

التعليم العالي والبحث العلميوزارة
جامعة بابل

كلية التربية للعلوم الصرفة
قسم الرياضيات

 Research Title
numerical methods for solving ordinary

differential equations

الطلب بحث تقدم به
سجاد علي ساجت

 الى مجلس كلية التربية للعلوم الصرفة وهو جزء من

الرياضيات في متطلبات نيل شهادة البكالوريوس

شرافإب
 عبد الحسين البياتي فاطمة علي م.م.

 ـه ١٤٤٥ م ٢٠٢٤

 ཱཱིི཰﷽

لِسِ أيَُّهَا ٱلَّذِينَ ءَامَنوُٓاْ إذِاَ قيِلَ لكَُمۡ تفََسَّحُواْ فِي ٱلۡمَجَٰ { يَٰ
 ُ َّ๡لكَُمۖۡ وَإذِاَ قيِلَ ٱنشُزُواْ فَ ٱنشُزُواْ يرَۡفَعِ ٱ ُ َّ๡فَ ٱفۡسَحُواْ يفَۡسَحِ ٱ

ُ بِ مَا َّ๡تٖۚ وَ ٱ ٱلَّذِينَ ءَامَنوُاْ مِنكُمۡ وَ ٱلَّذِينَ أوُتوُاْ ٱلۡعِلۡمَ درََجَٰ
 تعَۡمَلوُنَ خَبيِرٞ }

 سورة المجادلة الاية (١١)

Chapter 1 1
1.1 Background. 1
1.2 Research question. 3
1.3 Abstract. .3
Chapter 2 4
2.1 Ordinary differential equations . 4
Chapter 3 6
3.1 Finite difference methods. 6
 3.1.1 Errors . 7
 3.1.2 Numerical properƟes . 7
3.2 Stability of explicit Runge-Kutta methods 10
 3.2.1 The forward Euler method 11
 3.2.2 Heun’s method . 12
 3.2.3 The fourth-order Runge-Kutta method . 13
 3.2.4 The fiŌh-order Runge-Kutta method . 14
 3.2.5 The eighth-order Runge-Kutta method .16
 3.2.6 Comparison of stability regions . 20
Bibliography 22

1

Chapter 1
1.1 IntroducƟ0n

A differential equation is an equation that relates one or several functions and its derivatives
[10]. DifferenƟal equations are used to model advanced systems, for instance, mechanical
and electrical systems from fields such as biology, social sciences, engineering, and econom-
ics. Mechanical systems and electrical systems are two examples of physical systems that
change over Ɵme [18]. DifferenƟal equaƟons are used to describe a conƟnuous change of
physical systems mathematically. Partial differential equations (PDEs) and ordinary differen-
tial equations (ODEs) are two classes of differential equations that are used to model and
characterize the behavior of physical systems. Parabolic PDEs exist in physical problems such
as a heat conduction problem for solid bodies. Heat equations describe how the heat tem-
perature distributes in, for instance, a rode as the time changes. Wave equations exist to be
used to model physical problems such as physical systems, where wave motions are consid-
ered [23]. Furthermore, the above-mentioned examples of systems are complex which ac-
cording to Houcque [11] are not possible to solve using analytical methods, therefore, numer-
ical methods are used instead. Numerical methods are important to use to solve those differ-
ential equations whose exact solutions are not possible to obtain using analytical methods.
Analytical methods such as the method of separation of variables give us exact solutions of
simple PDEs and ODEs, whereas numerical methods give us approximations of the exact so-
luƟon. Heath [10] emphasizes that numerical methods are viewed as a significant tool to use
to solve problems for example in engineering and industry. Also, Omale et al. [18] describe
that numerical methods have been used to solve differential equations of weather and cli-
mate forecasts. Numerical methods are explicit or implicit computed in one step or multiple
steps. An explicit method computes the numerical solution at the next time point using the
previous numerical solution at the previous time point. While an implicit method evaluates a
function using the numerical solution at the next time point which is solved for. There are var-
ious numerical methods for solving PDEs and ODEs [10]. The method of lines is an example
of a numerical method used to find numerical solutions of hyperbolic and parabolic PDEs by
transforming the PDEs to a system of first-order ODEs which approximates the original
PDEs. Finite difference methods, finite element methods, and finite volume methods are ex-
amples of numerical methods that are used to approximate the partial derivatives in the
PDEs [23]. Finite difference methods such as Runge-Kutta methods are essential for finding
approximate solutions of initial value problems of first-order ODEs [3]. High-order Runge-

2

Kutta methods are used to solve ODEs because of their high accuracy and efficiency [10].
Moreover, C. Runge and M. W. Kutta developed explicit and implicit RungeKuƩa methods [1].
The developments of low-order to high-order Runge-KuƩa methods started in 1895. In 1895,
C. Runge extended the forward Euler method to more elaborate Runge-Kutta methods with
higher accuracy. Runge developed the second-order Runge-KuƩa method in 1895. K. Heun in-
troduced the third-order Runge-KuƩa method in 1900 [6]. Runge-Kutta methods became im-
portant in the studies of explicit and implicit methods for solving ODEs through time discreti-
zaƟon [7]. In 1901, W. KuƩa introduced the fourth-order and the fifth-order Runge-Kutta
methods. F. J. Nystr¨om developed Runge-Kutta methods to be used to solve systems of se-
cond-order differenƟal equaƟons [27]. In 1957, R. H. Merson proposed the idea to combine
Runge-KuƩa methods of different orders in Butcher tableau. In 1964, Butcher introduced the
sixth-order Runge-Kutta method with seven stages. The seventh-order Runge-Kutta method
with nine stages was recognized from 1968. In 1970, the eighth-order Runge-Kutta method
with eleven stages was introduced by CurƟs [6]. Runge-Kutta methods are active in research
[1] and for the past several years, most research papers have relied on the derivaƟon of new
Runge-Kutta methods with higher derivatives to obtain more accurate Runge-Kutta methods
[30]. In several papers, researchers have invesƟgated, compared lower-order and high-order
RungeKutta methods in terms of numerical properties, namely accuracy, stability, and effi-
ciency. In SecƟon 1.2, we review such research

papers that have been published for the past several years

3

1.2 Research question

 we study the accuracy of the five explicit Runge-Kutta methods for solving an initial value
problem of a first-order linear ODE by verifying their convergence rates. We derive the
stability analysis to investigate which one of the five explicit Runge-Kutta methods has a
better stability property for solving an initial value problem of a linear test equation.

1.3 Abstract

 In Chapter 2, we present a theoreƟcal background on PDEs and ODEs. Chap-
ter 3 starts with a theoreƟcal background on finite difference methods and it
ends with the stability analysis for the five explicit Runge-Kutta methods.

