alal Candl g Ml el 5515
BHERETAEN
3 puall o slall Ay il IS
Clacaly) and

Research Title

numerical methods for solving ordinary
differential equations

gﬂaﬂ\c\.)eﬁi\;..a

Oe s a5 A8 puall o glell 4 il LIS Gulaa I
ol b sy D 3 i il

. T

L YEte a¥oYe

PN VEG P PAA

ol a1 ALE 280 38 13) T5kale Gl iy
é}iﬂiﬁ\}w\dﬁh\)eﬁ 0 sl | AL
mﬁ‘\’jq}ﬁ;d\iw\wm,esm}mum\

(\\)MY\MJM\{)}»:

73 N
.

adl
gl
Jaal
) 138
‘5.\5
|

&
Loghai>
o
50 :d!
gﬂi ‘;}?.'U‘}‘
;\}i Js)
J!
150

& NCPTRC O
\
W
J
:
) J¢ o
2 i
)J
\
s

9\3‘
\
&" L
~ u-‘
PR S y A0
)"‘
. .
J“
)‘QGM
..
aARe |
G‘ Jg
‘:
)

3
LM
S
As i FVE O
-)’.v‘i é
o
Js
&;‘
¢ J

.4.-0 L";J ‘3 <>
- -
d- ' 3
s :
f
.j) -
'
ﬁu
w
L}S
J‘
) &5 4)

Chapter 1 1

1.1 BackgroUnd. ... 1
1.2 ReSEArch QUESLION.ttt ettt ettt e e e e e e e e e e e 3
S T o ot P 3

Chapter 2 4

2.1 Ordinary differential equations i e 4

Chapter 3 6

3.1 Finite difference methods. e 6
B3 L IO S et 7
3.1.2 Numerical Properties . ..ot e 7
3.2 Stability of explicit Runge-Kuttamethods i 10
3.2.1The forward Eulermethod 11
3.2.2Heun s method oo e 12
3.2.3 The fourth-order Runge-Kuttamethod i .. 13
3.2.4 The fifth-order Runge-Kuttamethod i 14
3.2.5 The eighth-order Runge-Kuttamethod i, 16
3.2.6 Comparison of stability regions e 20

Bibliography 22

Chapter 1

1.1 IntroductiOn

A differential equation is an equation that relates one or several functions and its derivatives
[10]. Differential equations are used to model advanced systems, for instance, mechanical
and electrical systems from fields such as biology, social sciences, engineering, and econom-
ics. Mechanical systems and electrical systems are two examples of physical systems that
change over time [18]. Differential equations are used to describe a continuous change of
physical systems mathematically. Partial differential equations (PDES) and ordinary differen-

tial equations (ODES) are two classes of differential equations that are used to model and
characterize the behavior of physical systems. Parabolic PDEs exist in physical problems such
as a heat conduction problem for solid bodies. Heat equations describe how the heat tem-
perature distributes in, for instance, a rode as the time changes. Wave equations exist to be
used to model physical problems such as physical systems, where wave motions are consid-
ered [23]. Furthermore, the above-mentioned examples of systems are complex which ac-
cording to Houcque [11] are not possible to solve using analytical methods, therefore, numer-
ical methods are used instead. Numerical methods are important to use to solve those differ-
ential equations whose exact solutions are not possible to obtain using analytical methods.
Analytical methods such as the method of separation of variables give us exact solutions of
simple PDEs and ODEs, whereas numerical methods give us approximations of the exact so-
lution. Heath [10] emphasizes that numerical methods are viewed as a significant tool to use
to solve problems for example in engineering and industry. Also, Omale et al. [18] describe
that numerical methods have been used to solve differential equations of weather and cli-
mate forecasts. Numerical methods are explicit or implicit computed in one step or multiple
steps. An explicit method computes the numerical solution at the next time point using the
previous numerical solution at the previous time point. While an implicit method evaluates a
function using the numerical solution at the next time point which is solved for. There are var-
ious numerical methods for solving PDEs and ODEs [10]. The method of lines is an example
of a numerical method used to find numerical solutions of hyperbolic and parabolic PDESs by
transforming the PDEs to a system of first-order ODEs which approximates the original

PDEs. Finite difference methods, finite element methods, and finite volume methods are ex-
amples of numerical methods that are used to approximate the partial derivatives in the
PDEs [23]. Finite difference methods such as Runge-Kutta methods are essential for finding

approximate solutions of initial value problems of first-order ODESs [3]. High-order Runge-

Kutta methods are used to solve ODEs because of their high accuracy and efficiency [10].
Moreover, C. Runge and M. W. Kutta developed explicit and implicit RungeKutta methods [1].
The developments of low-order to high-order Runge-Kutta methods started in 1895. In 1895,
C. Runge extended the forward Euler method to more elaborate Runge-Kutta methods with
higher accuracy. Runge developed the second-order Runge-Kutta method in 1895. K. Heun in-
troduced the third-order Runge-Kutta method in 1900 [6]. Runge-Kutta methods became im-

portant in the studies of explicit and implicit methods for solving ODES through time discreti-
zation [7]. In 1901, W. Kutta introduced the fourth-order and the fifth-order Runge-Kutta
methods. F. J. Nystr'om developed Runge-Kutta methods to be used to solve systems of se-
cond-order differential equations [27]. In 1957, R. H. Merson proposed the idea to combine
Runge-Kutta methods of different orders in Butcher tableau. In 1964, Butcher introduced the
sixth-order Runge-Kutta method with seven stages. The seventh-order Runge-Kutta method
with nine stages was recognized from 1968. In 1970, the eighth-order Runge-Kutta method
with eleven stages was introduced by Curtis [6]. Runge-Kutta methods are active in research
[1] and for the past several years, most research papers have relied on the derivation of new
Runge-Kutta methods with higher derivatives to obtain more accurate Runge-Kutta methods
[30]. In several papers, researchers have investigated, compared lower-order and high-order
RungeKutta methods in terms of numerical properties, namely accuracy, stability, and effi-
ciency. In Section 1.2, we review such research

