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Chapter one



Chebyshev polynomials

His courses were not voluminous, and he did not consider the quantity of
knowledge delivered; rather, he aspired to elucidate some of the most important aspects of
the problems he spoke on. These were lively, absorbing lectures; curious remarks on the
significance and importance of certain problems and scientific methods were always
abundant. A. M. Liapunov who attended Chebyshev’s courses in late 1870, the underlying
principles of the Chebyshev theory. The polynomials whose properties and applications will
be discussed were introduced more than a century ago by the Russian mathematician P. L.
Chebyshev (1821-1894). Chebyshev was the most eminent Russian mathematician of the
nineteenth century. He was the author of more than 80 publications, covering
approximation theory, probability theory, number theory, theory of mechanisms, as well as
many problems of analysis and practical mathematics. His interest in mechanisms (as a boy
he was fascinated by mechanical toys!) led him to the theory of the approximation of
functions. Their importance for numerical analysis was rediscovered around the middle of

the last century by C. Lanczos.



1.1 General properties

Let Py be the space of algebraic polynomials of depree at most N e M, N = 0,
and the weight function w : I = [=1,1] = B4 defined by

1

w(r):= —

5-
Let us introduce the fundamental space L2 (I) by
L2 (1) := {'u : I — R| v Lebesgue measurable and ||v|, , < Dc::'} ;

where the norm

1 1
Ioll, = | [w@Po@adr)
~1
is induced by the weighted scalar (inner) product
1
(,v), = f (@) v (@) w (@) dz | . (1.1)

~1
Definition 1 The polynomials T, (), n € N, defined by

T, (x) := cos (n arccos(z)), =€ [=1.1],

are called the Chebyshev polynomials of the first kind

Remark 2 [150] To establish a relationship between algebraic and trigonometric po



cos (nf) +isin(nf) = (cosf +isind)” =
= cc:s“ﬁ"—!—i(%) cos“‘lr:'-i'-sint?+£2(%)ms“‘zﬂ-sin23+... A

The terms on the right hand side involving even powers of sinf are real while those with odd powers

sinf are imaginary. Besides, we know that sin2m 6 = 1 — cos2 6 ¢m , m € N. Consequently, for an

Tn (cos 0) := cos (nb),

where Ty () := cos (n arccos (z)) = ab + oV x + ... + aVa™ is the Cheby-

shev’s polynomial of order (degree) n which is an algebraic polynomial of degree
n with real coefficients. Obviously,

To(z) = 1, Ti(z)==z, To(x)=22%-1, T3(z)=4a — 3z,
Ty(z) = 8z —=8z"+1,....

It follows that every even trigonometric polynomial
[ yp— aln . " Y
Qn(6) =5+ ; vy, cos (k8)

is transformed, with the aid of substitution 6 = arcos x, into the corresponding algebraic polynomial of

degree n
P, (x) == Q,, (arccos z) = % + Z oy, cos (k arccos (z)) .

k=1
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Figure 1.1: Some Chebyshev polynom

This substitution specifies in fact a homeomorphic, continuous and one-to-one mapping of the closed
interval [0, ] onto [—1, 1] . It is important that, conversely, the substitution, x = cos0, transforms an

arbitrary algebraic polynomial

Pplzx) =ap +mx+ asa® + ...+ anz™,
of degree n into an even trigonometric polynomial

Qu (6) = P (cos8) = 2 3 con (48),
k=1

where the coefficients ak depend on Pn. Indeed, we have

cos™ ﬁir + e_‘im 1 imE + m i{m—2)z + + —imE
Y L — —_— | =e—| e —_ e “aa = =
2 2m 1

1 T
= om (L‘OS e + (T) cos(m—2)xr+ ...+ cos [—m:.c)) .
Here we should take into account that cosm X is a real function and therefore the last term in this chain
of equalities is obtained from the preceding term by taking its real part. The imaginary part of cosm X is
automatically set to zero. Some Chebyshev polynomials are depicted in Fig. 1.1. Proposition 3

(Orthogonality) The polynomials Tn (x) are orthogonal, i.e.,



(Tr, Tm)y,, =

ba | =

Cnlnm, m,n € M,

Some other properties of Chebyshev polynomials are available, for instance, in the well known
monographs Atkinson [10] and Raltson and Rabinowitz [171]. In [171], p.301, the following theorem is

proved

Theorem 5 Of all polynomials of degree r with coefficient of xr equal to 1, the Chebyshev polynomial

of degree r multiplied by 1/2r—1 oscillates with minimum maximum amplitude on the interval [—1, 1] .