4

 Chapter 2
 Differential equations

 This chapter presents a theoretical background on PDEs and ODEs that are fundamental
in this thesis

2.1 Ordinary differential equations
AN ordinary differential equation (ODE) is a differential equation involving an unknown func-
tion of derivatives with respect to one independent variable usually t. The order of an ODE is
determined by the highest derivative in the ODE. The highest derivative in a first-order linear
ODEisone,thereforethistypeofODEisoffirst-order[10].
Consider this first-order linear ODE taken from [28]
 ᇱ(t) = 5y(t), (2.1)ݕ
where y is a dependent variable with respect to the independent variable t and y(t) is an un-
known soluƟon which we seek for. According to Wang [28] EquaƟon (2.1) is simple, therefore
we can use analytical methods to solve it analytically. The general solution which is a family of
soluƟons of EquaƟon (2.1) is
 y(t) = C݁ହ௧ ,
where C is a real constant [28]. If we instead want to find an exact soluƟon of EquaƟon (2.1),
then we can impose the following initial condition to determine the value of C which according
to [28] it is
 y(0) = 2 ,
Wang [28] describes that the iniƟal condiƟon provide us with informaƟon that the iniƟal value
of y(t) at the initial time point ݐ଴ = 0 is 2. We get that y(0) = C݁଴ = C = 2 and the exact soluƟon
that saƟsfies the iniƟal condiƟon of EquaƟon (2.1) is
 Y(t) = 2݁ହ௧ , (2.2)

5

where EquaƟon (2.2) is in agreement with [28]. The first-order ODE with an initial condition is
called an iniƟal value problem [28]. Wang [28] describes that a general form of an iniƟal value
problem is
 ᇱ(t) = ݂(t,y(t)), (2.3)ݕ
 Y(a) = c, ݂ݎ݋ t ∈ ۤܽ, ,ۥܾ
where f(t, y(t)) is a function which depend on t and y. From the initial condition in Equation
(2.3), we know that the initial value is c. Also, the time interval is . t ∈ [a, b], the initial time
point is ݐ଴ = a and the final time point is ݐ௡ = b, where n is the number of time points. Heath
[10] describes that in most applications of differential equations there exists more than one
ODE which is transformed into a system of ODEs. Jung [13] introduce a system of k first-order
linear ODEs with coefficients written in this

ەۖ
ۖۖ
۔
ۖۖ
ଵᇱݕ ۓۖ (ݐ) = ܽଵଵݕଵ(ݐ) + ܽଵଶݕଶ(ݐ) + ⋯ + ܽ௞ଵݕ௞(ݐ) + ܾଵ(ݐ)),

ଶᇱݕ (ݐ) = ܽଶଵݕଵ(ݐ) + ܽଶଶݕଶ(ݐ) + ⋯ + ܽଶ௞ݕ௞(ݐ) + ܾଶ(ݐ)), ⋮ ݕ௞ᇱ (ݐ) = ܽ௞ଵݕଵ(ݐ) + ܽଶ௞ݕଶ(ݐ) + ⋯ + ܽ௞௞ݕ௞(ݐ) + ܾ௞(ݐ)),

where ܽ௜௝ (t) and ௝ܾ (t) are known functions on the time interval t ∈ [a, b], i = 1, 2, · · · , n and ݅
= 1, 2, · · · , n. The column vector is ݕԦ(t) of the unknown functions ݕଵ(t), · · · , ݕ௞(t) which are de-
pendent on t, where k = 1, 2, · · · , n [13]. Jung [13] write this system of k first-order linear ODEs
with an initial condition in matrix notation form as
Ԧݕ ᇱ(ݐ) = (2.4) ,(ݐ)Ԧ(t) + ሬܾԦݕܣ
(ݐ)Ԧݕ = ∋ Ԧ଴ , forݕ ሾܽ, ܾሿ,
In EquaƟon (2.4), A is a n × n matrix, ݕԦ ᇱ (t) is a column vector and ሬܾԦ(t) is another column vector.
The column vectors depend on t and the column vectors have a length n. If ሬܾԦ(t) has length zero,
then it is a zero column vector, and EquaƟon (2.4) becomes homogeneous. In EquaƟon (2.4),
we have the initial value vector ݕԦ଴ . In the efficiency study, we use numerical methods for
ODEs to solve an initial value problem of a homogenous system of first-order linear ODEs
formulated as EquaƟon (2.4)

6

Chapter 3
 Numerical methods for ODEs
In this chapter, we present a theoretical background on finite difference methods and analyze
the stability of the five explicit Runge-Kutta methods.
3.1 Finite difference methods
 Finite difference methods solve for instance initial value problems of first-order ODEs on the
time interval t ∈ [a, b]. The idea of finite difference methods for an initial value problem of a
first-order ODE is to divide the time interval t ∈ [a, b] into n subintervals and approximate the
first-order derivative in the initial value problem for every discrete time point ݐ௝ in t ∈ [a, b]. In
time discretization of initial value problems of first-order ODEs, we obtain discrete solutions
that are approximate values of the exact solution of the first-order ODE at discrete time points.
Time-discretization is a procedure for solving initial value problems of first-order linear ODEs
[31].
Now we show how to proceed with time-discreƟzaƟon of EquaƟon (2.3). We want to find an
approximate soluƟons of EquaƟon (2.3) by discretizing the time interval t ∈ [a, b] into n subin-
tervals using n + 1 points [28]
 a = ݐ଴ < ݐଵ < ݐଶ < · · · < ݐ௡ = b .
 Wang [28] describes that the length of each n subinterval is the step size ℎ௝ = ௝ݐ − ௝ିଵ, whereݐ
j = 1, 2, · · · , n. In this procedure, the previous computed numerical solution ݕ௝ିଵ at the previ-
ous discrete time point ݕ௝ିଵ is used to compute the next numerical solution ݕ௝ at the next dis-
crete Ɵme point tj , where j = 0, 1, · · · , n. An approximate soluƟon of EquaƟon (2.3) at the dis-
crete time point ݐ௝is ݕ௝ ≈ ଴ݕ ଴ isݐ The numerical solution at .(௝ݐ)ݕ = c. We can use the = (௢ݐ)ݕ
numerical solution ݕ଴ = c to compute the next numerical solution ݕଵ at the next discrete time
point ݐ௝. We can use this procedure to get the numerical solution ݕ௡ at the final time point ݐ௡.
One-step methods such as explicit Runge-Kutta methods use the information from the previ-
ously computed numerical solution at a discrete time point to compute the next numerical so-
lution at the next discrete time point. Explicit Runge-Kutta methods are finite difference meth-
ods for solving initial value problems of first-order ODEs. Explicit Runge-Kutta methods involve

7

s stages which is equal to the number of function evaluations of the function ݂(t, y(t)) in Equa-
Ɵon (2.3) needed to advance the numerical solution in one time step [10].
 3.1.1 Errors
 Errors occur when one performs numerical computation on a computer. Errors are classified
into round-off errors and truncation errors. Round-off errors are created from the representa-
tion of numbers that is approximated. We get round-off errors from numbers such as fractional
numbers, π, and the square root of numbers which can-not be represented exactly in the com-
puter. Truncation errors are created when a numerical method is approximating an exact solu-
tion. Truncation errors are the difference between the approximate solution and the exact solu-
tion. Truncation errors are classified into local truncation errors and global truncation errors
[10]. Heath [10] describes that the local truncation error ℓ௝ is
 ℓ௝=ݕ௝ − , (௝ݐ)௝ିଵݑ
where j = 1, 2, · · · , n, the numerical soluƟon of an iniƟal value problem of a first-order ODE is
 ௝ିଵ(t) is the solution of the ODE that passes through the point before, which isݑ ௝ andݕ
, ௝ିଵݐ) .(௝ିଵݕ
 According to Heath [10] the global truncaƟon error ݁௡ is
 ݁௡ = ௡ݕ − (௡ݐ)ݕ
the difference between the numerical solution ݕ௡ and the exact solution y(ݐ௡) at the final time
point ݐ௡. The differences between a local truncation error and a global truncation error are that
we compute the local truncation error in the numerical solution of an ODE at a discrete-time
point ݐ௝. While we compute the global truncation error at the final time point ݐ௡ and we obtain
a total error at the final time point ݐ௡ [28]. In this thesis, we only compute global truncaƟon er-
rors because in both the convergence study and the efficiency study we want to compute glob-
al truncation errors at the final time point ݐ௡. Heath [10] states that global truncaƟon errors are
essential to study when evaluating the performance of numerical methods
3.1.2 Numerical properƟes
Accuracy, stability, and efficiency are three numerical properties that are used to determine the
performance of numerical methods [10].
The following definition of accuracy is from [10].
DefiniƟon 3.1.1. The accuracy of a numerical method is said to be of order p if

