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 تمدٌروشكر 

 

الحمد لله رب العالمٌن والصلاة والسلام على أطهر وأشرف الانبٌاء  والمرسلٌن سٌد 

الكائنات )محمد ابن عبد الله (وآلة الطٌبٌن  الطاهرٌن  ٌشرفنً ولد شارف هذا الجهد على 

علً عبد الحسٌن ان لأستاذتً الفاضلة )فاطمه م بجزٌل الشكر وعظٌم  الامتنالانتهاء ان اتمد

المشرفة على  البحث الذي كان بجهودها الممٌزة ودلتها العلمٌة ومتابعتها المستمرة من  (

 دون  ملل الاثر الكبٌر فً انجاز هذا البحث فلها اسمى آٌات الشكر والعرفان.
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 الاهداء الى

 وشمس الهدا امام القلك وبحر الندا الامام المهدي )ع.(. الى من سعى وشمى أمٌن الله

لأنعم بالراحة والهناء الذي لم ٌبقل بشًء من اجل دفعً فً طرٌك النجاح الذي علمن ان 

ارتمً سلم الحٌاة محكمه وصبر الى )والدي العزٌز( الى الٌنبوع الذي لا ٌمل العطاء الى من 

نسوجة من للبها الى) والدتً العزٌزة رحمها الله ( الى من علمونً حاكت سعادتً بقٌوط م

حروفا من ذهب وكلمات من درر وعبارات من أسمى وأجلى عبارات العلم )أساتذتنا الكرام( 

الى من سرنا سوٌاً ونحن نشك الطرق معا نحو النجاح والابداع الى من تكاتفنا ٌدا بٌد ونحن 

 الٌة نمطف ثمرة هذا العمل زوجتً الغ
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Chebyshev polynomials 

        His courses were not voluminous, and he did not consider the quantity of 

knowledge delivered; rather, he aspired to elucidate some of the most important aspects of 

the problems he spoke on. These were lively, absorbing lectures; curious remarks on the 

significance and importance of certain problems and scientific methods were always 

abundant. A. M. Liapunov who attended Chebyshev‟s courses in late 1870, the underlying 

principles of the Chebyshev theory. The polynomials whose properties and applications will 

be discussed were introduced more than a century ago by the Russian mathematician P. L. 

Chebyshev (1821-1894). Chebyshev was the most eminent Russian mathematician of the 

nineteenth century. He was the author of more than 80 publications, covering 

approximation theory, probability theory, number theory, theory of mechanisms, as well as 

many problems of analysis and practical mathematics. His interest in mechanisms (as a boy 

he was fascinated by mechanical toys!) led him to the theory of the approximation of 

functions. Their importance for numerical analysis was rediscovered around the middle of 

the last century by C. Lanczos. 
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1.1 General properties 

 

 

are called the Chebyshev polynomials of the first kind 

Remark 2 [150] To establish a relationship between algebraic and trigonometric po 
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The terms on the right hand side involving even powers of sinθ are real while those with odd powers 

sinθ are imaginary. Besides, we know that sin2m θ = ¡ 1 − cos2 θ ¢m , m ∈ N. Consequently, for an 

Tn (cos θ) := cos (nθ), 

 

 

 

It follows that every even trigonometric polynomial 

 

is transformed, with the aid of substitution θ = arcos x,  into the corresponding algebraic polynomial of 

degree n 

 

1.1. GENERAL PROPERTIES 
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Figure 1.1: Some Chebyshev polynom   

 

This substitution specifies in fact a homeomorphic, continuous and one-to-one mapping of the closed 

interval [0, π] onto [−1, 1] . It is important that, conversely, the substitution, x = cosθ, transforms an 

arbitrary algebraic polynomial 

 

of degree n into an even trigonometric polynomial 

 

where the coefficients αk depend on Pn. Indeed, we have 

 

Here we should take into account that cosm x is a real function and therefore the last term in this chain 

of equalities is obtained from the preceding term by taking its real part. The imaginary part of cosm x is 

automatically set to zero. Some Chebyshev polynomials are depicted in Fig. 1.1. Proposition 3 

(Orthogonality) The polynomials Tn (x) are orthogonal, i.e., 
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Some other properties of Chebyshev polynomials are available, for instance, in the well known 

monographs Atkinson [10] and Raltson and Rabinowitz [171]. In [171], p.301, the following theorem is 

proved 

 

Theorem 5  Of all polynomials of degree r with coefficient of xr equal to 1, the Chebyshev polynomial 

of degree r multiplied by 1/2r−1 oscillates with minimum maximum amplitude on the interval [−1, 1] . 

ue to this property the Chebyshev polynomials are sometimes called equalripple polynomials. 

