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Chapter 1 
1.1 Introduc 0n 

A differential equation is an equation that relates one or several functions and its derivatives 
[10]. Differen al equations are used to model advanced systems, for instance, mechanical 
and electrical systems from fields such as biology, social sciences, engineering, and econom-
ics. Mechanical systems and electrical systems are two examples of physical systems that 
change over me [18]. Differen al equa ons are used to describe a con nuous change of 
physical systems mathematically. Partial differential equations (PDEs) and ordinary differen-
tial equations (ODEs) are two classes of differential equations that are used to model and 
characterize the behavior of physical systems. Parabolic PDEs exist in physical problems such 
as a heat conduction problem for solid bodies. Heat equations describe how the heat tem-
perature distributes in, for instance, a rode as the time changes. Wave equations exist to be 
used to model physical problems such as physical systems, where wave motions are consid-
ered [23]. Furthermore, the above-mentioned examples of systems are complex which ac-
cording to Houcque [11] are not possible to solve using analytical methods, therefore, numer-
ical methods are used instead. Numerical methods are important to use to solve those differ-
ential equations whose exact solutions are not possible to obtain using analytical methods. 
Analytical methods such as the method of separation of variables give us exact solutions of 
simple PDEs and ODEs, whereas numerical methods give us approximations of the exact so-
lu on. Heath [10] emphasizes that numerical methods are viewed as a significant tool to use 
to solve problems for example in engineering and industry. Also, Omale et al. [18] describe 
that numerical methods have been used to solve differential equations of weather and cli-
mate forecasts. Numerical methods are explicit or implicit computed in one step or multiple 
steps. An explicit method computes the numerical solution at the next time point using the 
previous numerical solution at the previous time point. While an implicit method evaluates a 
function using the numerical solution at the next time point which is solved for. There are var-
ious numerical methods for solving PDEs and ODEs [10]. The method of lines is an example 
of a numerical method used to find numerical solutions of hyperbolic and parabolic PDEs by 
transforming the PDEs to a system of first-order ODEs which approximates the original 
PDEs. Finite difference methods, finite element methods, and finite volume methods are ex-
amples of numerical  methods that are used to approximate the partial derivatives in the 
PDEs [23]. Finite difference methods such as Runge-Kutta methods are essential for finding 
approximate solutions of initial value problems of first-order ODEs [3]. High-order Runge-
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Kutta methods are used to solve ODEs because of their high accuracy and efficiency [10]. 
Moreover, C. Runge and M. W. Kutta developed explicit and implicit RungeKu a methods [1]. 
The developments of low-order to high-order Runge-Ku a methods started in 1895. In 1895, 
C. Runge extended the forward Euler method to more elaborate Runge-Kutta methods with 
higher accuracy. Runge developed the second-order Runge-Ku a method in 1895. K. Heun in-
troduced the third-order Runge-Ku a method in 1900 [6]. Runge-Kutta methods became im-
portant in the studies of explicit and implicit methods for solving ODEs through time discreti-
za on [7]. In 1901, W. Ku a introduced the fourth-order and the fifth-order Runge-Kutta 
methods. F. J. Nystr¨om developed Runge-Kutta methods to be used to solve systems of se-
cond-order differen al equa ons [27]. In 1957, R. H. Merson proposed the idea to combine 
Runge-Ku a methods of different orders in Butcher tableau. In 1964, Butcher introduced the 
sixth-order Runge-Kutta method with seven stages. The seventh-order Runge-Kutta method 
with nine stages was recognized from 1968. In 1970, the eighth-order Runge-Kutta method 
with eleven stages was introduced by Cur s [6]. Runge-Kutta methods are active in research 
[1] and for the past several years, most research papers have relied on the deriva on of new 
Runge-Kutta methods with higher derivatives to obtain more accurate Runge-Kutta methods 
[30]. In several papers, researchers have inves gated, compared lower-order and high-order 
RungeKutta methods in terms of numerical properties, namely accuracy, stability, and effi-
ciency. In Sec on 1.2, we review such research  

papers that have been published for the past several years 
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1.2 Research question     
 

 we study the accuracy of the five explicit Runge-Kutta methods for solving an initial value 
problem of a first-order linear ODE by verifying their convergence rates. We derive the 
stability analysis to investigate which one of the five explicit Runge-Kutta methods has a 
better stability property for solving an initial value problem of a linear test equation. 
 