8

 ℓ௝ = ࣩ(ℎ௝௣ାଵ).
 The motivation for this definition, with the order of accuracy one less than the exponent of the
step size in the local error, is that if the local error is ࣩ(ℎ௝௣ାଵ), then the local error per unit step,
ℓೕ
௛ೕ , is ࣩ(ℎ௝௣), and it can be shown that under reasonable conditions the global error ݁௡ ݅ݏ ࣩ(ℎ௣
), where h is the average step size.
 Leveque [16] describe that ࣩ is a big-oh notation and it is also known as an asymptotic notation
which describe a funcƟon that is bounded asymptoƟcally by upper bounds. In DefiniƟon 3.1.1, j
= 1, 2, · · · , n and the global truncaƟon error 16 ࣩ(ℎ௣) is independent of h. We expect the fol-
lowing from a numerical method that has order of accuracy p

݁௛ = ℎ௣ܥ + ℎ݁݊ ℎݓ(ℎ௣)݋ → 0 ,
where ݁௛ is an error on a grid of M points and C is in this case an error constant. The little-oh
notaƟon o describe a funcƟon that is not bounded asymptoƟcally by upper bounds [16].
According to Leveque [16] if h is too small, then
 ݁௛ ≈ .ℎ௣ܥ
A refinement of the grid by a factor of 2, we get.
 ݁௛ଶ ≈ ஼ ቀ௛ଶቁ೛

Other factors can certainly be used as well to refine the grid, but refining a grid by a factor of 2
is a standard way. The ratio of the errors ݁௛ and ݁೓

మ is .
 ௘೓

௘೓మ
 ≈ 2௣

where p is a positive integer and the errors decrease approximately by a factor of 2௣ . Hence,
 p≈ ଶ݃݋݈ ቆ௘೓

௘೓మ
ቇ.

Furthermore, Leveque [16] describes that we can estimate p with two grid spa-cings ℎଵ and ℎଶ
as the following

 p≈ ௟௢௚൬೐೓భ
೐೓మ൰

௟௢௚ቀ೓భ೓మቁ , (3.1)

9

If the posiƟve integer p > 0, then the global truncation error ࣩ(ℎ௣) → 0, when h → 0, and
the numerical method converges with the convergence rate p. The rate p of convergence is
known as the order of accuracy of a numerical method. The convergence rate p shows how
fast the numerical method converges to the exact solution when the step size h → 0. We
can measure the accuracy of a numerical method by verifying the convergence rate p of a
numerical method [28].
 According to ܵöderlind [26], it is not possible to obtain accuracy in numerical
solutions if a numerical method is not stable. For this reason, a numerical method must be
stable too. The following definiƟon of stability is from [10]
 DefiniƟon 3.1.2. numerical method is said to be stable if small perturbations do
not cause the resulting numerical solutions to diverge away without bound.

 Perturbations are created in numerical computation. Small perturbations are due to
round-off errors or truncation errors in the initial data. A small perturbation is when a small
change in the initial value of an ODE leads to often a small change in the numerical solu-
tions of the ODE. We are perturbing the initial value by doing small changes to them. A sta-
ble numerical method is not sensitive to small perturbations, therefore the numerical solu-
tions do not diverge from the exact solution. For a stable numerical method, the errors in
the numerical solutions decrease to zero. Small perturbations to the numerical solutions of
a stable ODE get diminished as the time increases because the numerical solution curves of
the ODE converge to the exact solution of the ODE. Consequently, the numerical solutions
will bound the exact solution.
 Furthermore, an unstable numerical method is sensitive to small perturbations,
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the numerical solutions to diverge from the exact solution. Small per-
turbations to a numerical solution of an unstable ODE will grow as the time increases be-
cause the numerical solution curves of the ODE diverge. If the numerical solutions of an
unstable ODE diverge from the exact solution, then the numerical solutions are unbounded
the exact soluƟon [10].
 Furthermore, an unstable numerical method is sensitive to small perturbations,
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the
.݊݋݅ݐݑ݈݋ݏ ݐܿܽݔ݁ ℎ݁ݐ ݉݋ݎ݂ ݁݃ݎ݁ݒ݅݀ ݋ݐ ݏ݊݋݅ݐݑ݈݋ݏ ݈ܽܿ݅ݎ݁݉ݑ݊ ݊݋݅ݐݑ݈݋ݏ ݈ܽܿ݅ݎ݁݉ݑ݊ ܽ ݋ݐ ݏ݊݋݅ݐܾܽݎݑݐݎ݁݌ ݈݈ܽ݉ܵ
of an unstable ODE will grow as the time increases because the numerical solution curves

10

of the ODE diverge. If the numerical solutions of an unstable ODE diverge from the exact
soluƟon, then the numerical soluƟons are unbounded the exact soluƟon [10].

DefiniƟon 3.1.3.Numerical efficiency means here the combination of short
computational time and an acceptable error level.
 An important aspect of numerical methods is to verify how much computational time
is required for numerical methods to compute errors [22]. We can measure the efficiency of
numerical methods by computing errors in the numerical solution of ODEs and computa-
Ɵonal Ɵme [25]. Several researchers have improved the efficiency of Runge-Kutta methods
for solving ODEs by decreasing the number of function evaluations
 3.2 Stability of explicit Runge-Kutta methods
ܵöderlind [26] emphasizes that the stability property has a crucial role in solving first-order
ODEs using numerical methods. We can verify the stability of numerical methods by ana-
lyzing how the numerical methods behave on a linear test equation. In this section, we de-
rive the stability analysis for the five explicit Runge-Kutta methods for solving a linear test
equaƟon from [28] defined as

 ᇱ(t) = -ᆋy(t), (3.2)ݕ
 Y(0) = 1 t ∈ ሾ0, ܶሿ,

where λ ∈ C.
 We choose EquaƟon (3.2) to be considered in the stability analysis for the five explicit
Runge-Kutta methods because it is a simple first-order ODE which according to Söderlind
[26] one choose in the stability analysis to be able to solve it analytically by pen and paper
 The known exact soluƟon of EquaƟon (3.2) is

 Y(t)=݁ିఒ௧ , (3.3)