However, their importance in numerical analysis and in general, in scientific computation, is enormous and 

it appears in fairly surprising domains. For instance, in the monograph [39] p.162, a procedure currently in 

use for accelerating the convergence of an iterative method, making use of Chebyshev polynomials is 

considered. 

1.2. FOURIER AND CHEBYSHEV SERIES 

Remark 6 Best approximation with Chebyshev polynomials V. N. Murty shows in his paper [147] that 

there exists a unique best approximation of T1 (x) with respect to linear space spanned by polynomials of 

odd degree ≥ 3, which is also a best approximation of T1 (x) with respect to the linear space spanned by 

 

In the next section we try to introduce the Chebyshev polynomials in a more natural way. We advocate 

that the Fourier series is intimately connected with the Chebyshev series, and that some known 

convergence properties of the former provide valuable results for the latter 
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Chapetr Two 
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2.1 Fourier and Chebyshev Series 

rtant feature of Chebyshev series is that their convergence properties are not affected by the values of f 

(x) or its derivatives at the boundaries x = ±1 but only by the smoothness of f (x) and its derivatives 

throughout −1 ≤ x ≤ 1. Gottlieb and Orszag, [90], P. 28 

2.1.1 The trigonometric Fourier series 

t is well known that the ‟trigonometric polynomial‟ 

 

can be thought of as a least square approximation to f (x) with respect to the unit weight function on 

[−1, 1] (see Problem 6). The Fourier series, obtained by letting n → ∞ in (1.6), is apparently most valuable 

for the approximation of functions of period 2π. Indeed, for certain classes of such functions the series will 
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converge for most values of x in the complete range −∞ ≤ x ≤ +∞. However, unless f (x) and all its 

derivatives have the same values at −π and π, there exists a ‟terminal discontinuity‟ of some order at these 

points. The rate of convergence of the Fourier series, that is the rate of decrease of its coefficients, depends 

on the degree of smoothness of the function, measured by the order of the derivative which first becomes 

discontinuous at any point in the closed interval [−π, π]. Finally, we might be interested in a function 

defined only in the range [0, π], being then at liberty to extend its definition to the remainder of the periodic 

interval [−π, 0] in any way we please. It is worth noting that, integrating by parts in the expressions of ak 

and bk over [0, π] we deduce that cosine series converge ultimately like k−2, and sine series like k−1, 

unless f(x) has some special properties. If f (0) = f (π)=0, we can show that sine series converges like k−3, 

in general, the fastest possible rate for Fourier series. 

2.2.2 The Chebyshev series 

The terminal discontinuity of Fourier series of a non-periodic function can be avoided with the 

Chebyshev form of Fourier series. We consider the range −1 ≤ x ≤ 1 and make use of the change of 

variables 

                                                                          x = cos θ, 

so that f (x) = f (cos θ) = g (θ).                                                       (1.7) 

The new function g (θ) is even and genuinely periodic, since g (θ) = g (θ + 2π). Moreover, if f (x) has a 

large numbers of derivatives in [−1, 1] , then g (θ) has similar properties in [0, π] . We should then expect 

the cosine Fourier series 
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to converge fairly rapidly. Interpreting (1.8) in terms of original variable x, we produce the following 

Chebyshev series

 

This series has the same convergence properties as the Fourier series for f(x), with the advantage that 

the terminal discontinuities are eliminated. Elementary computations show that, for sufficiently smooth 

functions, the coefficients ak have the order of magnitude 1/2k−1 (k!), considerably smaller for large k than 

the k−3 of the best Fourier series. 