papers that have been published for the past several years

1.2 Research guestion

we study the accuracy of the five explicit Runge-Kutta methods for solving an initial value
problem of a first-order linear ODE by verifying their convergence rates. We derive the

stability analysis to investigate which one of the five explicit Runge-Kutta methods has a
better stability property for solving an initial value problem of a linear test equation.

1.3 Abstract

In Chapter 2, we present a theoretical background on PDEs and ODEs. Chap-
ter 3 starts with a theoretical background on finite difference methods and it
ends with the stability analysis for the five explicit Runge-Kutta methods.

Chapter 2

Differential equations

This chapter presents a theoretical background on PDEs and ODESs that are fundamental
in this thesis

2.1 Ordinary differential equations

AN ordinary differential equation (ODE) is a differential equation involving an unknown func-
tion of derivatives with respect to one independent variable usually t. The order of an ODE is
determined by the highest derivative in the ODE. The highest derivative in a first-order linear
ODEisone,thereforethistypeofODEisoffirst-order[10].

Consider this first-order linear ODE taken from [28]

y'(t) = 5y(t), (2.1)

where y is a dependent variable with respect to the independent variable t and y(t) is an un-
known solution which we seek for. According to Wang [28] Equation (2.1) is simple, therefore
we can use analytical methods to solve it analytically. The general solution which is a family of
solutions of Equation (2.1) is

y(t) = Ce®t,

where C is a real constant [28]. If we instead want to find an exact solution of Equation (2.1),
then we can impose the following initial condition to determine the value of C which according
to [28]itis

y(0)=2,

Wang [28] describes that the initial condition provide us with information that the initial value
of y(t) at the initial time point t, = 0 is 2. We get that y(0) = Ce® = C = 2 and the exact solution
that satisfies the initial condition of Equation (2.1) is

Y(t) = 2e5¢, (2.2)

where Equation (2.2) is in agreement with [28]. The first-order ODE with an initial condition is
called an initial value problem [28]. Wang [28] describes that a general form of an initial value
problem is

y'(t) = flty(t), (2.3)
Y(a)=c, fort€ [a,b],

where f(t, y(t)) is a function which depend on t and y. From the initial condition in Equation
(2.3), we know that the initial value is c. Also, the time interval is . t € [a, b], the initial time
point is ty = a and the final time point is t,, = b, where n is the number of time points. Heath
[10] describes that in most applications of differential equations there exists more than one

ODE which is transformed into a system of ODESs. Jung [13] introduce a system of k first-order

linear ODESs with coefficients written in this

(y1(0) = ayy () + ay2(8) + -+ aryi(®) + by(1)),
V2(t) = az () + azy,(t) + -+ axyi(t) + by(t)),

Vi) = apy1(0) + azeyz () + -+ agyi(t) + bi(t)),

\

where a;; (t) and b; (t) are known functions on the time intervalt €[a, b],i=1,2,---,nand
=1,2,--+,n. The column vector is y(t) of the unknown functions y,(t), - - -, y,(t) which are de-
pendent ont, where k=1, 2, - - -, n [13]. Jung [13] write this system of k first-order linear ODESs
with an initial condition in matrix notation form as

7'(t) = AJ(t) + b(1), (2.4)
}_;(t) = }_;O ’ fOI" € [Cl, b]:

In Equation (2.4), Ais a n x n matrix, y' (t) is a column vector and B(t) is another column vector.
The column vectors depend on t and the column vectors have a length n. If B(t) has length zero,
then it is a zero column vector, and Equation (2.4) becomes homogeneous. In Equation (2.4),
we have the initial value vector y, . In the efficiency study, we use numerical methods for
ODEs to solve an initial value problem of a homogenous system of first-order linear ODEs
formulated as Equation (2.4)

Chapter 3

Numerical methods for ODEs

In this chapter, we present a theoretical background on finite difference methods and analyze
the stability of the five explicit Runge-Kutta methods.

3.1 Finite difference methods

Finite difference methods solve for instance initial value problems of first-order ODES on the
time interval t € [a, b]. The idea of finite difference methods for an initial value problem of a
first-order ODE is to divide the time interval t € [a, b] into n subintervals and approximate the
first-order derivative in the initial value problem for every discrete time point t; in t € [a, b]. In
time discretization of initial value problems of first-order ODEs, we obtain discrete solutions
that are approximate values of the exact solution of the first-order ODE at discrete time points.
Time-discretization is a procedure for solving initial value problems of first-order linear ODEs
[31].

Now we show how to proceed with time-discretization of Equation (2.3). We want to find an

approximate solutions of Equation (2.3) by discretizing the time interval t € [a, b] into n subin-
tervals using n + 1 points [28]

a=ty<t;<t,<---<t,=b.