The exact soluƟon (3.3) is also an exponenƟal soluƟon of EquaƟon (3.2) which decrease ex-
ponentially to zero when t →∞ and Re(λ) > 0. The notaƟon, Re(λ) > 0 means posiƟve real
values of λ on the real coordinate (Re) axis in a complex plane [28]. A complex plane also
consists of an imaginary coordinate (Im) axis which visualizes complex numbers z = hλ. A
numerical method is stable for different values of hᆋ, where h is the step size. Different
values of hλ are bounded in a region called stability region which we can visualize in a com-
plex plane. An numerical method is stable if |S(z)|< 1, where S(z) is a stability funcƟon. The

11

stability function S(z) is a series in power of z which approximate the exponential solution of
a linear test equaƟon [20].
 Furthermore, in SecƟon 3.2.1 to SecƟon 3.2.5, we analyze each explicit Runge-Kutta
method in terms of stability for solving EquaƟon (3.2). We obtain a stability condiƟon for
each explicit Runge-KuƩa method in the stability analysis. In SecƟon 3.2.6, we plot the sta-
bility conditions to visualize the stability regions of the five explicit Runge-Kutta methods in
a complex plane. Lastly, we compare the stability regions to determine which explicit
Runge-Kutta method has the smallest and the largest stability region.
 3.2.1 The forward Euler method
 Atkinson et al. [4] describe that the forward Euler method is a first-order Runge-Kutta
method and it is defined as
௝ݕ = ௝ିଵݕ + ℎ݂(ݐ௝ିଵ ,ݕ௝ିଵ) ,
The forward Euler method is used to compute the numerical solution yj at the discrete time
point tj . The forward Euler method is a one-stage explicit RungeKutta method which means
that to advance the numerical solution in one time step, then one function evaluation is
needed [28].
 We can now derive the stability analysis for the forward Euler method for solving
EquaƟon (3.2) as follows

௝ݕ = ௝ିଵݕ + ℎ(−ݕߣ௝ିଵ) ,
௝ݕ = (1 − ℎᆋ)ି࢐࢟૚,
where ݕ௝ , ௝ିଵ are numerical soluƟons and 1 − hλ is a constant [28]. Furthermore,we haveݕ

௝ିଵݕ = (1 − ℎݕ(ߣ௝ିଶ ,
௝ିଶݕ = (1 − ℎݕ(ߣ௝ିଷ ,
 ⋮

ଵݕ = (1 − ℎ)ݕ଴ = (1 − ℎᆋ).
Consequently, we get the following numerical solution.
௝ݕ = (1 − ℎߣ)௝ , (3.4)
According to Wang [28] the numerical soluƟon (3.4) of EquaƟon (3.2) obtained by the for-
ward Euler method is stable because the numerical soluƟon (3.4) converges to zero. The
numerical solution (3.4) decrease in Ɵme t as j → ∞. To satisfy this, therefore we need to
require the following stability condition
 |1 − ℎߣ| < 1 , (3.5)
The stability condiƟon (3.5) constraints the value of the step size h. The forward Euler
method is stable when it satisfies the stability condiƟon (3.5). The stability condiƟon (3.5) is

12

an inequality less than 1, therefore we can simplify the stability condiƟon by removing the
absolute value and we get

 -1< 1 − ℎߣ < 1 → 0 < ℎߣ < 2 → 0 < ℎ < ଶ

ఒ .

The forward Euler method is stable for solving EquaƟon (3.2) if it saƟsfies the stability con-
dition h < ଶ

ఒ if λ ∈ R. The inequality 0 < hλ saƟsfies if λ > 0 according to [28].
 We can now investigate how the numerical solution of EquaƟon (3.2) changes for
different values of hλ. Assume that we have h = 2, h = 0.1 and λ in EquaƟon (3.2) is λ = 5. If h
= 0.1 and λ = 5, then hλ = 0.5 and hλ < 2 which means that the forward Euler method is sta-
ble. We can say that the forward Euler method is stable when h < ଶ

ఒ for λ ∈ ℝ. If h = 2 and λ
= 5, then hλ =10 and hλ > 2, which means that the forward Euler method is unstable, there-
fore the numerical solution diverges to infinity.
 Furthermore, the forward Euler method has the following stability function S(hλ)

 S(hᆋ)=1-hᆋ.
This stability function alternates in sign
 Wang [28] has also obtained the stability condiƟon (3.5) for the forward Euler method
for solving the EquaƟon (3.2). The stability condiƟon for the forward Euler method present-
ed in [2] does not equal the stability condiƟon (3.5) because the test equaƟon solved in [2]
is not the same as EquaƟon (3.2). The test equaƟon solved in [2] is

(ݐ)ᇱݕ = ᆋ(࢚)࢟ , (૜. ૟)
therefore we do not obtain the same stability condition for the forward Euler method as in
[2].
 3.2.2 Heun’s method
 WiƩy [29] describes Heun’s method is a second-order Runge-Kutta method and it is de-
fined as .

࢐࢟ = ૚ି࢐࢟ + ૚
૛ ૚࢑)ࢎ + , (૛࢑

૚࢑ = ,૚ି࢐࢚൫ࢌ ,૚൯ି࢐࢟
૛࢑ = ૚ି࢐࢚൫ࢌ + , ࢎ ૚ି࢐࢟ + .૚൯࢑ࢎ

Heun’s method is a two-stage explicit Runge-Kutta method which means that to advance
the numerical solution in one time step, then two function evaluations are needed. Heun’s
method consists of one more function evaluation than the forward Euler method. We can

13

now derive the stability analysis for Heun’s method for solving EquaƟon (3.2) as the follow-
ing
 ݇ଵ = (-ᆋ)ݕ௝ିଵ ,
 ݇ଶ = (-ᆋ+ ଵଶ ℎߣଶ) ݕ௝ିଵ ,
௝ݕ = ቀ1 − ℎᆋ + ૚

૛ ૛ᆋ૛ቁࢎ ,૚ି࢐࢟
Consequently, we get the numerical solution as follows
௝ݕ = ൬1 − ℎߣ + 1

2 ℎଶߣଶ൰
௝

 , (3.7)
The numerical solution (3.7) decrease in Ɵme t as j → ∞. To satisfy this, we require the fol-
lowing stability condition

ቚ1 − ℎߣ + ଵ

ଶ ℎଶߣଶቚ < 1 (3.8)
If we simplify the stability condiƟon (3.8) by removing the absolute value we get,

 −1 < 1 − ℎᆋ + ૚

૛ ૛ᆋ૛ࢎ < ૚ → ૙ < ᆋࢎ − ૚
૛ ૛ᆋ૛ࢎ < ૛ → ૙ < ᆋࢎ < ૛ → ૙ < ࢎ < ૛

ᆋ
,

where h < ଶ

ఒ is the stability condition for Heun’s method when λ ∈ R and h > 0. This stability
condition is the same as the stability condition for the forward Euler method. The stability
function of Heun’s method is .
 ܵ(ℎᆋ) = ૚ − ᆋࢎ + ૚

૛ . ૛(ᆋࢎ)
The stability function of the forward Euler method and Heun’s method are related because
the first two terms of the stability function of Heun’s method are the same as the terms of
the stability function of the forward Euler method. The stability function of Heun’s method
involves three terms, whereas the stability function of the forward Euler method involves
two terms.
 3.2.3 The fourth-order Runge-Kutta method
 Roslan [21] describes that the fourth-order Runge-Kutta method (RK4) is also known as
the
classical Runge-Kutta method defined as