1.3 Abstract 
 
 In Chapter 2, we present a theore cal background on PDEs and ODEs. Chap-
ter 3 starts with a theore cal background on finite difference methods and it 
ends with the stability analysis for the five explicit Runge-Kutta methods.  
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   Chapter 2  
 Differential equations 

 
 This chapter presents a theoretical background on PDEs and ODEs that are fundamental 
in this thesis 
 

2.1  Ordinary differential equations 
AN ordinary differential equation (ODE) is a differential equation involving an unknown func-
tion of derivatives with respect to one independent variable usually t. The order of an ODE is 
determined by the highest derivative in the ODE. The highest derivative in a first-order linear 
ODEisone,thereforethistypeofODEisoffirst-order[10].                                                                                                                        
Consider this first-order linear ODE taken from [28]   
                                                                      (t) = 5y(t),                                                                       (2.1) 
where y is a dependent variable with respect to the independent variable t and y(t) is an un-
known solu on which we seek for. According to Wang [28] Equa on (2.1) is simple, therefore 
we can use analytical methods to solve it analytically. The general solution which is a family of 
solu ons of Equa on (2.1) is 
                                                                    y(t) = C  , 
where C is a real constant [28]. If we instead want to find an exact solu on of Equa on (2.1), 
then we can impose the following initial condition to determine the value of C which according 
to [28] it is 
                                                                   y(0) = 2 , 
Wang [28] describes that the ini al condi on provide us with informa on that the ini al value 
of y(t) at the initial time point  = 0 is 2. We get that y(0) = C  = C = 2 and the exact solu on 
that sa sfies the ini al condi on of Equa on (2.1) is 
                                                                     Y(t) = 2 ,                                                                         (2.2) 
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where Equa on (2.2) is in agreement with [28]. The first-order ODE with an initial condition is 
called an ini al value problem [28]. Wang [28] describes that a general form of an ini al value 
problem is 
                                                                        (t) =  (t,y(t)),                                                               (2.3) 
                                                                      Y(a) = c,  t ∈  , , 
where f(t, y(t)) is a function which depend on t and y. From the initial condition in Equation 
(2.3), we know that the initial value is c. Also, the time interval is .  t ∈ [a, b], the initial time 
point is  = a and the final time point is  = b, where n is the number of time points. Heath 
[10] describes that in most applications of differential equations there exists more than one 
ODE which is transformed into a system of ODEs. Jung [13] introduce a system of k first-order 
linear ODEs with coefficients written in this 

                                   

   ( ) =  ( ) + ( ) + ⋯ +  ( ) +  ( )),
( ) =  ( ) + ( ) + ⋯ +  ( ) + ( )), ⋮                                                                                                           ( ) =  ( ) + ( ) + ⋯ +  ( ) +  ( )),   

    

where  (t) and  (t) are known functions on the time interval t   ∈ [a, b], i = 1, 2, · · · , n and  
= 1, 2, · · · , n. The column vector is (t) of the unknown functions (t), · · · , (t) which are de-
pendent on t, where k = 1, 2, · · · , n [13]. Jung [13] write this system of k first-order linear ODEs 
with an initial condition in matrix notation form as 
                                                                        ( ) = (t) + ( ),                                                     (2.4) 
                                                                        ( ) =   ,  for ∈  , , 
In Equa on (2.4), A is a n × n matrix,  (t) is a column vector and (t) is another column vector. 
The column vectors depend on t and the column vectors have a length n. If (t) has length zero, 
then it is a zero column vector, and Equa on (2.4) becomes homogeneous. In Equa on (2.4), 
we have the initial value vector  . In the efficiency study, we use numerical methods for 
ODEs to solve an initial value problem of a homogenous system of first-order linear ODEs 
formulated as Equa on (2.4)  
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Chapter 3 
 Numerical methods for ODEs 
In this chapter, we present a theoretical background on finite difference methods and analyze 
the stability of the five explicit Runge-Kutta methods. 
3.1 Finite difference methods  
 Finite difference methods solve for instance initial value problems of first-order ODEs on the 
time interval t ∈ [a, b]. The idea of finite difference methods for an initial value problem of a 
first-order ODE is to divide the time interval t ∈ [a, b] into n subintervals and approximate the 
first-order derivative in the initial value problem for every discrete time point  in t ∈ [a, b]. In 
time discretization of initial value problems of first-order ODEs, we obtain discrete solutions 
that are approximate values of the exact solution of the first-order ODE at discrete time points. 
Time-discretization is a procedure for solving initial value problems of first-order linear ODEs 
[31].                                                                                                                                                                                              
Now we show how to proceed with time-discre za on of Equa on (2.3). We want to find an 
approximate solu ons of Equa on (2.3) by discretizing the time interval  t ∈ [a, b] into n subin-
tervals using n + 1 points [28] 
                                                       a =  <  <  < · · · <  = b . 
 Wang [28] describes that the length of each n subinterval is the step size ℎ = − , where 
j = 1, 2, · · · , n. In this procedure, the previous computed numerical solution  at the previ-
ous discrete time point  is used to compute the next numerical solution  at the next dis-
crete me point tj , where j = 0, 1, · · · , n. An approximate solu on of Equa on (2.3) at the dis-
crete time point is ≈ ( ). The numerical solution at  is = ( ) = c. We can use the 
numerical solution  = c to compute the next numerical solution  at the next discrete time 
point . We can use this procedure to get the numerical solution  at the final time point . 
One-step methods such as explicit Runge-Kutta methods use the information from the previ-
ously computed numerical solution at a discrete time point to compute the next numerical so-
lution at the next discrete time point. Explicit Runge-Kutta methods are finite difference meth-
ods for solving initial value problems of first-order ODEs. Explicit Runge-Kutta methods involve 
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s stages which is equal to the number of function evaluations of the function (t, y(t)) in Equa-
on (2.3) needed to advance the numerical solution in one time step [10]. 