 

Remark 7 (Continuous least square approximation) The expansion 

 

has the property that the error en(x) := f (x) − pn(x) satisfies the ‟continuous‟ least square condition 

 

The minimum value is given by 

 

As n → ∞, we produce the Chebyshev series, which has the same convergence properties as the Fourier 

series, but generally with a much faster rate of convergence. 
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2.2.3.Discrete least square approximation 

We now move on to the discrete case of least square approximation in which the integrated mean 

square error over I, from the classical least square approximation, is replaced by a sum over a finite number 

of nodes, say x0, x1, ..., xN ∈ I. The function f (x), f : I → R is approximated by a polynomial p (x) with 

the error e (x) := f (x) − p (x) and find the polynomial p(x) such that the sum 

 

attains its minimum with respect to the position of the nodes xk in [−1, 1] and for a specified class of 

polynomials. We seek an expansion of the form 

 

s ψr (x) are, at this stage, arbitrary members of some particular system (should that consist of 

polynomials, trigonometric functions, etc.). Conditions for a minimum are now expressed with respect to 

the coefficients 

 ar, S = S (a0, a1, ..., ar). They are 

∂S/∂ai = 0, i = 0, 1, 2, .., N 

and they produce a set of linear algebraic equations for these quantities. The matrix involved is 

diagonal if the functions are chosen to satisfy the discrete orthogonality conditions 
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The corresponding coefficients ar are then given by 

 

and the minimum value of S is 

 

2.2.4 Chebyshev discrete least square approximation 

 Let‟s consider a particular case relevant for the Chebyshev theory. In the trigonometric identity 

 

the right-hand side vanishes for θ = kπ/N, k ∈ Z. Since 

 2 cos rθ cos sθ = cos (r + s) θ + cos (r − s) θ,          (1.11)  

it follows that the set of linearly independent functions ψr (θ) = cos rθ satisfy the discrete orthogonality 

conditions   

 

 

16 
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where, throughout in this work, the coefficients ck are defined by 

 

Further, we find from (1.10) and (1.11) that the normalization factors for these orthogonal functions are 

 

Consequently, for the function g (θ), θ ∈ [0, π], a trigonometric (Fourier) discrete least square 

approximation, over equally spaced nodes 

                                                     θk = kπ/N, k = 0, 1, 2, ..., N, 

 is given by the ‟interpolation‟ polynomia 

 

The corresponding Chebyshev discrete least square approximation follows immediately using (1.7). It 

reads 

 

Let us observe that the nodes xk are not equally spaced in [−1, 1] . The nodes θk = kπ\ N , k = 1, 2, ..., 

N − 1, 

are the turning points (extrema points) of TN (x) on [−1, 1] and they are called the Chebyshev points of 

the second kind. 
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Remark 8 For the expansion (1.15), the error eN (x) := f (x)−pN (x) satisfies the ‟discrete‟ least 

square condition 

 

 

 

 

2.2.5 Orthogonal polynomials least square approximation 

 We have to notice that, so far, we have not used the orthogonality properties of the Chebyshev 

polynomials, with respect to scalar product (1.1). Similar particular results can be found using this 

property. For the general properties of orthogonal polynomials we refer to the monographs [43] or [187]. 

Each and every set of such polynomials satisfies a three-term recurrence relation 

 

Following Lanczos [126], we choose the normalization kr = 1, and write (1.16) in the for 
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If we define p−1 (x) := 0 and choose the N + 1 nodes xi, i = 0, 1, 2, ..., N so that 

they are the zeros of the orthogonal 

 

polynomial φN+1 (x), we see that they are also the eigenvalues of the tridiagonal matrix diag (pk−1 qk 

pk). The eigenvector corresponding to the eigenvalue xk has the components φ0 (xk), φ1 (xk), ..., φN (xk) 

and from the theory of symmetric matrices we know that the set of these vectors forms an independent 

orthonormal system. Each and every vector is normalized to be a unit vector, i.e 

 

 

is orthogonal. It means X ·X0 = X0 ·X = IN+1, which implies two more discrete conditions in addition 

to the normalization one. i.e., 

 

It follows that a solution of the least square problem in this case, with weights ω (xk) = λk, and the 

nodes taken as the 
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 N + 1 zeros of φN+1 (x), is given by 

 

 

 

The trigonometric identity (1.10) leads to a very simple form of λk, namely 

 

Remark 9 For the expansion (1.20), the error eN (x) := f (x)−pN (x) satisfies the ‟discrete‟ least 

square  
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It can be shown that the error eN (x) satisfies the following minmax criterion for sufficiently smooth 

functions 

 

Remark 10 The least square approximation polynomial pN (x) from (1.20) must agree with the 

Lagrangian interpolation polynomial 

 

 

(see Appendix 1) which uses as nodes the Chebyshev points of the first kind xk = cos ³ 2k+1 N+1 π 2 ´ 

, k = 0, 1, 2, ..., N. These nodes are in fact the zeros of TN+1(x). Remark 11 In [71] it is shown that for 

sufficiently well-behaved functions f (x) the approximation formula (1.20) is slightly better than (1.15). 