Wang [28] describes that the length of each n subinterval is the step size h; = t; — tj_;, where
j=1,2,---,n.In this procedure, the previous computed numerical solution y;_, at the previ-
ous discrete time point y;_, is used to compute the next numerical solution y; at the next dis-
crete time point tj, wherej=0, 1, - - -, n. An approximate solution of Equation (2.3) at the dis-
crete time point t;is y; = y(t;). The numerical solution at ¢, is yo = y(t,) = c. We can use the
numerical solution y, = ¢ to compute the next numerical solution y; at the next discrete time
point t;. We can use this procedure to get the numerical solution y,, at the final time point t,,.
One-step methods such as explicit Runge-Kutta methods use the information from the previ-
ously computed numerical solution at a discrete time point to compute the next numerical so-
lution at the next discrete time point. Explicit Runge-Kutta methods are finite difference meth-

ods for solving initial value problems of first-order ODES. Explicit Runge-Kutta methods involve

s stages which is equal to the number of function evaluations of the function f(t, y(t)) in Equa-
tion (2.3) needed to advance the numerical solution in one time step [10].

3.1.1 Errors

Errors occur when one performs numerical computation on a computer. Errors are classified
into round-off errors and truncation errors. Round-off errors are created from the representa-
tion of numbers that is approximated. We get round-off errors from numbers such as fractional
numbers, 1, and the square root of numbers which can-not be represented exactly in the com-
puter. Truncation errors are created when a numerical method is approximating an exact solu-
tion. Truncation errors are the difference between the approximate solution and the exact solu-
tion. Truncation errors are classified into local truncation errors and global truncation errors
[10]. Heath [10] describes that the local truncation error ¢; is

U=y — uja(t)

wherej=1, 2, - -, n, the numerical solution of an initial value problem of a first-order ODE is
yj and u;_4(t) is the solution of the ODE that passes through the point before, which is
(tj-1,Yj-1)-

According to Heath [10] the global truncation error e, is

en =Yn— y(tn)

the difference between the numerical solution y,, and the exact solution y(t,) at the final time
point t,,. The differences between a local truncation error and a global truncation error are that
we compute the local truncation error in the numerical solution of an ODE at a discrete-time
point t;. While we compute the global truncation error at the final time point t,, and we obtain
a total error at the final time point t,, [28]. In this thesis, we only compute global truncation er-
rors because in both the convergence study and the efficiency study we want to compute glob-
al truncation errors at the final time point t,,. Heath [10] states that global truncation errors are
essential to study when evaluating the performance of numerical methods

3.1.2 Numerical properties

Accuracy, stability, and efficiency are three numerical properties that are used to determine the
performance of numerical methods [10].
The following definition of accuracy is from [10].

Definition 3.1.1. The accu FaCy of a numerical method is said to be of order p if

£ = O(RP™).

The motivation for this definition, with the order of accuracy one less than the exponent of the

step size in the local error, is that if the local error is O(h}-’+1), then the local error per unit step,

2 .
h—’ , is O(h]p), and it can be shown that under reasonable conditions the global error e,, is O(hP
j

), where h is the average step size.
Leveque [16] describe that O is a big-oh notation and it is also known as an asymptotic notation
which describe a function that is bounded asymptotically by upper bounds. In Definition 3.1.1, j

=1, 2, -+, nand the global truncation error 16 O(hP) is independent of h. We expect the fol-
lowing from a numerical method that has order of accuracy p

e = Ch? + o(hP)whenh - 0,

h

where e" is an error on a grid of M points and C is in this case an error constant. The little-oh

notation o describe a function that is not bounded asymptotically by upper bounds [16].
According to Leveque [16] if h is too small, then

e ~ ChP.
A refinement of the grid by a factor of 2, we get.

P
ez =¢(2)

Other factors can certainly be used as well to refine the grid, but refining a grid by a factor of 2
h
is a standard way. The ratio of the errors e and ez is .

h
~ 2P

o |fh
NS

where p is a positive integer and the errors decrease approximately by a factor of 2P . Hence,
eh
p~ log, | % |-
ez

Furthermore, Leveque [16] describes that we can estimate p with two grid spa-cings h; and h,
as the following

eh1

~ log (Z—;) !

8

o

(3.1)

If the positive integer p > 0, then the global truncation error O(h?) - 0, when h = 0, and
the numerical method converges with the convergence rate p. The rate p of convergence is
known as the order of accuracy of a numerical method. The convergence rate p shows how
fast the numerical method converges to the exact solution when the step size h - 0. We
can measure the accuracy of a numerical method by verifying the convergence rate p of a
numerical method [28].

According to Soderlind [26], it is not possible to obtain accuracy in numerical
solutions if a numerical method is not stable. For this reason, a numerical method must be
stable too. The following definition of stability is from [10]

Definition 3.1.2. numerical method is said to be Stable if small perturbations do

not cause the resulting numerical solutions to diverge away without bound.

Perturbations are created in numerical computation. Small perturbations are due to
round-off errors or truncation errors in the initial data. A small perturbation is when a small

change in the initial value of an ODE leads to often a small change in the numerical solu-

tions of the ODE. We are perturbing the initial value by doing small changes to them. A sta-
ble numerical method is not sensitive to small perturbations, therefore the numerical solu-
tions do not diverge from the exact solution. For a stable numerical method, the errors in
the numerical solutions decrease to zero. Small perturbations to the numerical solutions of
a stable ODE get diminished as the time increases because the numerical solution curves of

the ODE converge to the exact solution of the ODE. Consequently, the numerical solutions
will bound the exact solution.