ue to this property the Chebyshev polynomials are sometimes called equalripple polynomials.
However, their importance in numerical analysis and in general, in scientific computation, is enormous and
it appears in fairly surprising domains. For instance, in the monograph [39] p.162, a procedure currently in
use for accelerating the convergence of an iterative method, making use of Chebyshev polynomials is

considered.
1.2. FOURIER AND CHEBYSHEV SERIES

Remark 6 Best approximation with Chebyshev polynomials V. N. Murty shows in his paper [147] that
there exists a unique best approximation of T1 (x) with respect to linear space spanned by polynomials of

odd degree > 3, which is also a best approximation of T1 (x) with respect to the linear space spanned by

{Ty (2)} 0,51 - =4k orn = 4k — 1, the exireme points of the deviation of

1 () from ils best approximation are 2k in number, whereas if n = 4k + 1 or
n =4k + 2, this number s 2k + 2.

In the next section we try to introduce the Chebyshev polynomials in a more natural way. We advocate
that the Fourier series is intimately connected with the Chebyshev series, and that some known

convergence properties of the former provide valuable results for the latter

AR
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2.1 Fourier and Chebyshev Series

rtant feature of Chebyshev series is that their convergence properties are not affected by the values of f
(x) or its derivatives at the boundaries x = £1 but only by the smoothness of f (x) and its derivatives

throughout —1 <x < 1. Gottlieb and Orszag, [90], P. 28

2.1.1 The trigonometric Fourier series

t is well known that the ’trigonometric polynomial’

N
1
pn(z) = a0 + Z (ax cos kx + b sin k), (1.6)
k=1

with

1 [ L/
ay = F[ [ (x) cos kadx, b, = ;/ [ (x)sin kxde,

can be thought of as a least square approximation to f (x) with respect to the unit weight function on
[—1, 1] (see Problem 6). The Fourier series, obtained by letting n — o in (1.6), is apparently most valuable

for the approximation of functions of period 2n. Indeed, for certain classes of such functions the series will

V'Y



converge for most values of x in the complete range —oo < x < +oo. However, unless f (x) and all its
derivatives have the same values at —m and =, there exists a "terminal discontinuity’ of some order at these
points. The rate of convergence of the Fourier series, that is the rate of decrease of its coefficients, depends
on the degree of smoothness of the function, measured by the order of the derivative which first becomes
discontinuous at any point in the closed interval [—x, «t]. Finally, we might be interested in a function
defined only in the range [0, ], being then at liberty to extend its definition to the remainder of the periodic
interval [—m, 0] in any way we please. It is worth noting that, integrating by parts in the expressions of ak
and bk over [0, t] we deduce that cosine series converge ultimately like k—2, and sine series like k—1,
unless f(x) has some special properties. If £ (0) = f (w)=0, we can show that sine series converges like k—3,

in general, the fastest possible rate for Fourier series.

2.2.2 The Chebyshev series

The terminal discontinuity of Fourier series of a non-periodic function can be avoided with the
Chebyshev form of Fourier series. We consider the range —1 < x < 1 and make use of the change of

variables
X =cos 0,
so that f (x) = f(cos 8) = g (0). (1.7)

The new function g (0) is even and genuinely periodic, since g (0) = g (0 + 2n). Moreover, if f (x) has a
large numbers of derivatives in [—1, 1], then g (0) has similar properties in [0, ] . We should then expect

the cosine Fourier series g

| g
g(0)= 50t Zuk('nsk({ i = — / q(0)coskbdd  (18)
!

- k=1 Tk

V¢



to converge fairly rapidly. Interpreting (1.8) in terms of original variable x, we produce the following

Chebyshev series

oo 1
[ () = a0ty axTi(e), ax = —— ] w (@) f (2) Tk (2) de, w () == (1= 2?) 72,
k=1 Tkl

(1.9)

This series has the same convergence properties as the Fourier series for f(x), with the advantage that
the terminal discontinuities are eliminated. Elementary computations show that, for sufficiently smooth
functions, the coefficients ak have the order of magnitude 1/2k—1 (k!), considerably smaller for large k than

the k—3 of the best Fourier series.