 3.1.1 Errors 
 Errors occur when one performs numerical computation on a computer. Errors are classified 
into round-off errors and truncation errors. Round-off errors are created from the representa-
tion of numbers that is approximated. We get round-off errors from numbers such as fractional 
numbers, π, and the square root of numbers which can-not be represented exactly in the com-
puter. Truncation errors are created when a numerical method is approximating an exact solu-
tion. Truncation errors are the difference between the approximate solution and the exact solu-
tion. Truncation errors are classified into local truncation errors and global truncation errors 
[10]. Heath [10] describes that the local truncation error ℓ  is 
                                                                            ℓ = − ( ) , 
where j = 1, 2, · · · , n, the numerical solu on of an ini al value problem of a first-order ODE is 

 and (t) is the solution of the ODE that passes through the point before, which is 
(  , ).                  
  According to Heath [10] the global trunca on error  is 
                                                                           = − ( )  
the difference between the numerical solution  and the exact solution y( ) at the final time 
point . The differences between a local truncation error and a global truncation error are that 
we compute the local truncation error in the numerical solution of an ODE at a discrete-time 
point  . While we compute the global truncation error at the final time point  and we obtain 
a total error at the final time point  [28]. In this thesis, we only compute global trunca on er-
rors because in both the convergence study and the efficiency study we want to compute glob-
al truncation errors at the final time point . Heath [10] states that global trunca on errors are 
essential to study when evaluating the performance of numerical methods 
3.1.2 Numerical proper es 
Accuracy, stability, and efficiency are three numerical properties that are used to determine the 
performance of numerical methods [10].                                                                                                               
The following definition of accuracy is from [10]. 
Defini on 3.1.1. The accuracy of a numerical method is said to be of order p if 
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                                                                      ℓ = (ℎ ). 
 The motivation for this definition, with the order of accuracy one less than the exponent of the 
step size in the local error, is that if the local error is (ℎ  ), then the local error per unit step, 
ℓ   , is (ℎ ), and it can be shown that under reasonable conditions the global error   (ℎ  
), where h is the average step size. 
 Leveque [16] describe that  is a big-oh notation and it is also known as an asymptotic notation 
which describe a func on that is bounded asympto cally by upper bounds. In Defini on 3.1.1, j 
= 1, 2, · · · , n and the global trunca on error 16 (ℎ  ) is independent of h. We expect the fol-
lowing from a numerical method that has order of accuracy p 

= ℎ + (ℎ ) ℎ  ℎ → 0 , 
where  is an error on a grid of M points and C is in this case an error constant. The little-oh 
nota on o describe a func on that is not bounded asympto cally by upper bounds [16].                                      
According to Leveque [16] if h is too small, then 
                                                                               ≈ ℎ . 
A refinement of the grid by a factor of 2, we get. 
                                                                               ≈                                                                                                  
Other factors can certainly be used as well to refine the grid, but refining a grid by a factor of 2 
is a standard way. The ratio of the errors  and  is . 
                                                                              ≈ 2  
where p is a positive integer and the errors decrease approximately by a factor of 2  . Hence, 
                                                                           p≈ .  

 
Furthermore, Leveque [16] describes that we can estimate p with two grid spa-cings ℎ  and ℎ  
as the following 

                                                                 p≈   ,                                                                     (3.1) 
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If the posi ve integer p > 0, then the global truncation error (ℎ  ) → 0, when h → 0, and 
the numerical method converges with the convergence rate p. The rate p of convergence is 
known as the order of accuracy of a numerical method. The convergence rate p shows how 
fast the numerical method converges to the exact solution when the step size h → 0. We 
can measure the accuracy of a numerical method by verifying the convergence rate p of a 
numerical method [28].  
                         According to öderlind  [26], it is not possible to obtain accuracy in numerical 
solutions if a numerical method is not stable. For this reason, a numerical method must be 
stable too. The following defini on of stability is from [10] 
 Defini on 3.1.2. numerical method is said to be stable if small perturbations do 
not cause the resulting numerical solutions to diverge away without bound. 
 