Furthermore, an unstable numerical method is sensitive to small perturbations,
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the numerical solutions to diverge from the exact solution. Small per-
turbations to a numerical solution of an unstable ODE will grow as the time increases be-
cause the numerical solution curves of the ODE diverge. If the numerical solutions of an

unstable ODE diverge from the exact solution, then the numerical solutions are unbounded
the exact solution [10].
Furthermore, an unstable numerical method is sensitive to small perturbations,
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the
numerical solutions to diverge from the exact solution.Small perturbations to a numerical solu

of an unstable ODE will grow as the time increases because the numerical solution curves

of the ODE diverge. If the numerical solutions of an unstable ODE diverge from the exact
solution, then the numerical solutions are unbounded the exact solution [10].

Definition 3.1.3.Numerical efficiency means here the combination of short
computational time and an acceptable error level.

An important aspect of numerical methods is to verify how much computational time
is required for numerical methods to compute errors [22]. We can measure the efficiency of
numerical methods by computing errors in the numerical solution of ODES and computa-
tional time [25]. Several researchers have improved the efficiency of Runge-Kutta methods

for solving ODES by decreasing the number of function evaluations

3.2 Stability of explicit Runge-Kutta methods

Soderlind [26] emphasizes that the stability property has a crucial role in solving first-order
ODEs using numerical methods. We can verify the stability of numerical methods by ana-
lyzing how the numerical methods behave on a linear test equation. In this section, we de-
rive the stability analysis for the five explicit Runge-Kutta methods for solving a linear test
equation from [28] defined as

y'(t) =-2y(t), (3.2)
Y(0)=1t€ [0,T],

where A € C.

We choose Equation (3.2) to be considered in the stability analysis for the five explicit
Runge-Kutta methods because it is a simple first-order ODE which according to Séderlind
[26] one choose in the stability analysis to be able to solve it analytically by pen and paper

The known exact solution of Equation (3.2) is

Y(t)=e 2, (3.3)

The exact solution (3.3) is also an exponential solution of Equation (3.2) which decrease ex-
ponentially to zero when t o0 and Re(A) > 0. The notation, Re(A) > 0 means positive real
values of A on the real coordinate (Re) axis in a complex plane [28]. A complex plane also
consists of an imaginary coordinate (Im) axis which visualizes complex numbers z = hA. A
numerical method is stable for different values of hA, where h is the step size. Different
values of hA are bounded in a region called stability region which we can visualize in a com-
plex plane. An numerical method is stable if |S(z)|< 1, where S(z) is a stability function. The

10

stability function S(z) is a series in power of z which approximate the exponential solution of
a linear test equation [20].

Furthermore, in Section 3.2.1 to Section 3.2.5, we analyze each explicit Runge-Kutta
method in terms of stability for solving Equation (3.2). We obtain a stability condition for
each explicit Runge-Kutta method in the stability analysis. In Section 3.2.6, we plot the sta-
bility conditions to visualize the stability regions of the five explicit Runge-Kutta methods in
a complex plane. Lastly, we compare the stability regions to determine which explicit
Runge-Kutta method has the smallest and the largest stability region.

3.2.1 The forward Euler method

Atkinson et al. [4] describe that the forward Euler method is a first-order Runge-Kutta
method and it is defined as
Vi =Yj-1 + hf (-1 ,Yj-1) .

The forward Euler method is used to compute the numerical solution yj at the discrete time
point tj . The forward Euler method is a one-stage explicit RungeKutta method which means
that to advance the numerical solution in one time step, then one function evaluation is
needed [28].

We can now derive the stability analysis for the forward Euler method for solving
Equation (3.2) as follows

Yj = Yj-1+th(=4yj-1),
yi = (1 —hA)y;_4,
where y;, y;_; are numerical solutions and 1 - hA is a constant [28]. Furthermore,we have

YVi-1 = (1- h/l)}’j—z)

Vji—2 = (1= hd)y;_3,

y1 =1 =h)y, =1 —ha).
Consequently, we get the following numerical solution.

yj=1-h1’, (3.4)
According to Wang [28] the numerical solution (3.4) of Equation (3.2) obtained by the for-
ward Euler method is stable because the numerical solution (3.4) converges to zero. The
numerical solution (3.4) decrease in time t as j > 0. To satisfy this, therefore we need to
require the following stability condition

[1—-—hil <1, (3.5)

The stability condition (3.5) constraints the value of the step size h. The forward Euler
method is stable when it satisfies the stability condition (3.5). The stability condition (3.5) is

11

an inequality less than 1, therefore we can simplify the stability condition by removing the
absolute value and we get

-1<1—h/1<1—>0<h/1<2—>0<h<§.

The forward Euler method is stable for solving Equation (3.2) if it satisfies the stability con-
dition h < % if A € R. The inequality 0 < hA satisfies if A > 0 according to [28].

We can now investigate how the numerical solution of Equation (3.2) changes for
different values of hA. Assume that we have h =2, h=0.1and A in Equation (3.2)isA=5.Ifh
=0.1and A =5, then hA = 0.5 and hA < 2 which means that the forward Euler method is sta-
ble. We can say that the forward Euler method is stable when h < %for AeER. Ifh=2andA
=5, then hA =10 and hA > 2, which means that the forward Euler method is unstable, there-

fore the numerical solution diverges to infinity.
Furthermore, the forward Euler method has the following stability function S(hA)

S(hA)=1-hA.
This stability function alternates in sign
Wang [28] has also obtained the stability condition (3.5) for the forward Euler method
for solving the Equation (3.2). The stability condition for the forward Euler method present-
ed in [2] does not equal the stability condition (3.5) because the test equation solved in [2]
is not the same as Equation (3.2). The test equation solved in [2] is

y'() =Ay(t), (3.6)
therefore we do not obtain the same stability condition for the forward Euler method as in

[2].