௝ݕ = ௝ିଵݕ + ଵ

଺ ℎ(݇ଵ + 2݇ଶ + 2݇ଷ + ݇ସ),
݇ଵ = ݂൫ݐ௝ିଵ , , ௝ିଵ൯ݕ

14

݇ଶ = ݂ ൬ݐ௝ିଵ , 1
2 ℎ , ௝ିଵݕ + 1

2 ℎ݇ଵ൰ ,
 ݇ଷ = ݂ ൬ݐ௝ିଵ + 1

2 ℎ , ௝ିଵݕ + 1
2 ℎ݇ଶ൰,

݇ସ = ݂൫ݐ௝ିଵ + ℎ , ௝ିଵݕ + ℎ݇ଷ൯ ,
RK4 is a four-stage explicit Runge-Kutta method which means that to advance the numeri-
cal solution in one time step four function evaluations are needed. For RK4 two more func-
tion evaluations are needed than for Heun’s method. We can now derive the stability analy-
sis for RK4 for solving EquaƟon (3.2) and we get

 ݇ଵ = ,௝ିଵݕ(ߣ−)

 ݇ଶ = ൬−ߣ + 1
2 ℎߣଶ൰ , ௝ିଵݕ

 ݇ଷ = ቀ−ߣ + ଵ
ଶ ℎℎଶ − ଵ

ସ ℎℎଷቁ , ௝ିଵݕ
 ݇ସ = ൬− ߣ + ℎߣଶ − 1

2 ℎଶߣଷ + 1
4 ℎଷߣସ൰ , ௝ିଵݕ

௝ݕ = ൬1 − ℎߣ + 1
2 ℎଶߣଶ − 1

6 ℎଷߣଷ + 1
24 ℎସߣସ൰ , ௝ିଵݕ

Consequently, we get the following numerical solution
௝ݕ = ቀ1 − ℎߣ + ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସቁ௝ , (3.9)
which decrease in time t as j →∞. To satisfy this, we require the following stability condition
 ቚ1 − ℎߣ + ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସቚ < 1 .
The stability funcƟon of RK4 is
 ܵ(ℎ) = 1 − ℎߣ + ଵ

ଶ (ℎߣ)ଶ − ଵ
଺ (ℎߣ)ଷ + ଵ

ଶସ (ℎߣ)ସ .
This stability function involves five terms which means two more terms than the terms of
the stability function of Heun’s method. The first three terms of this stability function are al-
so involved in the stability function of Heun’s method.
3.2.4 The fiŌh-order Runge-Kutta method
 Gopal et al. [8] define the fiŌh-order Runge-Kutta method (RK5) as

௝ݕ = ௝ିଵݕ + 1
90 ℎ(7݇ଵ + 32݇ଷ + 12݇ସ + 32݇ହ + 7݇଺) ,

 ݇ଵ = ݂൫ݐ௝ିଵ , , ௝ିଵ൯ݕ
݇ଷ = ݂ ൬ݐ௝ିଵ + 1

4 ℎ , ௝ିଵݕ + 1
4 ℎ݇ଵ൰ ,

15

݇ଷ = ݂ ൬ݐ௝ିଵ + 1
4 ℎ , ௝ିଵݕ + 1

8 ℎ݇ଵ + 1
8 ℎ݇ଶ൰ ,

݇ସ = ݂ ൬ݐ௝ିଵ + 1
2 ℎ , ௝ିଵݕ − 1

2 ℎ݇ଶ + 1
8 ℎ݇ଷ൰ ,

݇ହ = ݂ ൬ݐ௝ିଵ + 3
4 ℎ , ௝ିଵݕ + 3

16 ℎ݇ଵ + 9
16 ℎ݇ସ൰ ,

 ݇଺ = ݂ ൬ݐ௝ିଵ + ℎ , ௝ିଵݕ − 3
7 ℎ݇ଵ + 2

7 ℎ݇ଶ + 12
7 ℎ݇ଷ − 12

7 ℎ݇ସ + 8
7 ℎ݇ହ൰ .

a six-stage explicit Runge-Kutt method which means six function evaluations are needed to
advance the numerical solution in one time step. We see that RK5 consists of two more
function evaluations than RK4. We can now derive the stability analysis for RK5 for solving
the EquaƟon (3.2) and we getWe can now derive the stability analysis for RK5 for solving
the EquaƟon (3.2) and we get

݇ଵ = ,௝ିଵݕ(ߣ−)
݇ଶ = ൬−ߣ + 1

4 ℎߣଶ൰ , ௝ିଵݕ
݇ଷ = ൬−ߣ + 1

4 ℎߣଶ − 1
32 ℎଶߣଷ൰ , ௝ିଵݕ

݇ସ = ൬− ߣ + 1
2 ℎߣଶ − 1

8 ℎଶߣଷ + 1
32 ℎଷߣସ൰ , ௝ିଵݕ

݇ହ = ൬− ߣ + 12
16 ℎߣଶ − 9

32 ℎଶߣଷ + 9
128 ℎଷߣସ − 9

514 ℎସߣହ൰ , ௝ିଵݕ
݇଺ = ൬−ߣ + ℎߣଶ − 1

2 ℎଶߣଷ + 9
56 ℎଷߣସ − 3

112 ℎସߣହ + 72
3584 ℎହߣ଺൰ , ௝ିଵݕ

௝ݕ = ൬1 − ℎߣ + 1
2 ℎଶߣଶ − 1

6 ℎଷߣଷ + 1
24 ℎସߣସ − 1

120 ℎହߣହ + 1
640 ℎ଺ߣ଺൰ , ௝ିଵݕ

As a consequence, we get the following numerical solution

௝ݕ = ቀ1ߣ − ℎߣ + ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସቁ௝ , (3.10)

which decrease in time t as j → ∞. To satisfy this, we require the following stability condi-
tion

 ቚ1 − ℎߣ + ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସ − ଵ
ଵଶ଴ ℎହߣହ + ଵ

଺ସ଴ ℎ଺ߣ଺ቚ < 1 .
The stability function of RK5 is

 ܵ(ℎߣ) = 1−hᆋ+ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସ − ଵ
ଵଶ଴ ℎହߣହ + ଵ

଺ସ଴ ℎ଺ߣ଺ .

16

The stability function of RK5 involves seven terms which means three more terms than the
terms in the stability function of RK4. The first three terms in this stability function are also
involved in the stability function of RK4 and Heun’s method but not in the stability function
of the forward Euler method.
3.2.5 The eighth-order Runge-Kutta method
The eighth-order Runge-Kutta method (RK8) is defined in [5] with Butcher tableau. The
RK8 is