         Perturbations are created in numerical computation. Small perturbations are due to 
round-off errors or truncation errors in the initial data. A small perturbation is when a small 
change in the initial value of an ODE leads to often a small change in the numerical solu-
tions of the ODE. We are perturbing the initial value by doing small changes to them. A sta-
ble numerical method is not sensitive to small perturbations, therefore the numerical solu-
tions do not diverge from the exact solution. For a stable numerical method, the errors in 
the numerical solutions decrease to zero. Small perturbations to the numerical solutions of 
a stable ODE get diminished as the time increases because the numerical solution curves of 
the ODE converge to the exact solution of the ODE. Consequently, the numerical solutions 
will bound the exact solution. 
             Furthermore, an unstable numerical method is sensitive to small perturbations, 
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the numerical solutions to diverge from the exact solution. Small per-
turbations to a numerical solution of an unstable ODE will grow as the time increases be-
cause the numerical solution curves of  the ODE diverge. If the numerical solutions of an 
unstable ODE diverge from the exact solution, then the numerical solutions are unbounded 
the exact solu on [10]. 
            Furthermore, an unstable numerical method is sensitive to small perturbations, 
where a small change in the initial value does result in a major change in the numerical so-
lution which causes the 

     ℎ   .      
of an unstable ODE will grow as the time increases because the numerical solution curves 
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of the ODE diverge. If the numerical solutions of an unstable ODE diverge from the exact 
solu on, then the numerical solu ons are unbounded the exact solu on [10]. 
 
Defini on 3.1.3.Numerical efficiency means here the combination of short 
computational time and an acceptable error level. 
         An important aspect of numerical methods is to verify how much computational time 
is required for numerical methods to compute errors [22]. We can measure the efficiency of 
numerical methods by computing errors in the numerical solution of ODEs and computa-

onal me [25]. Several researchers have improved the efficiency of Runge-Kutta methods 
for solving ODEs by decreasing the number of function evaluations 
 3.2 Stability of explicit Runge-Kutta methods  

öderlind [26] emphasizes that the stability property has a crucial role in solving first-order 
ODEs using numerical methods. We can verify the stability of numerical methods by ana-
lyzing how the numerical methods behave on a linear test equation. In this section, we de-
rive the stability analysis for the five explicit Runge-Kutta methods for solving a linear test 
equa on from [28] defined as 
 
                                                                           (t) = - y(t),                                                            (3.2) 
                                                                         Y(0) = 1 t ∈  0, , 
 
where λ ∈ C. 
         We choose Equa on (3.2) to be considered in the stability analysis for the five explicit 
Runge-Kutta methods because it is a simple first-order ODE which according to Söderlind 
[26] one choose in the stability analysis to be able to solve it analytically by pen and paper 
         The known exact solu on of Equa on (3.2) is 
 
                                                                        Y(t)=  ,                                                                  (3.3) 
 
The exact solu on (3.3) is also an exponen al solu on of Equa on (3.2) which decrease ex-
ponentially to zero when t →∞ and Re(λ) > 0. The nota on, Re(λ) > 0 means posi ve real 
values of λ on the real coordinate (Re) axis in a complex plane [28]. A complex plane also 
consists of an imaginary coordinate (Im) axis which visualizes complex numbers z = hλ. A 
numerical method is stable for different values of  h , where h is the step size. Different 
values of hλ are bounded in a region called stability region which we can visualize in a com-
plex plane. An numerical method is stable if |S(z)|< 1, where S(z) is a stability func on. The 
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stability function S(z) is a series in power of z which approximate the exponential solution of 
a linear test equa on [20]. 
            Furthermore, in Sec on 3.2.1 to Sec on 3.2.5, we analyze each explicit Runge-Kutta 
method in terms of stability for solving Equa on (3.2). We obtain a stability condi on for 
each explicit Runge-Ku a method in the stability analysis. In Sec on 3.2.6, we plot the sta-
bility conditions to visualize the stability regions of the five explicit Runge-Kutta methods in 
a complex plane. Lastly, we compare the stability regions to determine which explicit 
Runge-Kutta method has the smallest and the largest stability region. 
 3.2.1  The forward Euler method 
 Atkinson et al. [4] describe that the forward Euler method is a first-order Runge-Kutta 
method and it is defined as   
                                                                   = + ℎ (  , ) , 
The forward Euler method is used to compute the numerical solution yj at the discrete time 
point tj . The forward Euler method is a one-stage explicit RungeKutta method which means 
that to advance the numerical solution in one time step, then one function evaluation is 
needed [28]. 
                  We can now derive the stability analysis for the forward Euler method for solving 
Equa on (3.2) as follows 
 
                                                               = + ℎ(− ) ,   
                                                                  = (1 − ℎ ) ,  
where  ,  are numerical solu ons and 1 − hλ is a constant [28]. Furthermore,we have 