3.2.2 Heun’s method

Witty [29] describes Heun’s method is a second-order Runge-Kutta method and it is de-
fined as .

1
Yi=Yji1+ Eh(kl + k3),
k, = f(tj—1;}’j—1):
kz = f(t]—l +h ,y]'_l + hkl)
Heun’s method is a two-stage explicit Runge-Kutta method which means that to advance

the numerical solution in one time step, then two function evaluations are needed. Heun’s
method consists of one more function evaluation than the forward Euler method. We can

12

now derive the stability analysis for Heun’s method for solving Equation (3.2) as the follow-
ing
kl = ('/1)3’]'—1)
1
kz = (-A+ Ehﬂ.z) Vi-1-
1
v = (1-ha+3h222)y;,,

Consequently, we get the numerical solution as follows

1 J
y; = (1 Y EhZAZ) , (3.7)
The numerical solution (3.7) decrease in time t as j & oo. To satisfy this, we require the fol-
lowing stability condition

[1—ha+n222| <1 (3.8)

If we simplify the stability condition (3.8) by removing the absolute value we get,

—1<1—h/1+%h2/12<1—>0<h}l—§h2)12<2—>0<h}l<2—>0<h<%

where h < % is the stability condition for Heun’s method when A € R and h > 0. This stability

condition is the same as the stability condition for the forward Euler method. The stability
function of Heun’s method is .
S(hA) =1 — hA +§(h/1)2 .

The stability function of the forward Euler method and Heun’s method are related because
the first two terms of the stability function of Heun’s method are the same as the terms of
the stability function of the forward Euler method. The stability function of Heun’s method
involves three terms, whereas the stability function of the forward Euler method involves
two terms.

3.2.3 The fourth-order Runge-Kutta method

Roslan [21] describes that the fourth-order Runge-Kutta method (RK4) is also known as
the
classical Runge-Kutta method defined as

y] = yj—l + %h(kl + 2k2 + 2k3 + k4),
ki = f(tj—l :3’1'—1))

13

1 1
kZ :f(t]—l)Eh'yj—l +§hk1))

1 1
ks = f (tj_l +5hy Ehkz),
k4 = f(t]—l + h'yj—l + hk3) y
RK4 is a four-stage explicit Runge-Kutta method which means that to advance the numeri-
cal solution in one time step four function evaluations are needed. For RK4 two more func-
tion evaluations are needed than for Heun’s method. We can now derive the stability analy-

sis for RK4 for solving Equation (3.2) and we get

ky = (—/1)}’]'—1:
1
k, = (—/1+ Ehl)yj_l,

ks = (—/1 +~hh? — %hh3)yj_1,

1 1
ky = (— A+ hA2—ZR223 + —h3,14) Vi1

2 4
y; = (1 EPRRETE PR +ih4,14)y.
J 2 6 24 J
Consequently, we get the following numerical solution
_ 1,202 1,323, 1 454)
yj = (1= ha+3R202 —2h3A% + —h*2*), (3.9)

which decrease in time t as j > 0. To satisfy this, we require the following stability condition
|1 = hA+2h222 = 2h32° + —h*2*| < 1.
2 6 24
The stability function of RK4 is
S(h) = 1= hA += (RA)? == (hA)® + - (hA)*.
This stability function involves five terms which means two more terms than the terms of

the stability function of Heun’s method. The first three terms of this stability function are al-
so involved in the stability function of Heun’s method.

3.2.4 The fifth-order Runge-Kutta method

Gopal et al. [8] define the fifth-order Runge-Kutta method (RK5) as

1
kl = f(tj—l lyj—l) ,
1 1
k3 = f(t]—l +Zh,y]’_1 +th1> »

14

1 1
h.y, 1+8hk1+8hk2>

+1
]1 4
1
2'
3

1 1
(~ Sk, + 8hk3>

3hk 9hk)
16 VT g M)

3 2 12 12 8
ke = f(tj_l +h,yj-1 —7hk1 +7hk2 +7hk3 —7hk4 +;hk5).

a six-stage explicit Runge-Kutt method which means six function evaluations are needed to

ks
k4:
ks =

tj—l +Zh,y]- 1+

advance the numerical solution in one time step. We see that RK5 consists of two more
function evaluations than RK4. We can now derive the stability analysis for RK5 for solving
the Equation (3.2) and we getWe can now derive the stability analysis for RK5 for solving

the Equation (3.2) and we get

kl (_l)y]—ll
1 2
k, = (A +7ha)y]_l,
1 1
ky = (—,1 +h? - 5112,13)31,_1 ,
k, = (—,1+lh,12 EEPYE +—h3,14>y
4 2 8 32 J-1
12 9 9 9
K (At o hA? — —h223 + —— h3)t ——h4/15) -
5= TS 32" T 128 514 Yj-1
1 9 3 72
Ko = (=2 + 27 =SR2 4 WA = SRS o920y
+ 2Vt 5e 112" T 3582 Yj-1
y, = (1 Cmaaapzaz _lpeps gy Lpage o L opsgs Lhﬁ,lﬁ)y-
J 2 6 24 120 640 J-1

As a consequence, we get the following numerical solution
1,292 13393, 1 1494 J
y,-=(1,1—h,1+5h,1 —Zh32 +ZhA) , (3.10)

which decrease in time t as j & oo. To satisfy this, we require the following stability condi-

tion

1—hA+=h222 —2h323 + Zha* — — rS25 + —h625| < 1.
2 6 24 120 640

The stability function of RK5 is

S(hA) = 1-hA+2h222 —1p323 + 2 p%a* — 2 h5A5 + —— 1626
2 6 24 120 640

15

The stability function of RK5 involves seven terms which means three more terms than the
terms in the stability function of RK4. The first three terms in this stability function are also

involved in the stability function of RK4 and Heun’s method but not in the stability function
of the forward Euler method.