Remark 7 (Continuous least square approximation) The expansion
- " e —_ 2 1 e P “pr g
pnle) = D asTi(a), ax = o [ ©@ /@D @) i

has the property that the error en(x) := f (x) — pn(x) satisfies the *continuous’ least square condition
1
5= / w(z) e (z)dz = min.
Jo1

The minimum value is given by

1 T
Sin = [l:.u () fﬁ{:r:}ff;:: o %7;‘ (Z L‘kﬂ%) ]

k=0

As n — oo, we produce the Chebyshev series, which has the same convergence properties as the Fourier
series, but generally with a much faster rate of convergence.

Yo



2.2.3.Discrete least square approximation

We now move on to the discrete case of least square approximation in which the integrated mean
square error over I, from the classical least square approximation, is replaced by a sum over a finite number
of nodes, say x0, X1, ..., XN € I. The function f (x), f : I — R is approximated by a polynomial p (x) with

the error e (x) :=f (x) — p (x) and find the polynomial p(x) such that the sum
N
S = Zw (1) € (x3,)
k=0

attains its minimum with respect to the position of the nodes xk in [—1, 1] and for a specified class of

polynomials. We seek an expansion of the form

o'

p(a) =3 anw, (a).

=0

s yr (x) are, at this stage, arbitrary members of some particular system (should that consist of
polynomials, trigonometric functions, etc.). Conditions for a minimum are now expressed with respect to

the coefficients

ar,S=S (a0, al, ..., ar). They are
0S/0ai=0,1=0,1,2,..,N

and they produce a set of linear algebraic equations for these quantities. The matrix involved is

diagonal if the functions are chosen to satisfy the discrete orthogonality conditions

1



Z&}{.L_L::IU ), (xg) =0, v # 5.

The corresponding coefficients ar are then given by

N sl Yl (e .
o — Ek:t}[i... (.LF.,J (o [-LF.,J .Ilr (-LI.,J: P = {}* 1: 2:‘ ey _,ﬁ.lli"?

SN gw () wF ()

and the minimum value of S is

N N
mm z “LLJ { z EE E “‘[‘k}} .

k=0 E=0

2.2.4 Chebyshev discrete least square approximation

Let’s consider a particular case relevant for the Chebyshev theory. In the trigonometric identity

1 1 1 &
3 + cos @ + cos 20 + ... + cos(N — 1)8 + EL-GSNH =3 sin N8 cot > (1.10)

the right-hand side vanishes for 6 = kn/N, k € Z. Since
2 cos 10 cos s =cos (r+s) 0+ cos (r—s) 0, (1.11)

it follows that the set of linearly independent functions yr (0) = cos 10 satisfy the discrete orthogonality

conditions N

S o, (04) 6, (6) = 0, 7 # 5, 8 = km/N, (1.12)
k=0 °*

16
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where, throughout in this work, the coefficients ck are defined by

_ 9. k=0,N,
T L 1<k N -1

Further, we find from (1.10) and (1.11) that the normalization factors for these orthogonal functions are

N

1 5 N/2, k=0,N, ‘

Consequently, for the function g (0), 6 € [0, «], a trigonometric (Fourier) discrete least square

approximation, over equally spaced nodes
Ok =kn/N, k=0, 1,2, ..., N,
is given by the ’interpolation’ polynomia

-
- ke

2
g—ur«ﬁﬂs*fﬂ' iy = 2\1—_{; (9;) cos rig, O = F {1.14)

The corresponding Chebyshev discrete least square approximation follows immediately using (1.7). It

reads

N

pN(x)=Z% ) ZN_if{_% Ty (zx), zx = cos (%) (1.15)

r=>0 k=0

Let us observe that the nodes xk are not equally spaced in [—1, 1] . The nodes 0k =kn\N , k=1, 2, ...,

N-1,

are the turning points (extrema points) of TN (x) on [—1, 1] and they are called the Chebyshev points of

the second kind.

YA



Remark 8 For the expansion (1.15), the error eN (x) := f (X)—pN (x) satisfies the *discrete’ least

square condition

N

1
5= —e2 (21) = mi
ZE;M. ey () = min,
k=0
arid
N 1 N
S = 3 { o= o )]
=0 =0

2.2.5 Orthogonal polynomials least square approximation

We have to notice that, so far, we have not used the orthogonality properties of the Chebyshev
polynomials, with respect to scalar product (1.1). Similar particular results can be found using this
property. For the general properties of orthogonal polynomials we refer to the monographs [43] or [187].