                                                                        = (1 − ℎ )  ,   
                                                                = (1 − ℎ )  ,  
                                                                         ⋮  

              = (1 − ℎ) = (1 − ℎ ). 
Consequently, we get the following numerical solution. 
                                                                  = (1 − ℎ )  ,                                                                (3.4) 
According to Wang [28] the numerical solu on (3.4) of Equa on (3.2) obtained by the for-
ward Euler method is stable because the numerical solu on (3.4) converges to zero. The 
numerical solution (3.4) decrease in me t as j → ∞. To satisfy this, therefore we need to 
require the following stability condition 
                                                                    |1 − ℎ | < 1 ,                                                                   (3.5) 
The stability condi on (3.5) constraints the value of the step size h. The forward Euler 
method is stable when it satisfies the stability condi on (3.5). The stability condi on (3.5) is 
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an inequality less than 1, therefore we can simplify the stability condi on by removing the 
absolute value and we get 

 
                                                -1< 1 − ℎ < 1 → 0 < ℎ < 2 → 0 < ℎ <  . 
 
The forward Euler method is stable for solving Equa on (3.2) if it sa sfies the stability con-
dition         h <  if λ ∈ R. The inequality 0 < hλ sa sfies if λ > 0 according to [28]. 
                We can now investigate how the numerical solution of Equa on (3.2) changes for 
different values of hλ. Assume that we have h = 2, h = 0.1 and λ in Equa on (3.2) is λ = 5. If h 
= 0.1 and λ = 5, then hλ = 0.5 and hλ < 2 which means that the forward Euler method is sta-
ble. We can say that the forward Euler method is stable when h <  for λ ∈ ℝ. If h = 2 and λ 
= 5, then hλ =10 and hλ > 2, which means that the forward Euler method is unstable, there-
fore the numerical solution diverges to infinity. 
         Furthermore, the forward Euler method has the following stability function S(hλ) 
 
                                                                  S(h )=1-h . 
This stability function alternates in sign 
           Wang [28] has also obtained the stability condi on (3.5) for the forward Euler method 
for solving the Equa on (3.2). The stability condi on for the forward Euler method present-
ed in [2] does not equal the stability condi on (3.5) because the test equa on solved in [2] 
is not the same as Equa on (3.2). The test equa on solved in [2] is 
 

                                                     ( ) = ( ) ,                                                                     ( . ) 
therefore we do not obtain the same stability condition for the forward Euler method as in 
[2]. 
 3.2.2   Heun’s  method 
 Wi y [29] describes  Heun’s  method is a second-order Runge-Kutta method and it is de-
fined as . 
 

= + ( + ) , 
                                                           = , ,  

       = +  , + . 
Heun’s  method is a two-stage explicit Runge-Kutta method which means that to advance 
the numerical solution in one time step, then two function evaluations are needed. Heun’s 
method consists of one more function evaluation than the forward Euler method. We can 
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now derive the stability analysis for Heun’s method for solving Equa on (3.2) as the follow-
ing 
                                                            = (- )  ,   
                                                            = (- + ℎ )  , 
                                                           = 1 − ℎ + ,  
Consequently, we get the numerical solution as follows 
                                                          = 1 − ℎ + 1

2 ℎ  ,                                                    (3.7) 
The numerical solution (3.7) decrease in me t as j → ∞. To satisfy this, we require the fol-
lowing stability condition 

                                                                                
1 − ℎ + ℎ < 1                                                          (3.8) 

If we simplify the stability condi on (3.8) by removing the absolute value we get, 
 
                −1 < 1 − ℎ + < → < − < → < < → < <  
, 
 
where h <  is the stability condition for Heun’s method when λ ∈ R and h > 0. This stability 
condition is the same as the stability condition for the forward Euler method. The stability 
function of Heun’s method is . 
                                                              (ℎ ) = − + ( )  .        
The stability function of the forward Euler method and Heun’s method are related because 
the first two terms of the stability function of Heun’s method are the same as the terms of 
the stability function of the forward Euler method. The stability function of Heun’s method 
involves three terms, whereas the stability function of the forward Euler method involves 
two terms. 
 3.2.3 The fourth-order Runge-Kutta method 
 Roslan  [21] describes that the fourth-order Runge-Kutta method (RK4) is also known as 
the  
classical Runge-Kutta method defined as  
 
                                                   = + ℎ( + 2 + 2 + ),   

=  ,  ,                              
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=  , 1
2 ℎ , + 1

2 ℎ  ,     
 = + 1

2 ℎ , + 1
2 ℎ ,     

= + ℎ , + ℎ  ,         
RK4 is a four-stage explicit Runge-Kutta method which means that to advance the numeri-
cal solution in one time step four function evaluations are needed. For RK4 two more func-
tion evaluations are needed than for Heun’s method. We can now derive the stability analy-
sis for RK4 for solving Equa on (3.2) and we get 
 