௝ݕ = ௝ିଵݕ + ℎ ൬ 34
105 ݇଺ + 9

35 ݇଻ + 9
35 ଼݇ + 9

280 ݇ଽ + 9
280 ݇ଵ଴ + 41

840 ݇ଵଶ + 41
840 ݇ଵଷ൰,

݇ଶ = ݂ ൬ݐ௝ିଵ + 2
27 ℎ , ௝ିଵݕ + 2

27 ℎ݇ଵ൰ ,

 ݇ଷ = ݂ ൬ݐ௝ିଵ + ଵ
ଽ ℎ , ௝ିଵݕ + ଵ

ଷ଺ ℎ(݇ଵ + 3݇ଶ)൰ ,

 ݇ସ = ݂ ൬ݐ௝ିଵ + ଵ
଺ ℎ , ௝ିଵݕ + ଵ

ଶସ ℎ(݇ଵ + 3݇ଷ)൰ ,
 ݇ହ = ݂ ൬ݐ௝ିଵ + ହ

ଵଶ ℎ , ௝ିଵݕ + ଵ
ସ଼ ℎ(20݇ଵ − 75݇ଷ + 75݇ସ)൰ ,

݇଺ = ݂ ቆݐ௝ିଵ + 1
2 ℎ , ௡ݕ + 1

20 ℎ(݇ଵ + 5݇ସ + 4݇ହ)ቇ,

݇଻ = ݂ ൭ݐ௝ିଵ + 5
6 ℎ , ௝ିଵݕ + 1

180 ℎ(−25݇ଵ + 125݇ସ − 260݇ହ + 250݇଺)൱,

଼݇ = ݂ ቆݐ௝ିଵ + 1
6 ℎ , ௝ିଵݕ + ℎ ൬ 31

300 ݇ଵ + 61
225 ݇ହ − 2

9 ݇଺ + 13
900 ݇଻൰ቇ,

݇ଽ = ݂ ൭ݐ௝ିଵ + 2
3 ℎ , ௝ିଵݕ + ℎ ൬2݇ଵ − 53

6 ݇ସ + 704
45 ݇ହ − 107

9 ݇଺ + 67
90 ݇଻ + 3଼݇൰൱,

݇ଵ଴ = ݂ ൬ݐ௝ିଵ + ଵ
ଷ ℎ , ௝ିଵݕ + ℎ ቀ− ଽଵ

ଵ଴଼ ݇ଵ + ଶଷ
ଵ଴଼ ݇ସ − ଽ଻଺

ଵଷହ ݇ହ + ଷଵଵ
ହସ ݇଺ − ଵଽ

଺଴ ݇଻ + ଵ଻
଺ ଼݇ − ଵ

ଵଶ ݇ଽቁ൰

݇ଵଵ = ݂ ൬ݐ௝ିଵ + ℎ , ௝ିଵݕ + ℎ ቀଷଶ଼ଷ
ସଵ଴଴ ݇ଵ − ଷସଵ

ଵ଺ସ ݇ସ + ସସଽ଺
ଵ଴ଶହ ݇ହ − ଷ଴ଵ

଼ଶ ݇଺ + ଶଵଷଷ
ସଵ଴଴ ݇଻ + ସହ

଼ଶ ଼݇ + ସହ
ଵ଺ସ ݇ଽ +

 ଵ଼
ସଵ ݇ଵ଴ቁ൰,

17

݇ଵଶ = ݂ ቆݐ௝ିଵ , ௝ିଵݕ + ℎ ൬ 3
205 ݇ଵ − 6

41 ݇଺ − 3
205 ݇଻ − 3

41 ଼݇ − 3
41 ݇ଽ + 6

41 ݇ଵ଴൰ቇ,

݇ଵଷ = ݂ ൬ݐ௝ିଵ + ℎ , + ௝ିଵݕ ቀ− ଵ଻଻଻
ସଵ଴଴ ݇ଵ − ଷଵସ

ଵ଺ସ ݇ସ + ସସଽ଺
ଵ଴ଶହ ݇ହ − ଶ଼ଽ

଼ଶ ݇଺ + ଶଵଽଷ
ସଵ଴଴ ݇଻ + ହଵ

଼ଶ ଼݇ +
 ଷଷ

ଵ଺ସ ݇ଽ + ଵଶ
ସଵ ݇ଵ଴ + ݇ଵଶ ቁ൰ ,

RK8 is a thirteen-stage explicit Runge-Kutta method which means that thirteen function
evaluations are needed to advance the numerical solution in one time step. RK8 consists of
nine more function evaluations than RK5. We can now derive the stability analysis for RK8
for solving Equation (3.2) and we get