2.2.6 Orthogonal polynomials and Gauss-type quadrature formulas 

There exists an important connection between the weights λk of the orthogonal polynomial discrete 

least square approximation and the corresponding Gauss type quadrature formulas. First, we notice that 

Lagrangian quadrature formula (see Appendix 1) reads 
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fits f (x) exactly in the N + 1 zeros of Π (x) and has degree N. The formula (1.21) is exact for 

polynomials of degree N or less. A Gauss quadrature formula has the form 

 

where the weights νk and abscissae xk (quadrature nodes) are to be determined such that the formula 

should be exact for polynomials of as high a degree as 

possible. Since there are 2N + 2 parameters in the above formula, we should expect to be able to make 

(1.23) exact for polynomials of degree ≤ 2N + 1. To this end, we consider a system of polynomials φk (x), 

k = 0, 1, 2, ..., N which satisfy the ”continuous” orthogonality conditions 

 

Suppose that f(x) is a polynomial of degree 2N + 1 and write it in the form 

 

where the suffices indicate the degrees of the polynomial involved. Since qN (x) can be expressed as a 

linear combination of orthogonal polynomials φk (x), k = 0, 1, 2, ..., N, the orthogonality relations imply 
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for specified xk and corresponding µk. If we choose xk to be the zeros of φN+1 (x), it follows from 

(1.25) that we obtained formally the required Gauss be represented exactly, due to (1.19), in the form 

quadrature formula (1.23) with νk = µk. Now rN (x), as a polynomial of degree N can  

 

due to (1.24) with r = 0. Moreover, the general solution of the least square problem (1.19) and in 

particular, the normalization condition, imply 

 

It follows that the weights in Gauss quadrature formula (1.23), which is exact for polynomials of order 

2N + 1, equal the weights λk of the discrete least square solution (1.19), and the nodes xk are the zeros of 

the relevant orthogonal polynomial φN+1 (x). If, in particular, 
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2.2 Chebyshev projection 

 

where the coefficients ubk, k = 1, 2,...,N are defined in (1.5). Due to the orthogonality properties of 

Chebyshev polynomials, PN u (x) represents the orthogonal projection of function u onto PN with respect 

to scalar product (1.1). Consequently, we can write 

 

More than that, due to the completeness of the set of Chebyshev polynomials, the following limit holds: 

 

Remark 12 A lot of results concerning the general theory of approximation by polynomials are 

available in Chapter 9 of [33]. We extract from this source only the results we strictly use. 

 The quantity u − PN u is called truncation error and for it we have the following estimate. 

Lemma 13 For each and every u ∈ Hs ω(I), s ∈ N, one has 

 

 

Remark 14 There exists a more general result which reads 
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Remark 15 Unfortunately, the approximation using the Chebyshev projection is optimal only with 

respect to the scalar product (·, ·)0,ω . This statement is confirmed by the estimation 

 

in which a supplementary quantity ¡ l − 1 2 ¢ appears in the power of N. To avoid this inconvenient 

Canuto et al. [33] [1988, Ch. 9,11] introduced orthogonal projections with respect to other scalar products. 

Remark 16 If (1.5) is the Chebyshev series for u (x), the same series for the derivative of u ∈ H1 

ω(I), has the form 
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but in applications is sometimes used the derivative of the projection, namely (PN u) 0 , which is called 

the „Chebyshev-Galerkin derivative‟ . We end this section with some „inverse inequalities‟ concerning 

summability and differentiability for algebraic polynomials. 

 Lemma 17 For each and every u ∈ PN , we have 

 

2.3 Chebyshev interpolation 

We re-write the results from Fourier and Chebyshev Series Section in a more formal way. First, we 

observe that the quadrature formulas represent a way to connect the space L2 ω (−1, 1) with the space of 

polynomials of a specified degree. For the sake of precision, the interpolation nodes will be furnished by 

following Chebyshev-Gauss quadrature formula (rule 

 

where the choices for the nodes xj and the weights ωj lead to rules which have different orders of 

precision. The most frequently encountered rules are: 1. the Chebyshev-Gauss formula (CGauss) 
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The quadrature nodes are the roots of the Chebyshev polynomial TN+1 and the formula is exact for 

polynomials in P2N+1. 2. the Chebyshev-Gauss-Radau formula (CGaussR) 

 

In this case, the order of precision is only 2N. 