                                                   = (− ) ,   

                                        = − +  1
2 ℎ  ,                                                              

                                                   = −  + ℎℎ − ℎℎ  ,  
                                       = − + ℎ − 1

2 ℎ + 1
4 ℎ   ,                            

                                        = 1 − ℎ + 1
2 ℎ − 1

6 ℎ + 1
24 ℎ  ,                

Consequently, we get the following numerical solution 
                                                 = 1 − ℎ + ℎ − ℎ + ℎ  ,                           (3.9) 
which decrease in time t as j →∞. To satisfy this, we require the following stability condition 
                                                  1 − ℎ + ℎ − ℎ + ℎ < 1 .                           
The stability func on of RK4 is 
                                                (ℎ) = 1 − ℎ + (ℎ ) − (ℎ ) + (ℎ )  .                     
This stability function involves five terms which means two more terms than the terms of 
the stability function of Heun’s method. The first three terms of this stability function are al-
so involved in the stability function of Heun’s method.  
3.2.4 The fi h-order Runge-Kutta method 
 Gopal et al. [8] define the fi h-order Runge-Kutta method (RK5) as 
 

= + 1
90 ℎ(7 + 32 + 12 + 32 + 7 ) , 

                                  =  ,  ,  
= + 1

4 ℎ , + 1
4 ℎ  ,                                       
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= + 1
4 ℎ , + 1

8 ℎ + 1
8 ℎ  ,                        

= + 1
2 ℎ , − 1

2 ℎ + 1
8 ℎ  ,                       

= + 3
4 ℎ , + 3

16 ℎ + 9
16 ℎ  ,                    

                            = + ℎ , − 3
7 ℎ + 2

7 ℎ + 12
7 ℎ − 12

7 ℎ + 8
7 ℎ  .    

a six-stage explicit Runge-Kutt method which means six function evaluations are needed to 
advance the numerical solution in one time step. We see that RK5 consists of two more 
function evaluations than RK4. We can now derive the stability analysis for RK5 for solving 
the Equa on (3.2) and we getWe can now derive the stability analysis for RK5 for solving 
the Equa on (3.2) and we get 
 

= (− ) ,                                                                                                      
= −  + 1

4 ℎ  ,                                                                                  
= − + 1

4 ℎ − 1
32 ℎ  ,                                                              

= − + 1
2 ℎ − 1

8 ℎ + 1
32 ℎ  ,                                             

= − + 12
16 ℎ − 9

32 ℎ + 9
128 ℎ − 9

514 ℎ  ,               
= −  + ℎ − 1

2 ℎ + 9
56 ℎ − 3

112 ℎ + 72
3584 ℎ  , 

     = 1 − ℎ + 1
2 ℎ − 1

6 ℎ + 1
24 ℎ − 1

120 ℎ + 1
640 ℎ  , 

As a consequence, we get the following numerical solution 
                  
                   = 1 − ℎ + ℎ − ℎ + ℎ  ,                                                   (3.10) 
 
which decrease in time t as j → ∞. To satisfy this, we require the following stability condi-
tion 
 
                               1 − ℎ + ℎ − ℎ + ℎ − ℎ + ℎ < 1 . 
The stability function of RK5 is 
 
                               (ℎ ) = 1−h + ℎ − ℎ + ℎ − ℎ + ℎ  . 
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The stability function of RK5 involves seven terms which means three more terms than the 
terms in the stability function of RK4. The first three terms in this stability function are also 
involved in the stability function of RK4 and Heun’s method but not in the stability function 
of the forward Euler method.  
3.2.5 The eighth-order Runge-Kutta method 
The eighth-order Runge-Kutta method (RK8) is defined in [5] with Butcher tableau. The 
RK8 is 
= + ℎ 34

105 + 9
35 + 9

35 + 9
280 + 9

280 + 41
840 + 41

840 ,                     

= + 2
27 ℎ , + 2

27 ℎ  ,                                                                                                           

 = + ℎ , + ℎ( + 3 )  ,             

 = + ℎ , + ℎ( + 3 )  ,                                                                                                     
 = + ℎ , + ℎ(20 − 75 + 75 )  , 

= + 1
2 ℎ , + 1

20 ℎ( + 5 + 4 ) ,                                                                                   

= + 5
6 ℎ , + 1

180 ℎ(−25 + 125 − 260 + 250 ) ,                                          

= + 1
6 ℎ , + ℎ 31

300 + 61
225 − 2

9 + 13
900 ,                                                

= + 2
3 ℎ , + ℎ 2 − 53

6 + 704
45 − 107

9 + 67
90 + 3 ,                        

= + ℎ , + ℎ − + − + − + −        

= + ℎ , + ℎ − + − + + + +
 ,   
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=   , + ℎ 3
205 − 6