Each and every set of such polynomials satisfies a three-term recurrence relation

qbr'-l—l {‘L) = {I’_l'.;-.l' + 3) g'-'}r [‘L) + Tr—1%r-1 {'L) ] (llﬁj
with the cocflicients
Ar-{-l Ar-bl Ar—l ki
or= Ar > Y1 T J4—:" Ar JEi""J"—ll

where A, is the coefficient of 2™ in ¢, (z), and

1

- = Lt H 2 MY o
b= [ 0@ @

Following Lanczos [126], we choose the normalization kr = 1, and write (1.16) in the for

14



pr—l'i)r—l {‘L) + {_'T + f?r) q&r {:‘L} + .'prgf"r-}-l (1) = {}1‘ [11'?)

with

A,
Ar-}-l

Pr= 1 = _.Brpr-

If we define p—1 (x) := 0 and choose the N + 1 nodes x1,1=0, 1, 2, ..., N so that

they are the zeros of the orthogonal

polynomial pN+1 (x), we see that they are also the eigenvalues of the tridiagonal matrix diag (pk—1 gk
pk). The eigenvector corresponding to the eigenvalue xk has the components @0 (xk), @1 (xk), ..., N (xk)
and from the theory of symmetric matrices we know that the set of these vectors forms an independent

orthonormal system. Each and every vector is normalized to be a unit vector, i.e

N
AL Zqﬁf (x) =1,

r=(

and the matrix

Af}izqf'ﬂ (0) Ai:’:zf;’-‘u (1) ... A};Z o ()

X = Aol (o) AY T (m1) ... AN T (zw)
e e S

N en (20) Moy (@) . Ay Té (ex)

is orthogonal. It means X -X0 = X0 - X = IN+1, which implies two more discrete conditions in addition

to the normalization one. i.e.,

Yo Md? (k) =1, 7 =0,1,2,.., N

' 1.18
3 rmo Mty (k) 6, (zx) =0, 7 # 5. (1.18)

It follows that a solution of the least square problem in this case, with weights o (xk) = Ak, and the

nodes taken as the



N + 1 zeros of @N+1 (x), is given by

N N
py () = a.6.(x), o =Y Acf (k) &, (xx) (1.19)
=0 k=0

For the Chebyshev case, using weight function w(x) = (1 - 3:2) =/

2
, we find

bo () =77 V2To (x), &, (&) = (37) " T(2), r=0,1,2,

-1 _ 2 N 1
}"k __FZT:[}E

T2(ax) = 230, L cos? 1y,

m'i"?jr'? k=10,1,2,

The trigonometric identity (1.10) leads to a very simple form of Ak, namely

A =7/ (N +1),
and finally to
N p
fLR '[:.L:I = Erzﬂ c-i,.brf"' {.L:l )
f.i],. = ﬁ E;::{'_I f{'LF:) Tr(:rk}? &Iy = COs 2hctl

: (1.20)
2htlz) £ =0,1,2,..,N.

Remark 9 For the expansion (1.20), the error eN (x) := f (x)—pN (x) satisfies the ’discrete’ least

N
5= E ﬁir (z;) = min,
k=0
and

N N
Smin = Z;} {F () = ZDQETE (1':;]} :

square

AR



It can be shown that the error eN (x) satisfies the following minmax criterion for sufficiently smooth

functions

mazx

en (x) ,:f_,I"(N'"l] (£)] = min, £ € (-1,1).

Remark 10 The least square approximation polynomial pN (x) from (1.20) must agree with the

Lagrangian interpolation polynomial

N
Py () = Zik (z) f (k)
=0

(see Appendix 1) which uses as nodes the Chebyshev points of the first kind xk = cos 3 2k+1 N+1 w2’
,k=0,1,2,.., N. These nodes are in fact the zeros of TN+1(x). Remark 11 In [71] it is shown that for

sufficiently well-behaved functions f (x) the approximation formula (1.20) is slightly better than (1.15).

2.2.6 Orthogonal polynomials and Gauss-type quadrature formulas

There exists an important connection between the weights Ak of the orthogonal polynomial discrete
least square approximation and the corresponding Gauss type quadrature formulas. First, we notice that

Lagrangian quadrature formula (see Appendix 1) reads

[ w@ @ =3 ms @, (1.21)
where L
oy = f_lw (z) I (z) de.
The polynomial
pr () = Zik(m)f(fﬂk}: (1.22)