3.2.5 The eighth-order Runge-Kutta method

The eighth-order Runge-Kutta method (RK8) is defined in [5] with Butcher tableau. The
RK8is

+h(34k 9k+9k+9k O e M 41k)
Yi = Vi1 105 %6 T35 /7 T 358 T 350 %0 T g0 10 + g5 12 T gz s

ks=f (tj 1+-= h ' Yj-1 + h(k1 + 3k2))
(tj 1+- h ' Yj-1 + h(k1 + 3k3))
(t, L2 h, Yo+ = h(20k — T5ks + 75k4))

1
kﬁ = f <tj_1 + _h ,yn + %h(kl + 5k4 + 4‘k5)>,
1
h,¥j-1 + o5 h(=25k; + 125k, — 260ks + 250k6)),

kg = +=h +h<31k+61k 2k+13k)
8 =f{b-1 T g Yj 3001 T 22575 "9 T500"7))

2 53 704 107 67
kng t]—l +§h,y]_1+h<2k1_zk4 +Ek5_Tk 90k7+3k8)

976 311 19 17 1
o = £ (51 + 3R+ R (= ka+ 108"4—E"ﬁake—akﬁzks—a’%))
3283 4496 2133
b = £ (o0 s b R (b = Sk ks = ks + ok + ko + g ko +

ko))

16

3 6 3 3
ki, —f<] 1,Yj-1 +h(205k er_ﬁ]ﬁ_ﬁks_ﬁkfa +Hk1o)>:

1777 314 4496 2193
feas _f<tj‘1+h'yf‘1 -I_(_zuookl_mk4 T oz s T k6+4100k7+ ke +

_kg + klO + klz))

164

RK8 is a thirteen-stage explicit Runge-Kutta method which means that thirteen function
evaluations are needed to advance the numerical solution in one time step. RK8 consists of

nine more function evaluations than RK5. We can now derive the stability analysis for RK8

for solving Equation (3.2) and we get

kl = (_A)y]—l)
2
k, = (—A + —hﬂz) Yi-1
1
A +=hi2 ——hzﬁ) -
(ty 162 Yj-1
1 1
—(a +lpz - e —h3/14> L
(ts 727 2596 Yj-1
5 25 125 25
- hAE =R — h4,15) ,
(+ 288" % T 10368 20736 Yj-1
=(+1h12 h2/13+ih3ﬂ4—Lh4/15 h516)y] L
2 48 384 20736
5 55 125 625 875 625
(-2 +2mA2 223 Bt 22 pags 0 pspe —h6,17) L
(te 2 1296 31104 * T 279936 1119744 Yj-1
1 1 1 43 85
iz Ly L page RA25 4 ——— RS 4 ——— __p6)7
(ts 7274 1296 31104 4 T 11197242 t 10077696
L35 h7/18>
40310784 Yi-1
2 2 2 1655 4279
ko= (=2 + 5 ha2 = S22 4 320 — S 526 4 ————__p6y7
o t3 9 t81 243 * 559872 * 1007769
L7865 . 325 hglg)
20155392 13436928 Yi-1
1 1 1 757 439
kyo = (—/‘l SRAZ — — RPN 4 —— B3t — A5 — 2L psp6 27 p6y7
10 +3 187" T 162 1944 1119744 1679616
3331 65 325
——h718 —hSA‘)_—h‘)AlO) 1,
20155392 " * Y 6718464 161243136 Yj-1
1 1 14767 6511
kyy = (—/‘l BAZ — ZR223 + ZR3% — — 425 4 ———~ _p5)6 — =637 h7 28
1 + 2 *s 24 + 1700352 5101056 + 186624
7151 65 325
—h8/19 —h‘)AlO—th/lll) 1,
183638016 " © 127205632 367276035 Yj-1

17

k —(A+ 10 h8A7 L7 h728 2081 h82° + 65 h9210
12 566784 45909504 550914048 183638016

325
T p10911),,.
1101828096 " *)yf‘l'
1 1 1 14767 1585
ki = (— +hA2 =R+ R ——h* A5+ —— K515 ———— o)
13 2 6 24 1700352 1275264
N 7297 .o 599 619 12809 19710
22954752 17216064 2203656192
65 325
+ h10/111— h11ﬂ12) 1,
275457024 1101828096 Yj-1
1 1 1 1 1 1
= _ Zh2A2 33 + 414 515 4 616 717
y; (1 h/1+2h/1 6h/1 24h/1 120h/1 720h/1 5040h/1
1 491 1333
h8&8 _ h9&9 th)'lO
+ 20320 209018880 + 5643509760
13 65
—hlllll——h12/112> 1,
+501645312 4514807808 Yj-1

Consequently, we get the following numerical solution

y; = (1 —hA+-R2A2 —1R323 4+ ZpAAt — ——RSAS + — KOS — — RN +
J 2 6 24 120 720 5040

1 491 1333 13 65 J
h8/18 _ h9/19 + th&lO + hllﬂll _ h12/112)
40320 209018880 5643509760 501645312 4514807808

(3.11)

which decrease in time t as j & oo. To satisfy this, we require the following stability condi-
tion

