# Fibonacci Numbers 

Submitted by

## Rafal Ibrahim Rahi

Supervised by
Asst. Prof. Dr. Ruma Kareem Ajeena

1444H-2023M

صدق الله العلي العظيم
سورة الجمادلة: آية/11





### 1.1 Introduction

## Who was Fibonacci?

Leonardo Fibonacci, mathematical innovator of the thirteenth century, was a solitary flame of mathematical genius during the Middle Ages. He was born in Pisa, Italy, and because of that circumstance, he was also known as Leonardo Pisano, or Leonardo of Pisa. While his father was a collector of customs at Bugia on the northern coast of Africa (now Bougie in Algeria), Fibonacci had a Moorish schoolmaster, who introduced him to the Hindu- Arabic numeration system and computational methods[1].
After widespread travel and extensive study of computational systems, Fibonacci wrote, in 1202, the Liber Abaci, in which he explained the Hindu- Arabic numerals and how they are used in computation. This famous book was instrumental in displacing the clumsy Roman numeration system and introducing methods of computation similar to those used today. It also included some geometry and algebra. Although he wrote on a variety of mathematical topics, Fibonacci is re-membered particularly for the sequence of numbers

$$
1,1,2,3,5,8,13,21,34,55, \ldots
$$

to which his name has been applied. This sequence, even today, is the subject of continuing research, especially by the Fibonacci Association, which pub- lishes The Fibonacci Quarterly [2].

### 1.2. Rabbits, Fibonacci Numbers, and Lucas Numbers

Fibonacci introduced a problem in the Liber Abaci by a story that may be summarized as follows. Suppose that

1) there is one pair of rabbits in an enclosure on the first day of January
2) this pair will produce another pair of rabbits(always produce one male and one female offspring) on February first and on the first day of every month thereafter
3) each new pair will mature for one month and then produce a new pair on the first day of the third month of its life and on the first day of every month thereafter.
4) the rabbits never die

The problem is to find the number of pairs of rabbits in the enclosure on the first day of the following January after the births have taken place on that day [2].

It will be helpful to make a chart to keep count of the pairs of rabbits. Let A denote an adult pair of rabbits and let B denote a "baby pair" of rabbits. Thus, on January first, we have only an A; on February first we have that A and a B; and on March first, we have the original A , a new B , and the former B , which has become an A

| January 1 | A |  | 1 | 0 |
| :--- | :--- | :---: | :---: | :---: |
| February 1 | A |  | B | 1 |
| March 1 | A | B | A | 2 |
| Date | Pair | Number of A's | Number of B's |  |

To get the next line of symbols, in any line we replace each A by AB and cach B by
A. Thus, we have the representation shown in the table [4]

## - Rubbits, Fibonacci Numbers, and Lucas Number

| Date | Pairs | Number of A'S | Number of B'S |
| :---: | :---: | :---: | :---: |
| March 1 | ABA | 2 | 1 |
| April 1 | ABAAB | 3 | 2 |
| May 1 | ABAABABA | 5 | 3 |
| June 1 | ABAABABAABAAB | 8 | 5 |

We now see that the number of A's on July 1 will be the sum of the number of A's on June 1 and the number of B's born on that day (which become A's on July 1). The number of B's on July 1 is the same as the number of A's on June 1 [6].

We complete the table for the year:

| $\mathbf{N}$ | Month | Number of <br> A's | Number of B's | Total number of pairs |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | January <br> After births on first | 1 | 0 | 1 |
| 2 | February | 1 | 1 | 2 |
| 3 | March | 2 | 1 | 3 |
| 4 | April | 3 | 2 | 5 |
| 5 | May | 5 | 3 | 8 |
| 6 | June | 8 | 5 | 13 |
| 7 | July | 13 | 8 | 21 |
| 8 | August | 21 | 13 | 34 |
| 9 | September | 34 | 21 | 55 |
| 10 | October | 55 | 34 | 89 |
| 11 | November | 89 | 55 | 144 |
| 12 | December | 144 | 89 | 233 |
| 13 | January | 233 | 144 | 377 |

Thus, we see that under the conditions of the problem, the number of pairs of rabbits in the enclosure one year later would be 377.

We can draw some conclusions by studying the table. It is clear that the number of A's on the following February 1 is 377 . Of these, 376 were originally B's, descendants of the original A. Therefore, if we add all the numbers in the column headed "Number of B's," we have

$$
S=0+1+1+2+3+5+8+13+21+34+55+89+144=376
$$

From this, we observe that the sum of the first 12 entries in the column headed "Number of A's" is one less than 377, which would be the 14th. entry in that column[3].