41 − 3
205 − 3

41 − 3
41 + 6

41 ,                       

= + ℎ ,   + − − + − + + +
                                            + +   ,    
          
RK8 is a thirteen-stage explicit Runge-Kutta method which means that thirteen function 
evaluations are needed to advance the numerical solution in one time step. RK8 consists of 
nine more function evaluations than RK5. We can now derive the stability analysis for RK8 
for solving Equation (3.2) and we get 
                                                                                     
  = (− )  ,                              

= − + 2
27 ℎ ,                                                                                                                                      

= −  + 1
9 ℎ − 1

162 ℎ  ,                                                                                                               
= −  + 1

6 ℎ − 1
72 ℎ + 1

296 ℎ  ,                                                                                            
= −  + 5

12 ℎ − 25
288 ℎ + 125

10368 ℎ − 25
20736 ℎ  ,                                                       

 = −  + ℎ − ℎ + ℎ − ℎ + ℎ  ,                            
= −  + 5

6 ℎ − 25
72 ℎ + 125

1296 ℎ − 625
31104 ℎ + 875

279936 ℎ − 625
1119744 ℎ  , 

= −  + 1
6 ℎ − 1

72 ℎ + 1
1296 ℎ − 1

31104 ℎ + 43
1119744 ℎ + 85

10077696 ℎ          

+ 325
40310784 ℎ  , 

= −  + 2
3 ℎ − 2

9 ℎ + 4
81 ℎ − 2

243 ℎ + 1655
559872 ℎ + 4279

10077696 ℎ                                  

+ 7865
20155392 ℎ − 325

13436928 ℎ  , 
= −  + 1

3 ℎ − 1
18 ℎ + 1

162 ℎ − 1
1944 ℎ − 757

1119744 ℎ − 439
1679616 ℎ               

− 3331
20155392 ℎ + 65

6718464 ℎ − 325
161243136 ℎ  , 

= −  + ℎ − 1
2 ℎ + 1

6 ℎ − 1
24 ℎ + 14767

1700352 ℎ − 6511
5101056 ℎ + 53

186624 ℎ
− 7151

183638016 ℎ + 65
27205632 ℎ − 325

367276035 ℎ  , 
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= − + 10
566784 ℎ − 17

45909504 ℎ − 2081
550914048 ℎ + 65

183638016 ℎ                              

− 325
1101828096 ℎ  , 

 
= −  + ℎ − 1

2 ℎ + 1
6 ℎ − 1

24 ℎ + 14767
1700352 ℎ − 1585

1275264 ℎ       

+ 7297
22954752 ℎ − 599

17216064 ℎ + 12809
2203656192 ℎ

+ 65
275457024 ℎ − 325

1101828096 ℎ  , 
= 1 − ℎ + 1

2 ℎ − 1
6 ℎ + 1

24 ℎ − 1
120 ℎ + 1

720 ℎ − 1
5040 ℎ

+ 1
40320 ℎ − 491

209018880 ℎ + 1333
5643509760 ℎ

+ 13
501645312 ℎ − 65

4514807808 ℎ  , 
 
Consequently, we get the following numerical solution 
 

= 1 − ℎ + ℎ − ℎ + ℎ − ℎ + ℎ − ℎ +
ℎ − ℎ + ℎ + ℎ − ℎ                                                                                                                                 

                                                                                                                                                          (3.11) 
which decrease in time t as j → ∞. To satisfy this, we require the following stability condi-
tion 
 

1 − ℎ + 1
2 ℎ − 1

6 ℎ + 1
24 ℎ − 1

120 ℎ + 1
720 ℎ − 1

5040 ℎ + 1
40320 ℎ

− 491
209018880 ℎ + 1333

5643509760 ℎ + 13
501645312 ℎ

− 65
4514807808 ℎ < 1 . 