AR



fits f (x) exactly in the N + 1 zeros of IT (x) and has degree N. The formula (1.21) is exact for

polynomials of degree N or less. A Gauss quadrature formula has the form
1 N
/ w(z) f(z)de = ZHLI (x), (1.23)
-1 k=0

where the weights vk and abscissae xk (quadrature nodes) are to be determined such that the formula

should be exact for polynomials of as high a degree as

possible. Since there are 2N + 2 parameters in the above formula, we should expect to be able to make
(1.23) exact for polynomials of degree < 2N + 1. To this end, we consider a system of polynomials @k (x),

k=0, 1, 2, ..., N which satisfy the ’continuous” orthogonality conditions

1
[- wlx) ¢, (x) ¢, (x)de =0, r # s. (1.24)

1

Suppose that f(x) is a polynomial of degree 2N + 1 and write it in the form

flx) = an (&) dppq (x) + 7w (), (1.25)

where the suffices indicate the degrees of the polynomial involved. Since gN (x) can be expressed as a

linear combination of orthogonal polynomials ¢k (x), k=0, 1, 2, ..., N, the orthogonality relations imply

fj W(:c)f(:::jd:r::/j w (@) ry () de,

1 1

which by (1.21) is exactly, i.e.,

1 N
[ wlx) f(x)de = Z#k"'w (zx),
J- k=0

1

Yy



for specified xk and corresponding pik. If we choose xk to be the zeros of N+1 (x), it follows from
(1.25) that we obtained formally the required Gauss be represented exactly, due to (1.19), in the form

quadrature formula (1.23) with vk = pk. Now rN (x), as a polynomial of degree N can

N
rv(z) = Z arh, (x) .
k=0

Consequently, we can write

1

1 1 N
f_ @)y (o) do = f ) (ng {w)) dz = agdy f (),

due to (1.24) with r = 0. Moreover, the general solution of the least square problem (1.19) and in

particular, the normalization condition, imply

1 N 1 N
aody f (@)= > XS (k) f (@) dodz = Acf (zx),

or, more explicitly

[ o@ @ =3 5 @)

1 k=0

It follows that the weights in Gauss quadrature formula (1.23), which is exact for polynomials of order
2N + 1, equal the weights Ak of the discrete least square solution (1.19), and the nodes xk are the zeros of

the relevant orthogonal polynomial oN+1 (x). If, in particular,

1

—-1/2
9o (z) := ()" Y3 Ty (z), &, (z):= (E’T) T, (z), r=1,2,..

we got the Gauss-Chebyshev quadrature formula, i.e.,

1 7 o 2% +1w ,
/-lw{iﬂ)f{i)diﬂ = N-l—l;f{xk)’ wk:cm(ﬁ—[—la)- (1.26)

Ye¢



2.2 Chebyshev projection

Let us introduce the map Py : L2 (1) = Py, I =[-1,1],

N

Pyu(z) =Y k- Tk (2 (1.27)
k=0

where the coefficients ubk, k =1, 2,...,N are defined in (1.5). Due to the orthogonality properties of
Chebyshev polynomials, PN u (x) represents the orthogonal projection of function u onto PN with respect

to scalar product (1.1). Consequently, we can write

(Pyu(z),viz)), = (u(z),v(z)),, YvePy. (1.28)

More than that, due to the completeness of the set of Chebyshev polynomials, the following limit holds:

|lw— Pryul, =0 as N — oco.

Remark 12 A ot of results concerning the general theory of approximation by polynomials are

available in Chapter 9 of [33]. We extract from this source only the results we strictly use.

The quantity u — PN u is called truncation error and for it we have the following estimate.

LLemma 13 For each and every u € Hs o(I), s € N, one has

lu— Pyull, = CN~*|lu]l,, . (1.29)

Remark 14 There exists a more general result which reads

Yo



o= Py, <€ ow ) N3 [u®]

k=0

for a function u that belongs to L2 (=1,1) along with its distributional deriva-
1, 1 <p< oo,

tives of order m and on (p) = 1 +log N, p= 1 and p= oo

Remark 15 Unfortunately, the approximation using the Chebyshev projection is optimal only with

respect to the scalar product (-, -)0,® . This statement is confirmed by the estimation

1
= Pvull, < CN2= )], ,, s 212 1,

in which a supplementary quantity j 1 — 1 2 ¢ appears in the power of N. To avoid this inconvenient

Canuto et al. [33] [1988, Ch. 9,11] introduced orthogonal projections with respect to other scalar products.

Remark 16 it (1.5) is the Chebyshev series for u (x), the same series for the derivative of u € H1

o(I), has the form

ol (z) = ia}ﬁ Ty (), (1.30)

Conseqguently,

Al



but in applications is sometimes used the derivative of the projection, namely (PN u) 0, which is called
the ‘Chebyshev-Galerkin derivative’ . We end this section with some ‘inverse inequalities’ concerning

summability and differentiability for algebraic polynomials.