## - Rabbits, Fibonacci Numbers, and Lucas Numbers

This gives the sequence $\longrightarrow 1,1,2,3,5,8,13, \ldots$
as we wished. For the column headed "Number of B's," we have $u_{1}=0, u_{2}=1$, and the same recurrence formula, yielding the sequence

$$
0,1,1,2,3,5,8,13, \ldots .
$$

For the column headed "Total number of pairs," we have $u_{1}=1, u_{2}=2$, and the sequence $1,2,3,5,8,13, \ldots$
Because of its source in Fibonacci's rabbit problem, the sequence $1,1,2,3,5,8,13, \ldots$
is called the Fibonacci sequence, and its terms are called Fibonacci numbers. We shall denote the $n$th Fibonacci number by $\mathrm{F}_{\mathrm{n}}$; thus [7],

$$
\mathrm{F}=1, \mathrm{~F}_{2}=1, \mathrm{~F}_{3}=2, \mathrm{~F}_{4}=3, \mathrm{~F}_{5}=5, \mathrm{~F}_{6}=8, \ldots \ldots
$$

Moreover, we may write these alternative forms:

$$
\mathrm{F}_{1}=\mathrm{F}_{2}=1, \mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2} \quad \mathrm{n}>2
$$

We can now give a more formal discussion of the Fibonacci rabbit problem. For all positive integral $n$, we define for the first day of the $n$th month [7]:

$$
\mathrm{A}_{\mathrm{n}}=\text { number of A's (adult pairs of rabbits) }
$$

OR

$$
\mathrm{F}_{0}=\mathrm{F}_{2}-\mathrm{F}_{1}=1-1=0
$$

which checks with $B_{1}=0$ in the table. Thus, we have now defined $F_{n}$ for
$\mathrm{n}=0$
Finally, the total number of pairs on the first day of the $n$th month is $\mathrm{T}_{\mathrm{n}}=\mathrm{A}_{\mathrm{n}}+\mathrm{B} \square=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}=\mathrm{F}_{\mathrm{n}+1}$
We can now establish the following result
The sum of the first $n$ Fibonacci numbers is one less than the $(\mathrm{n}+2)$ nd Fibonacci number. Symbolically:

$$
\mathrm{F}_{1}+\mathrm{F} \square+\ldots . .+\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+2}-1, \quad \mathrm{n} \geq 1 .
$$

We remember that $\mathrm{F}_{\mathrm{n}+2}=\mathrm{A}_{\mathrm{n}+2}$ and that $\mathrm{A}_{\mathrm{n}+2}$ is the number of A's (adult pairs of rabbits) in the enclosure on the first day of the $(\mathrm{n}+2)$ nd month.
The number of extra A's is $A_{n+2}-1$.
Now, one month after being born, each B became an A. If we add the number of B's from the first day of the first month to the first day of the $(\mathrm{n}+1)$ st month, the sum is the number of A's other than the original pair that we have on the first day of the $(\mathrm{n}+2)$ nd month. Thus,

$$
\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}+\ldots \ldots \ldots . .+\mathrm{B}_{\mathrm{n}+1}=\mathrm{A}_{\mathrm{n}+2}-1
$$

## - Rabbits, Fibonacci Numbers, and Lucas Numbers

But, remembering that $\mathrm{B}_{1}=0, \mathrm{~B}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}$, and $\mathrm{A}_{\mathrm{n}+2}=\mathrm{F}_{\mathrm{n}+2}$, we have

$$
\mathrm{F}_{1}+\mathrm{F} \square+\ldots \ldots \ldots \ldots+\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}+2}-1, \quad \mathrm{n} \geq 1
$$



### 1.3. The Golden Section and the Fibonacci Quadratic Equation

Suppose that we are given a line segment AB , and that we are to find a point C on it (between A and B ) such that the length of the greater part is the mean proportional between the length of the whole segment and the length of the lesser part $\frac{A B}{A C}=\frac{A C}{C B}$
where $\mathrm{AB} \neq 0, \mathrm{AC} \neq 0$, and $\mathrm{CB} \neq 0[5]$.
We first find a positive numerical value for the ratio $\frac{A B}{A C}$ For convenience, let
$\mathrm{X}=\frac{A B}{A C}(\mathrm{x}>0)$
Then

