¢ and d from equations (7) and (8)
respectively, are finite parameters to be determined. We
proposed the exponential difference method for solving
problem (1) numerically as,

PRy G2 0i=1 2. N (11
12fi),l7ﬁ J=1,2,..... N (11).

Yis1 = 2Y+yia= h frexp (



3-DERIVATION OF THE METHOD

By the Taylor series expansion about node x = x;,
from (3) we have:

, h? h3
Yir= Y11 — =y @ —=y* + 0 (). (12)

)
—f,) , So from (5)we have
0y /i1

Let us define G}y, = (
h? h3
far= fror — = 0P + =G + 0 (kY. (13)
Similarly from (4) and (6), we have
h? h3

fir= fior — = 0 =G + 0 (Y. (14)
By the Taylor series expansion of G}, ,about node x = xi
and from (13) and (14), we have
fies — Foq = fiug — g + O(RY)

On expanding (1) in Taylor series about x = xi, then
substitute in (7) together with (15), we have

yi=yi+h2c+—)y + o) (16)

y'i will provide fourth order approximation for y' if we
choose parameter c in (16) such that

2c++=0
6

_ 1
c=—— (17)

Thus from (16) and (17) we have find , a fourth order
approximation for yi'i.e

yi=yi+O(h') (18)

So from (9) and (18), we have
f.=f+ O(h") (19)
-8 -



Let us define

n_f' +f'—_2f'
fi - 1+1 hlz 1 l (20)

Using the approximations defined above, we can prove
that fi.1 + fi_y — 2f; will provide a fourth order approximation

for fiss + fi_4 — 2f; if we choose parameter d=_71 in (8)i.e

Vi=yi= o h (fer — fi) (21)
Thus

firatfi-1=2fi _ firatfi-1—2fi 2
+1 hzl - +1 hzl +O(h) (22)

Finally, following the idea. for the source function f(x,y),
from (11), we proposed our fourth order exponential
difference method for solving problem (1) numerically as,

i+1+fi—1—2fi)
12f; ’

Yir1 — 2yiq = h* f exp (f
0, 1=12...N—1

For each nodal point x = xi, i = 1,2,....,N — 1, we will obtain
a system of nonlinear equations given by (23).



4-LOCAL TRUNCATION ERROR

from equations (19),(20) and (22), by Taylor
series expansion of f on each node x = xi ,we
have
h2f"y  fisr t fiir — 2f;
12f, 12f;
fiv1 + fi-1 — 2f;
12f;

4 h* (6
ey ® 4 Iy

12y";
From (23) and (24), the truncation error Ti at the
nodal point x = xi may be written as [8,12,13],

2., o p.
T= Yins — 2yis — h? fr exp (2 1+2f;_1 20}

By the Taylor series expansion of y at nodal point x = xi
and second order expansion of exponential function, we
have

M, S . (29)

T,i:“‘

- 10 -



S-EXPONENTIAL FINITE DHFFERENCE METHOD

A numerical comparison with existing finite
difference method of same order is made and this
comparison indicates the efficiency of the
exponential finite difference method for model
problems. Comparison of maximum absolute errors
in solution in Table 1-4, show that the exponential
finite difference method has less discretization error
and is definitely better than the finite difference
method . Table 5 shows the accuracy and efficiency
of the exponential finite difference method for
solving linear problem numerically. Note that for
small N, method vyield good results except in model
problems 2 and 4. However, as the N becomes
larger, the exponential finite difference method
shows less error than the method . It is an
advantage of the exponential finite difference
method over existing method .

_11 -



6-NUMERICAL RESULTS

To illustrate our method and demonstrate its
computationally efficiency, we consider some model
problems. In each case, we took uniform step size
h. In Table 1 - Table 5, we have shown the
maximum absolute error (MAY), computed for
different values of N and is defined as

MAY = min;cj<n_1 |Y(X) — Y.

We have used Newton-Raphson iteration
method to solve the system of nonlinear equations
arised from equation (23). All computations were
performed on a MS Window 2007 professional
operating system in the GNU FORTRAN
environment version 99 compiler (2.95 of gcc) on
Intel Duo Core 2.20 Ghz PC. The solutions are
computed on N-1 nodes and iteration is continued
until either the maximum difference between two
successive iterates is less than 10(—10) or the
number of iteration reached 10°.

Problem 1.

The first model problem is a nonlinear problem
given by

V(%)= exp(2y)2+ O v0) =0, y(1) =log % xe/0,1].