 3. the Chebyshev-Gauss-Lobatto formula (CGaussL) 

 

In this case, the order of precision diminishes to 2N − 1. Corresponding to each and every formula 

above we introduce a discrete scalar (inner) product and a norm as follows: 

 

The next result is due to Quarteroni and Vali [169], Ch.5 

 

 

Lemma 18 For the set of Chebyshev polynomials, there holds 
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Proof. The first two equalities are direct consequences of the order of precision of quadrature formulas. 

For the third, we can write 

 

nomial of order (degree) N corresponding to one of the above three sets of nodes xk. It has the form 

 

where the coefficients are to be determined and are called the ‟degrees of freedom‟ of u in the 

transformed space ( called also “phase” space). For the ( CGaussL) choice of nodes, using the discrete 

orthogonality and normality conditions (1.12), (1.13) we have 

 

 

The identities (1.38) and (1.39) lead to the ‟discrete Chebyshev transform‟ 
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ormation, we can pass from the set of values of the function u in the nodes (CGaussL), the so-called 

physical space, to the transformed space. The inverse transform reads 

 

Due to their trigonometric structure, these two transformations can be carried out using FFT (fast 

Fourier transform-see [33] Appendix B, or [40] and [41]). A direct consequence of the last lemma is the 

equivalence of the norms k·kω 

 

For the Chebyshev interpolation, in each and every case, (CG), (CGR), (CGL), we have the following 

result (see [33], Ch. 9 and [169] Ch. 4): 
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2.3.1 Collocation derivative operator 

r Associated with an interpolator is the concept of a collocation derivative (differentiation) operator 

called also Chebyshev collocation derivative or even pseudo spectral derivative. The idea is summarized in 

[184]. Suppose we know the value of a function at several points (nodes) and we want to approximate its 

derivative at those points. One way to do this is to find the polynomial that passes through all of data 

points, differentiate it analytically, and evaluate this derivative at the grid points. In other words, the 

derivatives are approximated by exact differentiation of the interpolate. Since interpolation and 

differentiation are linear operations, the process of obtaining approximations to the values of the derivative 

of a function at a set of points can be expressed as a matrix-vector multiplication. The matrices involved 

are called pseudo spectral differentiation (derivation) matrices or simply differentiation matrices. 

Thus, if u := (u (x0) u (x1) ...u (xN ))T is the vector of function values, and u0 := (u0 (x0) u0 (x1) ...u0 

(xN ))T is the vector of approximate nodal derivatives, obtained by this idea, then there exists a matrix, say 

D(1), such that 

 

 

We will deduce the matrix D(1) and the next differentiation matrix D(2) defined by 

 

To get the idea we proceed in the simplest way following closely the paper of Solomonoff and Turkel 

[183]. Thus, if 
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is the Lagrangian interpolation polynomial, we construct the first differentiation matrix D(1) by 

analytically differentiating that. In particular, we shall explicitly construct D(1) by demanding that for 

Lagrangian basis {lk (x)}N k=0 , lk (x) ∈ PN , 

 

where 1 stands in the k th row. Performing the multiplication, we get 

 

We have to evaluate explicitly the entries d (1) jk in terms of the nodes xk, k = 0, 1, 2, ..., N. To this end, 

we rewrite the Lagrangian polynomials lk (x) in the form 

 

Taking, with a lot of care, the logarithm of lk (x) and differentiating, we obtain 

 

This equality implies the diagonal elements 
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In order to evaluate (1.49) at x = xj , j 6= k we have to eliminate the 0/0 indetermination from the right 

hand side of that. We therefore write (1.49) as 

 

Since lk (xj ) = 0 for j 6= k, we obtain that 

 

Using the definition of lk (x), we get the off-diagonal elements, i.e., 

 

It is sometimes preferable to express the entries of D(1), (1.50) and (1.51), in a different way. Let‟s 

denote by φN+1 (x) the product ΠN l=0 (x − xl). Then we have successively 

 

and eventually we can write 
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Similarly, for the second derivative we write 

 

Remark 20 In [206], a simple method for computing n × n pseudodifferential matrix of order p in O ¡ 

pn2 ¢ operations for the case of quasi-polynomial approximation is carried out. The algorithm is based on 

recursions relations for the generation of finite difference formulas derived in [68]. The existence of 

efficient preconditioners for spectral differentiation matrices is considered in [72]. Simple upper bounds for 

the maximum norms of the inverse ¡ D(2)¢−1 , corresponding to (CGaussL) points, are provided in [182]. 