$\mathrm{X}=\frac{A B}{A C}=\frac{A C+C}{A C}=1+\frac{C B}{A C}=1+\frac{1}{\frac{A C}{C B}}=1+\frac{1}{\frac{A B}{A C}}=1+\frac{1}{X}$
From
$\mathrm{X}=1+\frac{1}{X}$
we obtain, by multiplying both members of the equation by x ,
$x^{2}=x+1$
or
$\mathrm{x}^{2}-\mathrm{x}-1=0$.
(F)
The roots of this quadratic equation are
$\alpha=\frac{1+\sqrt{5}}{2} \quad$ and $\quad \beta=\frac{1-\sqrt{5}}{2}$
( $\alpha$ is the Greek letter alpha, and $\beta$ is the Greek letter beta.)
-8-




As we mentioned earlier
$\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$ are the root of $(\mathrm{F})$
And so $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$ Also,$\alpha+\beta=5$
Moreover,
(A) $\quad \alpha^{n+2}=\alpha^{n+1}+\alpha^{n}$

And
(B) $\beta^{n+2}=\beta^{n+1}+\beta^{n}$
and by using these equations, we found that the Fibonacci numbers can be expressed in the so-called Binet form:
(C ) $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}, \mathrm{n}=1,2,3, \ldots \ldots$.
Now suppose that we add the members of equation (B) to the members of equation (A), giving

$$
\left(\alpha^{\mathrm{n}+2}+\beta^{n+2}\right)=\left(\alpha^{n+1}+\beta^{n+1}\right)+\left(\alpha^{n}+\beta^{n}\right)
$$

If we let $u_{n}=\alpha^{n}+\beta^{n}$,then we have

$$
u_{n}+2=u_{n+1}+u_{n}
$$

And

$$
\begin{aligned}
& u_{1}=\alpha+\beta=1 \\
& u_{2}=\alpha^{2}+\beta^{2}=\alpha+1+\beta+1=(\alpha+\beta)+2=1+2=3
\end{aligned}
$$



Thus, this sequence $u$, is the sequence of Lucas numbers defined in Section 2 [8], and so we have a Binet form for the Lucas numbers:
(D)
$L_{n}=\alpha^{n}+\beta^{n}, \quad n=1,2,3, \ldots$.
Now look at the following comparison of the Fibonacci numbers and the Lucas numbers:
$F_{1} F_{2} F_{3} F_{4} F_{5} F_{6} F_{7} F_{8} \quad F_{9} \quad F_{10}$

| 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $L_{1}$ | $L_{2}$ | $L_{3}$ | $L_{4}$ | $L_{5}$ | $L_{6}$ | $L_{7}$ | $L_{8}$ | $L_{9}$ | $L_{10}$ |

Notice that
$F_{1}+F_{3}=L_{2}, F_{2}+F_{4}=L_{3}$, and so on
It can be proved, that in general
$L_{n}=F_{n-1}+F_{n+1}$
From which ,since $F_{n+1}=F_{n}+F_{n-1}$, it follows that
(E) $L_{n}=F_{n}+2 F_{n-1}$

You can verify this latter statement for specific examples; that is, you can show that $L_{6}=F_{6}+2 F_{5}$ and so on.

We now have $F_{n}$, and $L_{n}$, expressed in terms of $\alpha^{n}$ and $\beta^{n}$. We can also find $\alpha^{n}$ and $\beta^{n}$ in terms of $F_{n}, \operatorname{and} L_{n}$. If we note that $\alpha-\beta=\sqrt{5}$, then, from the Binet forms, we have

$$
\begin{gathered}
\sqrt{5} F_{n}=\alpha^{n}-\beta^{n} \\
L_{n}=\alpha^{n}+\beta^{n}
\end{gathered}
$$

Adding, we find

$$
2 \alpha^{n}=L_{n}+\sqrt{5} F_{n}
$$

Or

$$
\alpha^{n}=\frac{L_{n}+\sqrt{5} F_{n}}{2}
$$

Subtracting, we find

$$
\beta^{n}=\frac{L_{n}+\sqrt{5} F_{n}}{2}
$$

Recall that in Section 2 we had occasion to define $F_{0} a s F_{2}-F_{1}$ Similarly, we can define $L_{0} a s L_{2}-L_{1}=3-1=2$ (Notice that this agrees with the definition by the Binet form, since $\alpha^{0}+\beta^{0}=1+1=2$ ) Since $L_{1}=\alpha+\beta=1$, we can now write expression (E) for $L_{n}$, (above) as [9]
(E) $L_{n}=L_{1} F_{n}+L_{0} F_{n-1}$