LLemma 17 For each and every u € PN, we have

l_1
el g (1,2 S CNF 3) lllge—11y: LEP S g = o0,

S CON |ullgp(o1a), 2Ep <00, r2 L

1.31
”'”I:r}HLi[-l,lj = (1.31)

2.3 Chebyshev interpolation

We re-write the results from Fourier and Chebyshev Series Section in a more formal way. First, we
observe that the quadrature formulas represent a way to connect the space L2 o (—1, 1) with the space of
polynomials of a specified degree. For the sake of precision, the interpolation nodes will be furnished by

following Chebyshev-Gauss quadrature formula (rule

1 N
[1 fla)w(z)de = ZJI‘ (25) w;,
g prt

where the choices for the nodes xj and the weights ®j lead to rules which have different orders of

precision. The most frequently encountered rules are: 1. the Chebyshev-Gauss formula (CGauss)

—eos i T T g w = L i=0,1,2,...,N (132
3 2N + 1 ITN+1r 1T (132)

Yv



The quadrature nodes are the roots of the Chebyshev polynomial TN+1 and the formula is exact for

polynomials in P2N+1. 2. the Chebyshev-Gauss-Radau formula (CGaussR)

In this case, the order of precision is only 2N.

3. the Chebyshev-Gauss-Lobatto formula (CGaussL)

i N . P N
ri= cos% i=0,1,2,..., N and wj={ N ,jJ lflgﬂrmf jN "\1?
. R e R R - 1.
(1.34)

In this case, the order of precision diminishes to 2N — 1. Corresponding to each and every formula

above we introduce a discrete scalar (inner) product and a norm as follows:

N
(1, v) 5 == ij'u () v(xy;), (1.35)
3=0

b=

N
llu|l 5 == ijug () (1.36)
F=0

The next result is due to Quarteroni and Vali [169], Ch.5

LLemma 18 For the set of Chebyshev polynomials, there holds

YA



||1r':"~-'||w , for CGauss
\/iHTN”w , Jor CGaussL.

Tl = 1Tkl . k=0,1,2,..,N=1, [T, = {

Proof. The first two equalities are direct consequences of the order of precision of quadrature formulas.
For the third, we can write
N=1

1Tl = % (cos® 0 + cos® 7) +% Z coss jr =7 =2
] N 2

-2
|"!N||w‘

nomial of order (degree) N corresponding to one of the above three sets of nodes xKk. It has the form

N

Inu=Y uTx(z), (1.37)

k=0

where the coefficients are to be determined and are called the *degrees of freedom’ of u in the
transformed space ( called also “phase” space). For the ( CGaussL) choice of nodes, using the discrete

orthogonality and normality conditions (1.12), (1.13) we have

N -
- o Cg T :
(v, Ty )y = E tup (T, The )y = Ty Uk (1.38)

p=0

But interpolation means
L\r‘ﬂ. {:LJ.) =1 {.LJ} N j = ”, 1?2, pany N,

which implies

Inu,T)y = (0, Ta)y =S __’_'TNu[xjj cos 24T (1.39)

The identities (1.38) and (1.39) lead to the ’discrete Chebyshev transform’

2 1 kjm
wp = — Z-—-u[:ﬂj}cﬂs% k=0,1,2,..,N. (1.40)

- ro!
F=0 Lj -
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ormation, we can pass from the set of values of the function u in the nodes (CGaussL), the so-called
physical space, to the transformed space. The inverse transform reads
N

kim
o) = wijcos—, 1=10,1,2,..., V. 1.41
ul:‘;"_?j jgnuj Cos N s 3 Ly Ly ] [ ]

Due to their trigonometric structure, these two transformations can be carried out using FFT (fast
Fourier transform-see [33] Appendix B, or [40] and [41]). A direct consequence of the last lemma is the

equivalence of the norms k-kw

and |-|| - - Thus, in the (CGaussL) case, for u™¥ = Zf:n urdh we can write

N=1
2 e 12 2 e 12
o) = Zm 1Tkl = > ) 1TelZ + 2 (un) 1T )12
k=0
and
2 o 9 2
[N, = ()™ 1Tl -
=0

Consequently, we get the sequence of inequalitics

[l < Jl < V2|

-

For the Chebyshev interpolation, in each and every case, (CG), (CGR), (CGL), we have the following

result (see [33], Ch. 9 and [169] Ch. 4):