 ݇ଵ = , ௝ିଵݕ(ߣ−)
݇ଶ = ൬−ߣ + 2

27 ℎߣଶ൰ ,௝ିଵݕ
݇ଷ = ൬−ߣ + 1

9 ℎߣଶ − 1
162 ℎଶߣଷ൰ , ௝ିଵݕ

݇ସ = ൬−ߣ + 1
6 ℎߣଶ − 1

72 ℎଶߣଷ + 1
296 ℎଷߣସ൰ , ௝ିଵݕ

݇ହ = ൬−ߣ + 5
12 ℎߣଶ − 25

288 ℎଶߣଷ + 125
10368 ℎଷߣସ − 25

20736 ℎସߣହ൰ , ௝ିଵݕ
 ݇଺ = ቀ−ߣ + ଵ

ଶ ℎߣଶ − ଵ
଼ ℎଶߣଷ + ଵ

ସ଼ ℎଷߣସ − ଵ
ଷ଼ସ ℎସߣହ + ହ

ଶ଴଻ଷ଺ ℎହߣ଺ቁ , ௝ିଵݕ
݇଻ = ൬−ߣ + 5

6 ℎߣଶ − 25
72 ℎଶߣଷ + 125

1296 ℎଷߣସ − 625
31104 ℎସߣହ + 875

279936 ℎହߣ଺ − 625
1119744 ℎ଺ߣ଻൰ , ௝ିଵݕ

଼݇ = ൬−ߣ + 1
6 ℎߣଶ − 1

72 ℎଶߣଷ + 1
1296 ℎଷߣସ − 1

31104 ℎସߣହ + 43
1119744 ℎହߣ଺ + 85

10077696 ℎ଺ߣ଻

+ 325
40310784 ℎ଻଼ߣ൰ , ௝ିଵݕ

݇ଽ = ൬−ߣ + 2
3 ℎߣଶ − 2

9 ℎଶߣଷ + 4
81 ℎଷߣସ − 2

243 ℎସߣହ + 1655
559872 ℎହߣ଺ + 4279

10077696 ℎ଺ߣ଻

+ 7865
20155392 ℎ଻଼ߣ − 325

13436928 ℎ଼ߣଽ൰ , ௝ିଵݕ
݇ଵ଴ = ൬−ߣ + 1

3 ℎߣଶ − 1
18 ℎଶߣଷ + 1

162 ℎଷߣସ − 1
1944 ℎସߣହ − 757

1119744 ℎହߣ଺ − 439
1679616 ℎ଺ߣ଻

− 3331
20155392 ℎ଻଼ߣ + 65

6718464 ℎ଼ߣଽ − 325
161243136 ℎଽߣଵ଴൰ , ௝ିଵݕ

݇ଵଵ = ൬−ߣ + ℎߣଶ − 1
2 ℎଶߣଷ + 1

6 ℎଷߣସ − 1
24 ℎସߣହ + 14767

1700352 ℎହߣ଺ − 6511
5101056 ℎ଺ߣ଻ + 53

186624 ℎ଻଼ߣ

− 7151
183638016 ℎ଼ߣଽ + 65

27205632 ℎଽߣଵ଴ − 325
367276035 ℎଵ଴ߣଵଵ൰ , ௝ିଵݕ

18

݇ଵଶ = ൬− ߣ + 10
566784 ℎ଺ߣ଻ − 17

45909504 ℎ଻଼ߣ − 2081
550914048 ℎ଼ߣଽ + 65

183638016 ℎଽߣଵ଴

− 325
1101828096 ℎଵ଴ߣଵଵ൰ , ௝ିଵݕ

݇ଵଷ = ൬− + ℎߣଶ − 1

2 ℎଶߣଷ + 1
6 ℎଷߣସ − 1

24 ℎସߣହ + 14767
1700352 ℎହߣ଺ − 1585

1275264 ℎ଺ߣ଻

+ 7297
22954752 ℎ଻଼ߣ − 599

17216064 ℎ଼ߣଽ + 12809
2203656192 ℎଽߣଵ଴

+ 65
275457024 ℎଵ଴ߣଵଵ − 325

1101828096 ℎଵଵߣଵଶ൰ , ௝ିଵݕ
௝ݕ = ൬1 − ℎߣ + 1

2 ℎଶߣଶ − 1
6 ℎଷߣଷ + 1

24 ℎସߣସ − 1
120 ℎହߣହ + 1

720 ℎ଺ߣ଺ − 1
5040 ℎ଻ߣ଻

+ 1
40320 ℎ଼଼ߣ − 491

209018880 ℎଽߣଽ + 1333
5643509760 ℎଵ଴ߣଵ଴

+ 13
501645312 ℎଵଵߣଵଵ − 65

4514807808 ℎଵଶߣଵଶ൰ , ௝ିଵݕ

Consequently, we get the following numerical solution

௝ݕ = ቀ1 − ℎߣ + ଵ

ଶ ℎଶߣଶ − ଵ
଺ ℎଷߣଷ + ଵ

ଶସ ℎସߣସ − ଵ
ଵଶ଴ ℎହߣହ + ଵ

଻ଶ଴ ℎ଺ߣ଺ − ଵ
ହ଴ସ଴ ℎ଻ߣ଻ +

ଵ
ସ଴ଷଶ଴ ℎ଼଼ߣ − ସଽଵ

ଶ଴ଽ଴ଵ଼଼଼଴ ℎଽߣଽ + ଵଷଷଷ
ହ଺ସଷହ଴ଽ଻଺଴ ℎଵ଴ߣଵ଴ + ଵଷ

ହ଴ଵ଺ସହଷଵଶ ℎଵଵߣଵଵ − ଺ହ
ସହଵସ଼଴଻଼଴଼ ℎଵଶߣଵଶቁ௝

 (3.11)
which decrease in time t as j → ∞. To satisfy this, we require the following stability condi-
tion

ฬ1 − ℎߣ + 1

2 ℎଶߣଶ − 1
6 ℎଷߣଷ + 1

24 ℎସߣସ − 1
120 ℎହߣହ + 1

720 ℎ଺ߣ଺ − 1
5040 ℎ଻ߣ଻ + 1

40320 ℎ଼଼ߣ

− 491
209018880 ℎଽߣଽ + 1333

5643509760 ℎଵ଴ߣଵ଴ + 13
501645312 ℎଵଵߣଵଵ

− 65
4514807808 ℎଵଶߣଵଶฬ < 1 .

The stability funcƟon of RK8 is

ܵ(ℎߣ) = 1 − ℎߣ + 1

2 (ℎߣ)ଶ − 1
6 (ℎߣ)ଷ + 1

24 (ℎߣ)ସ − 1
120 (ℎߣ)ହ + 1

720 (ℎߣ)଺ − 1
5040 (ℎߣ)଻

+ 1
40320 (ℎߣ)଼ − 491

209018880 (ℎߣ)ଽ + 1333
5643509760 (ℎߣ)ଵ଴

+ 13
501645312 (ℎߣ)ଵଵ − 65

4514807808 (ℎߣ)ଵଶ

19

The stability function of RK8 involves six more terms than the terms of the stability function
of RK5. The stability function of RK5 does also involve the first six terms of the stability
function of RK8. The seventh term in this stability function of RK8 does not equal the last
term of the stability function of RK5 because the fraction is different.
 RK8 has a higher number of function evaluations than the forward Euler method,
Heun’s method, RK4, RK5, and RK8. The forward Euler method has the lowest number of
function evaluations. Söderlind [26] discusses that high-order explicit Runge-Kutta methods
involving a high number of function evaluations will have higher computational effort than
thelow-orderexplicit-Runge-Kuttamethods.
S´eka and Assui [24] have also done stability analysis for the forward Euler method, Heun’s
method, and RK4 considering EquaƟon (3.6). In their stability analysis, they obtained equa-
tions that almost equal to EquaƟon (3.4), EquaƟon (3.7), and EquaƟon (3.9). The equaƟons
in [24] do not alternate in sign which EquaƟon (3.4), EquaƟon (3.7), and EquaƟon (3.9) do.
The reason for this is that the authors have solved EquaƟon (3.6) is a nonnegative test
equation which we have not done in the stability analysis for the five explicit Runge-Kutta
methods. However, since the terms of EquaƟon (3.4), EquaƟon (3.7), and EquaƟon (3.9)
equal the terms of the equaƟons in [24], then we can state that EquaƟon (3.4), EquaƟon
(3.7), and EquaƟon (3.9) is correct. Furthermore, the first eight terms of EquaƟon (3.11)
equal the stability function of RK8 with eleven stages in [24]. The terms of this stability
funcƟon in [24] do not alternate in sign as the terms of EquaƟon (3.11) does. The stability
analysis for RK5 and RK8 with thirteen stages is difficult to

20

findFigure 3.1. Stability regions of the five explicit Runge-Kutta methods in a complex plane

in the literature. We did the stability analysis for RK5 (see SecƟon 3.2.4) and RK8 (see Sec-
Ɵon 3.2.5) based on the procedure of the stability analysis for the forward Euler method.
 3.2.6 Comparison of stability regions
 In SecƟon 3.2.1 to SecƟon 3.2.5, we obtained stability condiƟons for the five explicit Runge-
Kutta methods which are plotted in a complex plane to visualize its stability regions in
MATLAB (see Script 1 in Appendix A). MATLAB is a software which we use to perform
numerical computaƟon, we visualize the data in figures and tables. We run Script 1 in
MATLAB and we get Figure 3.1. We see in Figure 3.1, that the stability region of the for-
ward Euler method is a disk of radius 1. The forward Euler method is centered at the point
of hλ = 1. Söderlind [26] has also analyzed stability regions of the forward Euler method for
solving EquaƟon (3.6) and obtained instead that the forward Euler method is centered at
hλ = −1 in a complex plane. The stability region of RK4, RK5, and RK8 have a shape as an
ear lobe. The five explicit Runge-Kutta methods are stable inside their regions and unstable
outside their regions