In [189] it is shown that differentiating analytic functions using the pseudospectral Fourier or Chebyshev 

methods, the error committed decays to zero at an exponential rate. 

 Remark 21 The entries of the Chebyshev first derivative matrix can be found also in [93]. The 

gridpoints used by this matrix are xj from (1.34), i.e., Chebyshev Gauss Lobato nodes. The entries d(1) jk 

are 
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Remark 22 The software suite provided in the paper of Weideman and Reddy [204] contains, 

among others, some codes (MATLAB ∗.m functions) for carrying out the transformations (1.40) and 

(1.41), as well as for computing derivatives of arbitrary order corresponding to Chebyshev, Hermite, 

Laguerre, Fourier and sinc interpolators. It is observed that for the matrix D(l), which stands for the l − th 

order derivative, is valid the recurrence relation 

 

which is also suggested by (1.53). The existence of this relation is a consequence of the barycentric form of 

the interpolator (see P. Henrici [110], P. 252). On the other hand, we have to observe that throughout this 

work we use standard notations, which means that interpolating polynomials are considered to have order 

N and sums to have lower limit j = 0 and upper limit N. Since MATLAB environment does not have a zero 

index the authors of these codes begin sums with j = 1 and consequently their notations involve 

polynomials of degree N −1. Thus, in formulas (1.54) instead of N they introduce N − 1. However, it is 

fairly important that, in these codes, the authors use extensively the vectorization capabilities as well as the 

built-in (compiled) functions of MATLAB avoiding at the same time nested loops and conditionals. 

Another important source for pseudospectral derivative matrices is the book of L. N. Trefethen [197]. 

 Remark 23 For Chebyshev and for Lagrangian polynomials as well, projection (truncation) and 

interpolation do not commute, i.e., (PN u) 0 6= PN (u0 ) and (IN u) 0 6= IN (u0 ). The Chebyshev-Galerkin 

derivative (PN u) 0 and the pseudospectral derivative (IN u) 0 are asymptotically worse approximations of 

u0 than 

PN−1 (u0 ) and IN−1 (u0 ), respectively, for functions with finite regularity (see Canuto et al. [33] Sect. 9.5.2. and 

[93]). Remark 24 (Computational cost) First, we consider the cost associated with the matrix D(l). Thus, N2 

operations are requested to compute αj . Given αj , another 2N2 is required to find the off-diagonal elements. N2 

operations are required to find all the diagonal elements from (1.52). Hence, it requires 4N2 operations to construct 
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the matrix D(1). Second, a matrix-vector multiplication takes N2 operations and consequently the evaluation of u0 in 

(1.45) would require 5N2 operations, which means asymptotically something of order O(N2). This operation seems 

to be a somewhat expensive one because this would take up most of CPU time if it were used in a numerical scheme 

to solve a typical PDE or ODE boundary value problem (the other computations take only O(N) operations). 

Fortunately, the matrices of spectral differentiations have various regularities in them. It is reasonable to hope that 

they can be exploited. It is well known that  

     certain methods using Fourier, Chebyshev or sinc basis functions can also be implemented using FFT. By 

applying this technique the matrix-vector multiplication (1.45) can be performed in O (N log N) operations rather 

than the O ¡ N2¢ operations. However, our own experience, confirmed by [204], shows that there are situations 

where one might prefer the matrix approach of differentiation in spite of its inferior asymptotic operation count. 

Thus, for small values of N the matrix approach is in fact faster than the FFT approach. The efficiency of FFT 

algorithm depends on the fact that the integer N has to be a power of 2. More than that, the FFT algorithm places a 

limitation on the type of algorithm that can be used to solve linear systems of equations or eigenvalue problems that 

arise after discretization of the differential equations. 
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