Lemma 19 Ifue H™ (=1,1), m > 1, then the following estimation holds

llu— Iull, < CN™ [l - (1.42)
and if 0 <1 < m, then a less sharp one holds, namely

= Il < CNZ=™ |, (1.43)
In L22(=1,1), we have the estimation

lw = INHHLSD < CN¥Tm llzll,y, . - (1.44)



2.3.1 Collocation derivative operator

r Associated with an interpolator is the concept of a collocation derivative (differentiation) operator
called also Chebyshev collocation derivative or even pseudo spectral derivative. The idea is summarized in
[184]. Suppose we know the value of a function at several points (nodes) and we want to approximate its
derivative at those points. One way to do this is to find the polynomial that passes through all of data
points, differentiate it analytically, and evaluate this derivative at the grid points. In other words, the
derivatives are approximated by exact differentiation of the interpolate. Since interpolation and
differentiation are linear operations, the process of obtaining approximations to the values of the derivative
of a function at a set of points can be expressed as a matrix-vector multiplication. The matrices involved

are called pseudo spectral differentiation (derivation) matrices or simply differentiation matrices.

Thus, if u := (u (x0) u (x1) ...u (XN ))T is the vector of function values, and u0 := (u0 (x0) u0 (x1) ...u0
(XN )T is the vector of approximate nodal derivatives, obtained by this idea, then there exists a matrix, say

D(1), such that

w = DWy, (1.45)

We will deduce the matrix D(1) and the next differentiation matrix D(2) defined by

w' = D@y, (1.46)

To get the idea we proceed in the simplest way following closely the paper of Solomonoff and Turkel

[183]. Thus, if

Ly (x) = Z'u, () I (2], (1.47)
k=0
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is the Lagrangian interpolation polynomial, we construct the first differentiation matrix D(1) by
analytically differentiating that. In particular, we shall explicitly construct D(1) by demanding that for

Lagrangian basis {Ik (x)}N k=0, Ik (x) € PN ,

DI (x5) =1 (25), 3.k =0,1,2,..., N,

1.0
[0
] .
'EF: [-f'ﬂ)
Dt ll:l =1 L l[uj
0 :
f;: ()
\ 0/

where 1 stands in the k th row. Performing the multiplication, we get

1
dSy) = 1), (25). (1.48)

fah

We have to evaluate explicitly the entries d (1) jk in terms of the nodes xk, k =0, 1, 2, ..., N. To this end,

we rewrite the Lagrangian polynomials Ik (x) in the form

1 -
I (z) = —I1 g (x — ), ay, = 11;"‘;

Ep—Ip).
Xk IEk n_{ )

iy

Taking, with a lot of care, the logarithm of Ik (x) and differentiating, we obtain

1/ (x — ). (1.49)

)=

e (z) = I ()

o

=
i7

This equality implies the diagonal elements

Yy



N

di) =571/ (g — ), k=1,2,..,N. (1.50)
=0

1k
In order to evaluate (1.49) at X = Xj , j 6= k we have to eliminate the 0/0 indetermination from the right

hand side of that. We therefore write (1.49) as

N

b () = le () [ (= 25) + e () D 1/ (2 =) -
=0
I#k3

Since Ik (xj ) = 0 for j 6= k, we obtain that

: I ()
I {z:) = lim ———.
F"l: j] T—+Tj [:1{:—1'_.]'}

Using the definition of Ik (x), we get the off-diagonal elements, i.e.,

vy 1 N
i = —I1_n (1 — o) = ——auuou,
i = iz (@ =) = TS

e (1.51)

It is sometimes preferable to express the entries of D(1), (1.50) and (1.51), in a different way. Let’s

denote by @N+1 (x) the product IIN 1=0 (x — xI). Then we have successively

N N
‘?5:"-.'4-1 (x) = Ek:ﬂ u:w:u (& — ),
1=k

qﬁ;‘f—%l (”:k:]_\f 479
i’j{f-u () = 204 3 i=0 l,f (r —xp),

1=k

and eventually we can write

Yy



o j _ r1J"f'-.r+1'|r.msi - .
Lfl:l} _ ap(rj—ry) _ ¢:v+1{zk.:'{‘1’j'3k,"’ g ?é k
ik = N 1 _ dpa(z)