-12 -



The analytical solution is y(x)= log % . For

comparison purpose, we computed the MAY . The
MAY computed by both methods for different values
of N are presented in Table 1.

Problem2.

The second model problem is a nonlinear
problem

y'(x) = y3-yy', y(1)= =, xe[1,2].

The analytical solution is . For comparison purpose,
we computed the MAY. The MAY computed by both
methods for different values of N are presented in

Table 2.

Problem 3.
The third model problem is a nonlinear problem
given by

y'(x) = ('), y(0)= 7, x<[0.1].

The analytical solution is y(x) = \/1% For

comparison purpose, we computed the MAY .
-13 -



The MAY computed by both methods for
different values of N are presented in Table 3.

Problem 4.

The fourth model problem is a nonlinear
problem given by

y'(x) = \/— y*+1(x).y(0)=0, y(1)=-3, x&[0,1].

where f(x) is calculated so that y(x)=1—(x2 + 1)? is
analytical solution. For comparison purpose, we
also computed the MAY by the method in [17]. The
MAY computed by both methods for different values
of N are presented in Table 4. Problem 5. The fifth
model problem s a general two points linear
problem given by

1

,Y(O) 1, y(1)= exp(1), x€[0,1].

The analytlcal solution is y(x) = exp(x). Solving this
model problem by method in [17], for each nodal point
we obtained a system of linear equations. We applied
Gauss-Seidel iterative for the solution of resulting system

of linear equations. For comparison purpose, we

- 14 -



computed the MAY. The MAY computed by both methods
for different values of N are presented in Table 5.

Tablel: Maximum absolute error in y(x)=log % for Problem 1.

Method MAY
N

4 8 16

(23) 114916062 (-4) 86426735 (-6) 14901161(-7)

[17] 194473362 (-5) 59604645 (-6) 59604645 (-7)

-15 -



1
Table2: Maximum absolute error in y(x)= Tox for Problem 2.

Method MAY
N

4 8 16 32

(23) | 19040373 (-5) 28049245 (-7) 19022758 (-7) 19022758 (-7)

[17] |26351214(-4) 56655786 (-5) 62916013 (-6) 32939408 (-7)

1

Table3: Maximum absolute error in y(x)= for Problem 3.

V1+x
Method MAY
N
4 8 16 32

(23) |36334609(-5) 15810301(-6)  39880490(-7)  80773226(-7)

[17] |21770765(-6) 74650984 (-7) 14037788(-6)  21254630(-7)

Table4: Maximum absolute error in y(x)=I1—(x" + 1)’ for

Problem 4.
Method MAY
N
4 8 16 32

(23) | 96634030(-4) 57965517(-5)  25331974(-6)  93132257(-9)

[17] | 74594378(-0) 14065456 (-0) 14402390(-1) 10793209 (-7)

-16 -




Table5: Maximum absolute error in y(x)=exp(x) for Problem 5.

Method MAY
N

4 8 16

(23) 14901161 (-4) 59604645 (-6) 11920929 (-6)

[17] 12397766 (-4) 83446503 (-6) 23841858 (-6)

_17 -



Example Consider the two-point BVP:

\2
Y'= —y+ 2(’;) , —1 <x<1,

Y(-1)=Y(1)=(e +e ') =0.324027137.

The true solution is Y(t) = (et + e !)-1. We applied
the preceding finite-difference procedure to the
solution of this BVP. The results are given in Table
6 for successive doublings of N = 2/h. The nonlinear
system was solved using Newton's method, as
described in The initial guess was

y(xi)=(e+e )7 i=01,.., N,
based on connecting the boundary values by a

straight line. The quantity

1
dh = maxy<j<y |yi(m+ ) — yi(m)|

- 18 -



Table6: Maximum absolute error in y(x)=exp(x) for Problem 5.

N=2/h E, Ratio
4 2.63e—2
8 5.87e—3 4.48
16 1.43e—-3 14.11
32 355¢e—4 4.03
64 8.86e -5 4.01

was safisfied, the iteration was terminated. In all
cases, the number of iterates com- puted was 5 or
6. For the error, let

Ep=maxg<i<y [y(xi) — yp (x|
with yn the solution of (11.37) obtained with
Newton's method. According to (11.38) Yn and
(11.39), we should expect the values Eh to
decrease by a factor of approximately 4 when h is
halved, and that is what we observe in the table.

-19 -
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