21

 In Figure 3.1, we see that the five explicit Runge-Kutta methods are stable on the
positive real coordinate ܴ௘(hλ) of the complex plane. The stability regions are on the right-
hand side of the complex plane because the five explicit Runge-Kutta methods are stable for
values of ܴ௘(hλ) > 0, which are bounded in its stabilityregions. We can see that RK4, RK5,
and RK8 have larger stability regions than the forward Euler method and Heun’s method.
The reason is that as the order of explicit Runge-Kutta methods gets higher, then the explic-
it Runge-Kutta methods become stable for more values of Re(hλ) and its stability regions get
larger which is in agreement with [26]. This means that RK4, RK5, and RK8 are stable for
more values of Re(hλ) than the forward Euler method and Heun’s method. Additionally, ac-
cording to Atkinson et al. [4] explicit Runge-Kutta methods get larger stability regions when
they are restricted on too small step sizes. The step size of h needs to be small for hλ to be
in the stability region and to obtain stable numerical methods. The numerical method with
the widest stability region has better stability. This means that RK8 is the most stable of all
the five explicit Runge-Kutta methods because it has the largest stability region. Also, the
forward Euler method with the smallest stability region is less stable than Heun’s method,
RK4, RK5, and RK8.
 Moreover, Butcher [6] has also ploƩed the stability regions of the forward Euler
method, Heun’s method, and RK4. He obtained a similar figure as Figure 3.1 but without
the stability regions of RK5 and RK8. He has also plotted the stability regions of the for-
ward Euler method, Heun’s method, and RK4 in one complex plane as we have done in Fig-
ure 3.1. Therefore, the stability regions of the forward Euler method, Heun’s method, and
RK4 is equal to the stability regions presented in [6]. In Figure 3.1, all the stability regions of
the five explicit Runge-Kutta methods are plotted in one complex plane
 Furthermore, S´eka and Assui [24] present the result of their research paper that
RK8 with eleven stages has a smaller stability region than Heun’s method and RK4. This re-
sult does not agree with what we see in Figure 3.1, where we see that RK8 has the largest
stability region of all the five explicit Runge-Kutta methods. Even though this result does not
agree with what we see in Figure 3.1, this result in [24] is correct because they have investi-
gated the stability of RK8 with eleven stages and not thirteen stages as we have done in
this thesis.

22

Bibliography
 [1] A. O. Anidu, S. A. Arekete, A. O. Adedayo, and A. O. Adekoya. Dynamic computation of
Runge-Kutta fourth-order algorithm for first- and second-order ordinary differential equation
using java. InternaƟonal Journal of Computer Science, 12(13):211–218, 2015.
 [2] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differenƟal equaƟons and
differential-algebraic equaƟons. Siam, 1998.
[3] R. Ashino, M. Nagase, and R. Vaillancourt. Behind and beyond the matlab ode suite. Com-
puters & Mathematics with ApplicaƟons, 40(4-5):491–512, 2000.
 [4] K. Atkinson, W. Han, and D. E. Stewart. Numerical soluƟon of ordinary differenƟal equa-
Ɵons. John Wiley & Sons, 2011.
 [5] S. Bu, W. Jung, and P. Kim. An error embedded Runge-Kutta method for initial value prob-
lems. Kyungpook MathemaƟcal Journal, 56(2):311–327, 2016.
 [6] J. C. Butcher. A history of Runge-Kutta methods. Applied numerical mathematics,
20(3):247–260, 1996.
 [7] V. Chauhan and P. K. Srivastava. ComputaƟonal techniques based on RungeKuƩa method of
various order and type for solving differential equations. International Journal of Mathematical,
Engineering and Management Sciences, 4(2):375–386, 2019.
 [8] D. Gopal, V. Murugesh, and K. Murugesan. Numerical soluƟon of second-order robot arm
control problem using Runge-Kutta butcher algorithm. International Journal of Computer
MathemaƟcs, 83(3):345–356, 2006.
 [9] A. Hasan. Numerical computaƟon of iniƟal value problem by various techniques. Journal of
Science and Arts, 18(1):19–32, 2018.
 [10] M. T. Heath. ScienƟfic compuƟng: an introductory survey. McGraw-Hill, 2002.
 [11] D. Houcque. ApplicaƟons of matlab: ordinary differenƟal equaƟons (ode). Robert R.
McCormick School of Engineering and Applied Science-Northwestern University, Evanston,
2008.
 [12] Md. A. Islam. A comparaƟve study on numerical soluƟons of iniƟal value problems (ivp) for
ordinary differential equations (ode) with euler and RungeKutta methods. American Journal of
ComputaƟonal MathemaƟcs, 5(3):393– 404, 2015.

23

 [13] S. M. Jung. Hyers-ulam stability of a system of first order linear differential equations with
constant coefficients. Journal of MathemaƟcal Analysis and ApplicaƟons, 320(2):549–561, 2006.
 [14] D. Ketcheson and A. Ahmadia. OpƟmal stability polynomials for numerical integration of
initial value problems. Communications in Applied Mathematics and Computational Science,
7(2):247–271, 2013.
 [15] S. Larsson and V. Thom´ee. ParƟal differenƟal equaƟons with numerical methods. Springer
Science & Business Media, 2008.
 [16] R. J. Leveque. Finite difference methods for ordinary and parƟal differenƟal equaƟons:
steady-state and time-dependent problems. Siam, 2007.
 [17] K. MaƩsson, F. Ham, and G. Iaccarino. Stable boundary treatment for the wave equaƟon
on second-order form. Journal of ScienƟfic CompuƟng, 41(3):366, 2009.
 [18] D. Omale, P. B. Ojih, and M. O. Ogwo. MathemaƟcal analysis of sƟff and non-stiff initial
value problems of ordinary differential equation using matlab. International journal of scientific
& engineering research, 5(9):49–59, 2014.
 [19] D. F. Papadopoulos and T. E Simos. The use of phase lag and amplifica-tion error deriva-
tives for the construction of a modified Runge-Kutta Nystr¨om method. In Abstract and Applied
Analysis. Hindawi, 2013.
 [20] J. S. C. PrenƟce. Stepsize selecƟon in explicit Runge-Kutta methods for moderately stiff
problems. Applied MathemaƟcs, 2(6):711–717, 2011.
 [21] U. A. M. Roslan, Z. Salleh, and A. Kılı¸cman. Solving zhou chaoƟc system using fourth-order
Runge-KuƩa method. World Applied Sciences Journal, 21(6):939– 944, 2013.
 [22] M. Sch¨afer. ComputaƟonal engineering: introducƟon to numerical methods. Springer,
2006.
 [23] W. E. Schiesser and G. W. Griffiths. A compendium of parƟal differenƟal equation models:
method of lines analysis with Matlab. Cambridge University Press, 2009.
 [24] H. S´eka and K. R. Assui. Order of the Runge-Kutta method and evolution of the stability
region. Ural MathemaƟcal Journal, 5(2):64–71, 2019.
 [25] M. M. Stabrowski. An efficient algorithm for solving stiff ordinary differential equations.
SimulaƟon PracƟce and Theory, 5(4):333–344, 1997.
 [26] G. S¨oderlind. Numerical methods for differenƟal equaƟons. Springer, 2017.

24

 [27] P. J. Van der Houwen. The development of Runge-Kutta methods for partial differential
equaƟons. Applied Numerical MathemaƟcs, 20(3):261–272, 1996.
 [28] S. Wang. Numerical methods for ordinary differenƟal equaƟons. 2020.
 [29] W.H. WiƩy. A new method of numerical integraƟon of differenƟal equations. Mathematics
of ComputaƟon, 18(87):497–500, 1964.
 [30] A. S. Wusu, M. A. Akanbi, and S. A. Okunuga. A three-stage multiderivative explicit Runge-
KuƩa method. American Journal of ComputaƟonal MathemaƟcs, 3(2):121–126, 2013.
 [31] W.Y. Yang, W. Cao, J. Kim, K. W. Park, H. H. Park, J. Joung, J. S. Ro, H. L. Lee, C. H. Hong,
and T. Im. Applied numerical methods using MATLAB. John Wiley & Sons, 2020.