28 Gw—an) — 20, (=)

(1.52)

j=k

Similarly, for the second derivative we write

Dy () =1 (25}, 5,k =0,1,2, ..., N,
and conscquently

(M) [40) _ _1 s
{23 Zdjk [djj - T; -Ik:| : ?é L‘:
Kk [y e e

(1.53)

Remark 20 in [206], a simple method for computing n x n pseudodifferential matrix of order p in O j

pn2 ¢ operations for the case of quasi-polynomial approximation is carried out. The algorithm is based on
recursions relations for the generation of finite difference formulas derived in [68]. The existence of
efficient preconditioners for spectral differentiation matrices is considered in [72]. Simple upper bounds for
the maximum norms of the inverse | D(2)¢—1 , corresponding to (CGaussL) points, are provided in [182].
In [189] it is shown that differentiating analytic functions using the pseudospectral Fourier or Chebyshev

methods, the error committed decays to zero at an exponential rate.

Remark 21 The entries of the Chebyshev first derivative matrix can be found also in [93]. The

gridpoints used by this matrix are xj from (1.34), i.e., Chebyshev Gauss Lobato nodes. The entries d(1) jk

are

A
dl) = ﬁ'“ J 0N (1.54)
23 2 i—zf H b K =
dpo = —dyny = —l—EN;'d-
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Remark 22 The software suite provided in the paper of Weideman and Reddy [204] contains,

among others, some codes (MATLAB *.m functions) for carrying out the transformations (1.40) and
(1.41), as well as for computing derivatives of arbitrary order corresponding to Chebyshev, Hermite,
Laguerre, Fourier and sinc interpolators. It is observed that for the matrix D(1), which stands for the 1 — th

order derivative, is valid the recurrence relation
{
pW — (D“?') 1=1,2,3, ..,

which is also suggested by (1.53). The existence of this relation is a consequence of the barycentric form of
the interpolator (see P. Henrici [110], P. 252). On the other hand, we have to observe that throughout this
work we use standard notations, which means that interpolating polynomials are considered to have order
N and sums to have lower limit j = 0 and upper limit N. Since MATLAB environment does not have a zero
index the authors of these codes begin sums with j = 1 and consequently their notations involve
polynomials of degree N —1. Thus, in formulas (1.54) instead of N they introduce N — 1. However, it is
fairly important that, in these codes, the authors use extensively the vectorization capabilities as well as the
built-in (compiled) functions of MATLAB avoiding at the same time nested loops and conditionals.

Another important source for pseudospectral derivative matrices is the book of L. N. Trefethen [197].

Remark 23 ror Chebyshev and for Lagrangian polynomials as well, projection (truncation) and

interpolation do not commute, i.e., (PN u) 0 6= PN (u0 ) and (IN u) 0 6= IN (u0 ). The Chebyshev-Galerkin
derivative (PN u) 0 and the pseudospectral derivative (IN u) 0 are asymptotically worse approximations of

u0 than

PN—-1 (u0 ) and IN-1 (u0 ), respectively, for functions with finite regularity (see Canuto et al. [33] Sect. 9.5.2. and
[93]). Remark 24 (Computational cost) First, we consider the cost associated with the matrix D(l). Thus, N2
operations are requested to compute oj . Given ¢j , another 2N2 is required to find the off-diagonal elements. N2

operations are required to find all the diagonal elements from (1.52). Hence, it requires 4N2 operations to construct

Yo



the matrix D(1). Second, a matrix-vector multiplication takes N2 operations and consequently the evaluation of u0 in
(1.45) would require 5N2 operations, which means asymptotically something of order O(NZ2). This operation seems
to be a somewhat expensive one because this would take up most of CPU time if it were used in a numerical scheme
to solve a typical PDE or ODE boundary value problem (the other computations take only O(N) operations).
Fortunately, the matrices of spectral differentiations have various regularities in them. It is reasonable to hope that

they can be exploited. It is well known that

certain methods using Fourier, Chebyshev or sinc basis functions can also be implemented using FFT. By
applying this technigue the matrix-vector multiplication (1.45) can be performed in O (N log N) operations rather
than the O j N2¢ operations. However, our own experience, confirmed by [204], shows that there are situations
where one might prefer the matrix approach of differentiation in spite of its inferior asymptotic operation count.
Thus, for small values of N the matrix approach is in fact faster than the FFT approach. The efficiency of FFT
algorithm depends on the fact that the integer N has to be a power of 2. More than that, the FFT algorithm places a
limitation on the type of algorithm that can be used to solve linear systems of equations or eigenvalue problems that

arise after discretization of the differential equations.
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