## 2.2 .Fibonacci and Lucas Numbers

The method of defining $F_{0}$ and $L_{0}$ suggests that we can also define F-1, L-1, and so on, by applying the formulas[4]


$$
L_{-n}=(-1)^{n} L_{n}
$$

Now suppose that we compute the first 14 successive ratios $\frac{F_{n+1}}{F_{n}}$ and $\frac{L_{n+1}}{L_{n}}$ The values of the successive ratios as shown at the top of the next page suggest that in both cases the value of the ratio becomes closer and closer to $\alpha$ as we take larger and larger values of n . However, we shall not undertake to prove this here. We can also observe that the first Fibonacci ratio is less than $\alpha$, the second is greater than $\alpha$, and so on, while the first Lucas ratio is greater than $\alpha$, the second is less than $\alpha$, and so on. Moreover [10].

$$
\frac{F_{2}}{F_{1}}<\alpha<\frac{L_{2}}{L_{1}}, \quad \frac{F_{3}}{F_{2}}>\alpha>\frac{L_{3}}{L_{2}}
$$

And so on

| $\frac{F_{n+1}}{F_{n}}$ | $\frac{L_{n+1}}{L_{n}}$ |
| :---: | :---: |
| $\frac{1}{1}=1.0000$ | $\frac{3}{1}=3.0000$ |
| $\frac{2}{1}=2.0000$ | $\frac{4}{3}=1.3333$ |
| $\frac{3}{2}=1.5000$ | $\frac{7}{4}=1.7500$ |
| $\frac{5}{3}=1.6667$ | $\frac{11}{7}=1.5714$ |
| $\frac{8}{5}=1.6000$ | $\frac{18}{11}=1.6363$ |
| $\frac{13}{8}=1.6250$ | $\frac{29}{18}=1.6111$ |
| $\frac{21}{31}=1.6154$ | $\frac{47}{29}=1.6207$ |
| $\frac{34}{21}=1.6190$ | $\frac{76}{47}=1.6170$ |
| $\frac{55}{34}=1.6176$ | $\frac{123}{76}=1.6184$ |
| $\frac{89}{55}=1.6182$ | $\frac{199}{123}=1.6179$ |
| $\frac{144}{89}=1.6180$ | $\frac{322}{199}=1.6181$ |
| $\frac{233}{144}=1.6181$ | $\frac{521}{322}=1.6180$ |
| $\frac{377}{233}=1.6180$ | $\frac{843}{521}=1.6180$ |
| $\frac{610}{377} 1.6180$ | $\frac{1364}{843}=1.6180$ |

$$
\alpha=1.61803398875 \ldots
$$



1. Avant L, The So-called Fibonacci Numbers in Ancient and Medieval India, Raj Narain college India, 1985, P. 45.
2. S. Vajda, Fibonacci \& Lucas Numbers, and the Golden Section, Theory and Applications, Ellis Horwood Ltd., Chichester, 1989, P.78.
3. D. Kalman. "Generalized Fibonacci Numbers by Matrix Methods." The Fibonacci
4. Quarterly 20, no. 1 (1982):73-76.
5. Melham, R. S., A Fibonacci Identity in the spirit of Simson and Gelin- Cesaro, Fibonacci Quarterly, 2003, P.129.
6. Fair grieve, S., Gould, H. W., Product Difference Fibonacci Identities of Simson, Gelin- Cesaro, Tagiuri and Generalizations‘ Fibonacci Quarterly, 2005, P.301.
7. J.A. Bondy and U.S.R. Murty. Graph Theory with Applications, North-Holland, Amsterdam‘1969. P132.
8. R.E. Merrifield and H.E. Simmons. Topological Methods in Chemistry, T. Wiley, New York, 1989, P. 121.
9. V.E. Hoggat, Fibonacci and Lucas Numbers, Palo Alto, Houghton-Mifflin, CA, 1969, P. 76.
10.H. Civciv, A note on the determinants of pentadiagonal matrices with the generalized Fibonacci and Lucas numbers, Appl. Math. Comput., in press. doi:10.1016/j.amc.2008.06.007.