1 1 1 1 1 1 1
1—hA+=h?22——h32B3 +—h*A* ——h° 25+ —hA° ———h"'1" + ———h82®8

2 6 24 120 720 5040 40320
M1 e, 1333 10+L 11311
209018880 5643509760 501645312
65
- Rn12912
4514807808 =4 <1

The stability function of RK8 is

_ 2__ 3 _ 4-__ 5 _ 6 7
S(h) =1—hl+= (hA) = (h)* + > (hA) —5 () +720(h,1) =525 "M
— (W)’ +—— (RO
* 20320 ~ 209018880 "M T 5643509760 (Y
+ L (R — ———— (h1)2
501645312 4514807808

18

The stability function of RK8 involves six more terms than the terms of the stability function
of RK5. The stability function of RK5 does also involve the first six terms of the stability
function of RK8. The seventh term in this stability function of RK8 does not equal the last
term of the stability function of RK5 because the fraction is different.

RKS8 has a higher number of function evaluations than the forward Euler method,

Heun’s method, RK4, RK5, and RK8. The forward Euler method has the lowest number of
function evaluations. Soderlind [26] discusses that high-order explicit Runge-Kutta methods
involving a high number of function evaluations will have higher computational effort than
thelow-orderexplicit-Runge-Kuttamethods.

S’eka and Assui [24] have also done stability analysis for the forward Euler method, Heun’s
method, and RK4 considering Equation (3.6). In their stability analysis, they obtained equa-
tions that almost equal to Equation (3.4), Equation (3.7), and Equation (3.9). The equations
in [24] do not alternate in sign which Equation (3.4), Equation (3.7), and Equation (3.9) do.
The reason for this is that the authors have solved Equation (3.6) is a nonnegative test
equation which we have not done in the stability analysis for the five explicit Runge-Kutta
methods. However, since the terms of Equation (3.4), Equation (3.7), and Equation (3.9)
equal the terms of the equations in [24], then we can state that Equation (3.4), Equation
(3.7), and Equation (3.9) is correct. Furthermore, the first eight terms of Equation (3.11)
equal the stability function of RK8 with eleven stages in [24]. The terms of this stability
function in [24] do not alternate in sign as the terms of Equation (3.11) does. The stability

analysis for RK5 and RK8 with thirteen stages is difficult to

19

4 +
O
2 Forward Euler
Heun
= RK4
£ 0 RK5
g RK8
2}
al O
-6 A I
-6 4 2 0 2 4 6
Re(h\)

findFigure 3.1. Stability regions of the five explicit Runge-Kutta methods in a complex plane

in the literature. We did the stability analysis for RK5 (see Section 3.2.4) and RK8 (see Sec-

tion 3.2.5) based on the procedure of the stability analysis for the forward Euler method.

3.2.6 Comparison of stability regions

In Section 3.2.1 to Section 3.2.5, we obtained stability conditions for the five explicit Runge-
Kutta methods which are plotted in a complex plane to visualize its stability regions in
MATLAB (see Script 1 in Appendix A). MATLAB is a software which we use to perform
numerical computation, we visualize the data in figures and tables. We run Script 1 in
MATLAB and we get Figure 3.1. We see in Figure 3.1, that the stability region of the for-
ward Euler method is a disk of radius 1. The forward Euler method is centered at the point
of hA = 1. Soderlind [26] has also analyzed stability regions of the forward Euler method for
solving Equation (3.6) and obtained instead that the forward Euler method is centered at
hA = -1 in a complex plane. The stability region of RK4, RK5, and RK8 have a shape as an
ear lobe. The five explicit Runge-Kutta methods are stable inside their regions and unstable
outside their regions

20

In Figure 3.1, we see that the five explicit Runge-Kutta methods are stable on the
positive real coordinate R, (hA) of the complex plane. The stability regions are on the right-
hand side of the complex plane because the five explicit Runge-Kutta methods are stable for
values of R,(hA) > 0, which are bounded in its stabilityregions. We can see that RK4, RK5,
and RK8 have larger stability regions than the forward Euler method and Heun’s method.
The reason is that as the order of explicit Runge-Kutta methods gets higher, then the explic-
it Runge-Kutta methods become stable for more values of Re(hA) and its stability regions get
larger which is in agreement with [26]. This means that RK4, RK5, and RK8 are stable for
more values of Re(hA) than the forward Euler method and Heun’s method. Additionally, ac-
cording to Atkinson et al. [4] explicit Runge-Kutta methods get larger stability regions when
they are restricted on too small step sizes. The step size of h needs to be small for hA to be
in the stability region and to obtain stable numerical methods. The numerical method with
the widest stability region has better stability. This means that RK8 is the most stable of all
the five explicit Runge-Kutta methods because it has the largest stability region. Also, the
forward Euler method with the smallest stability region is less stable than Heun’s method,
RK4, RK5, and RKS.

Moreover, Butcher [6] has also plotted the stability regions of the forward Euler
method, Heun’s method, and RK4. He obtained a similar figure as Figure 3.1 but without
the stability regions of RK5 and RK8. He has also plotted the stability regions of the for-

ward Euler method, Heun’s method, and RK4 in one complex plane as we have done in Fig-
ure 3.1. Therefore, the stability regions of the forward Euler method, Heun’s method, and
RK4 is equal to the stability regions presented in [6]. In Figure 3.1, all the stability regions of
the five explicit Runge-Kutta methods are plotted in one complex plane

Furthermore, S’eka and Assui [24] present the result of their research paper that
RK8 with eleven stages has a smaller stability region than Heun’s method and RK4. This re-
sult does not agree with what we see in Figure 3.1, where we see that RK8 has the largest
stability region of all the five explicit Runge-Kutta methods. Even though this result does not
agree with what we see in Figure 3.1, this result in [24] is correct because they have investi-
gated the stability of RK8 with eleven stages and not thirteen stages as we have done in
this thesis.