 
The stability func on of RK8 is 
 

(ℎ ) = 1 − ℎ + 1
2 (ℎ ) − 1

6 (ℎ ) + 1
24 (ℎ ) − 1

120 (ℎ ) + 1
720 (ℎ ) − 1

5040 (ℎ )
+ 1

40320 (ℎ ) − 491
209018880 (ℎ ) + 1333

5643509760 (ℎ )
+ 13

501645312 (ℎ ) − 65
4514807808 (ℎ )  
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The stability function of RK8 involves six more terms than the terms of the stability function 
of RK5. The stability function of RK5 does also involve the first six terms of the stability 
function of RK8. The seventh term in this stability function of RK8 does not equal the last 
term of the stability function of RK5 because the fraction is different. 
             RK8 has a higher number of function evaluations than the forward Euler method, 
Heun’s method, RK4, RK5, and RK8. The forward Euler method has the lowest number of 
function evaluations. Söderlind [26] discusses that high-order explicit Runge-Kutta methods 
involving a high number of function evaluations will have higher computational effort than 
thelow-orderexplicit-Runge-Kuttamethods.                                                                                                                                                  
S´eka and Assui [24] have also done stability analysis for the forward Euler method, Heun’s 
method, and RK4 considering Equa on (3.6). In their stability analysis, they obtained equa-
tions that almost equal to Equa on (3.4), Equa on (3.7), and Equa on (3.9). The equa ons 
in [24] do not alternate in sign which Equa on (3.4), Equa on (3.7), and Equa on (3.9) do. 
The reason for this is that the authors have solved Equa on (3.6) is a nonnegative test 
equation which we have not done in the stability analysis for the five explicit Runge-Kutta 
methods. However, since the terms of Equa on (3.4), Equa on (3.7), and Equa on (3.9) 
equal the terms of the equa ons in [24], then we can state that Equa on (3.4), Equa on 
(3.7), and Equa on (3.9) is correct. Furthermore, the first eight terms of Equa on (3.11) 
equal the stability function of RK8 with eleven stages in [24]. The terms of this stability 
func on in [24] do not alternate in sign as the terms of Equa on (3.11) does. The stability 
analysis for RK5 and RK8 with thirteen stages is difficult to  
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findFigure 3.1. Stability regions of the five explicit Runge-Kutta methods in a complex plane 
 
in the literature. We did the stability analysis for RK5 (see Sec on 3.2.4) and RK8 (see Sec-

on 3.2.5) based on the procedure of the stability analysis for the forward Euler method. 
 3.2.6 Comparison of stability regions 
 In Sec on 3.2.1 to Sec on 3.2.5, we obtained stability condi ons for the five explicit Runge-
Kutta methods which are plotted in a complex plane to visualize its stability regions in 
MATLAB (see Script 1 in Appendix A). MATLAB is a software which we use to perform 
numerical computa on, we visualize the data in figures and tables. We run Script 1 in 
MATLAB and we get Figure 3.1. We see in Figure 3.1, that the stability region of the for-
ward Euler method is a disk of radius 1. The forward Euler method is centered at the point 
of hλ = 1. Söderlind [26] has also analyzed stability regions of the forward Euler method for 
solving Equa on (3.6) and obtained instead that the forward Euler method is centered at  
hλ = −1 in a complex plane. The stability region of RK4, RK5, and RK8 have a shape as an 
ear lobe. The five explicit Runge-Kutta methods are stable inside their regions and unstable 
outside their regions 
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              In Figure 3.1, we see that the five explicit Runge-Kutta methods are stable on the 
positive real coordinate (hλ) of the complex plane. The stability regions are on the right-
hand side of the complex plane because the five explicit Runge-Kutta methods are stable for 
values of (hλ) > 0, which are bounded in its stabilityregions. We can see that RK4, RK5, 
and RK8 have larger stability regions than the forward Euler method and Heun’s method. 
The reason is that as the order of explicit Runge-Kutta methods gets higher, then the explic-
it Runge-Kutta methods become stable for more values of Re(hλ) and its stability regions get 
larger which is in agreement with [26]. This means that RK4, RK5, and RK8 are stable for 
more values of Re(hλ) than the forward Euler method and Heun’s method. Additionally, ac-
cording to Atkinson et al. [4] explicit Runge-Kutta methods get larger stability regions when 
they are restricted on too small step sizes. The step size of h needs to be small for hλ to be 
in the stability region and to obtain stable numerical methods. The numerical method with 
the widest stability region has better stability. This means that RK8 is the most stable of all 
the five explicit Runge-Kutta methods because it has the largest stability region. Also, the 
forward Euler method with the smallest stability region is less stable than Heun’s method, 
RK4, RK5, and RK8. 
                Moreover, Butcher [6] has also plo ed the stability regions of the forward Euler 
method, Heun’s method, and RK4. He obtained a similar figure as Figure 3.1 but without 
the stability regions of RK5 and RK8. He has also plotted the stability regions of the for-
ward Euler method, Heun’s method, and RK4 in one complex plane as we have done in Fig-
ure 3.1. Therefore, the stability regions of the forward Euler method, Heun’s method, and 
RK4 is equal to the stability regions presented in [6]. In Figure 3.1, all the stability regions of 
the five explicit Runge-Kutta methods are plotted in one complex plane 
                Furthermore, S´eka and Assui [24] present the result of their research paper that 
RK8 with eleven stages has a smaller stability region than Heun’s method and RK4. This re-
sult does not agree with what we see in Figure 3.1, where we see that RK8 has the largest 
stability region of all the five explicit Runge-Kutta methods. Even though this result does not 
agree with what we see in Figure 3.1, this result in [24] is correct because they have investi-
gated the stability of RK8 with eleven stages and not thirteen stages as we have done in 
this thesis. 
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