21

Bibliography

[1] A. O. Anidu, S. A. Arekete, A. O. Adedayo, and A. O. Adekoya. Dynamic computation of
Runge-Kutta fourth-order algorithm for first- and second-order ordinary differential equation
using java. International Journal of Computer Science, 12(13):211-218, 2015.

[2] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. Siam, 1998.

[3] R. Ashino, M. Nagase, and R. Vaillancourt. Behind and beyond the matlab ode suite. Com-
puters & Mathematics with Applications, 40(4-5):491-512, 2000.

[4] K. Atkinson, W. Han, and D. E. Stewart. Numerical solution of ordinary differential equa-
tions. John Wiley & Sons, 2011.

[5] S. Bu, W. Jung, and P. Kim. An error embedded Runge-Kutta method for initial value prob-
lems. Kyungpook Mathematical Journal, 56(2):311-327, 2016.

[6] J. C. Butcher. A history of Runge-Kutta methods. Applied numerical mathematics,
20(3):247-260, 1996.

[7] V. Chauhan and P. K. Srivastava. Computational techniques based on RungeKutta method of
various order and type for solving differential equations. International Journal of Mathematical,
Engineering and Management Sciences, 4(2):375-386, 2019.

[8] D. Gopal, V. Murugesh, and K. Murugesan. Numerical solution of second-order robot arm
control problem using Runge-Kutta butcher algorithm. International Journal of Computer
Mathematics, 83(3):345-356, 2006.

[9] A. Hasan. Numerical computation of initial value problem by various techniques. Journal of
Science and Arts, 18(1):19-32, 2018.

[10] M. T. Heath. Scientific computing: an introductory survey. McGraw-Hill, 2002.

[11] D. Houcque. Applications of matlab: ordinary differential equations (ode). Robert R.
McCormick School of Engineering and Applied Science-Northwestern University, Evanston,
2008.

[12] Md. A. Islam. A comparative study on numerical solutions of initial value problems (ivp) for
ordinary differential equations (ode) with euler and RungeKutta methods. American Journal of
Computational Mathematics, 5(3):393— 404, 2015.

22

[13] S. M. Jung. Hyers-ulam stability of a system of first order linear differential equations with
constant coefficients. Journal of Mathematical Analysis and Applications, 320(2):549-561, 2006.

[14] D. Ketcheson and A. Ahmadia. Optimal stability polynomials for numerical integration of
initial value problems. Communications in Applied Mathematics and Computational Science,
7(2):247-271, 2013.

[15] S. Larsson and V. Thom ee. Partial differential equations with numerical methods. Springer
Science & Business Media, 2008.

[16] R. J. Leveque. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. Siam, 2007.

[17] K. Mattsson, F. Ham, and G. laccarino. Stable boundary treatment for the wave equation
on second-order form. Journal of Scientific Computing, 41(3):366, 2009.

[18] D. Omale, P. B. Ojih, and M. O. Ogwo. Mathematical analysis of stiff and non-stiff initial
value problems of ordinary differential equation using matlab. International journal of scientific
& engineering research, 5(9):49-59, 2014.

[19] D. F. Papadopoulos and T. E Simos. The use of phase lag and amplifica-tion error deriva-
tives for the construction of a modified Runge-Kutta Nystr'om method. In Abstract and Applied
Analysis. Hindawi, 2013.

[20] J. S. C. Prentice. Stepsize selection in explicit Runge-Kutta methods for moderately stiff
problems. Applied Mathematics, 2(6):711-717, 2011.

[21] U. A. M. Roslan, Z. Salleh, and A. Kili,cman. Solving zhou chaotic system using fourth-order
Runge-Kutta method. World Applied Sciences Journal, 21(6):939— 944, 2013.

[22] M. Sch”afer. Computational engineering: introduction to numerical methods. Springer,
2006.

[23] W. E. Schiesser and G. W. Griffiths. A compendium of partial differential equation models:
method of lines analysis with Matlab. Cambridge University Press, 2009.

[24] H. S’eka and K. R. Assui. Order of the Runge-Kutta method and evolution of the stability
region. Ural Mathematical Journal, 5(2):64-71, 2019.

[25] M. M. Stabrowski. An efficient algorithm for solving stiff ordinary differential equations.
Simulation Practice and Theory, 5(4):333-344, 1997.

[26] G. S oderlind. Numerical methods for differential equations. Springer, 2017.

23

[27] P. J. Van der Houwen. The development of Runge-Kutta methods for partial differential
equations. Applied Numerical Mathematics, 20(3):261-272, 1996.

[28] S. Wang. Numerical methods for ordinary differential equations. 2020.

[29] W.H. Witty. A new method of numerical integration of differential equations. Mathematics
of Computation, 18(87):497-500, 1964.

[30] A. S. Wusu, M. A. Akanbi, and S. A. Okunuga. A three-stage multiderivative explicit Runge-
Kutta method. American Journal of Computational Mathematics, 3(2):121-126, 2013.

[31] W.Y. Yang, W. Cao, J. Kim, K. W. Park, H. H. Park, J. Joung, J. S. Ro, H. L. Lee, C. H. Hong,
and T. Im. Applied numerical methods using MATLAB. John Wiley & Sons, 2020.

24

