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Abstract




In this research, we hybrid between the some methods of ciphers, in the

first between vigenere and pohlig-Hellman second between Beaufort and

pohlig-Hellman and the last between vigenere and Rivest-shamir adleman

which give more complexity from the analysis and clacker’s from the

unknoon person’s (Hacker's)
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Chapter one



1.1CRYPTOGRAPHY

Cryptography is the science and study of secret writing.
Acipher is a secret meth-od of writing, whereby plaintext(or
cleartext) i1s transformed into ciphertext(sometimes called a
cryptogram). The process of transforming a plaintext into
ciphertext 1s called encipherment or encryption; the reverse
process of transforming ciphertext into plaintext is called
ddeciphement or decryption. Both encipherment and

decipherment are controlled by a cryptographic key or keys [1]

decipher )@

(Figure 1.1)

1.2 cryptanalysis

is the science and study of methods of breaking ciphers. A
cipher is breakable if it is possible to determine the plaitext or
key from the ciphertext, or to determine the key from pplaitext-

cipher text pairs.[1]




1.3 CRYPTOGRAPHIC SYSTEMS

This section describes the general requirements of all
cryptographic systems, the specific properties of public-key
encryption, and digital sighatures. A cryptographic system (or

cryptosystems for short) has five components:

1. A plaintext message space,m.

2. A ciphertext message space, C.

3. A key space,k.

4. A family of enciphering transformations, E,:m — C
where k € K

5. A family of deciphering transformation, Dy:C —» m

Where k € K
Each enciphering transformation E, is defined

By an enciphering algorithm E, which is common to every
transformation in the family, and a key K, which distinguishes
it from the other transformations. Similarly, each deciphering
transformation D is defined by a deciphering algorithm D and a

key K. For a given k,
Dy is the invers of Ej:than is, Di(Ex(M)) = M

For every plaintext message M, In a given cryptographic

system, the transformations Ejand D, are described by
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parameters derived from k(or directly by k). the set of

parameters describing E),

is called the enciphering key, and the set of prametrts

describing D;, the deciphering key.
illustrates the enciphering and deciphering of data.
Cryptos systems must satisfy three general require ments:

l1.the enciphering and deciphering transformations must be

efficient for all keys.
2.the system must be easy to use.

3.the security of the system should depend and the secrecy of

the keys and not on the secrecy of the algorithems E or D.

In symmetric or one-key cryptosystems the encipherings and
Deciphering keys are the same (or easily determined from each
other) Because we have assumed the general method of
encryption is known, this means the transformationFE) andD

are also easily derived from each other.thus,if both E;, and D,

Are protected, both secrecy and authenticity are achieved.
Secrecy cannot be seps mations & and D are also easily De
available a derived from each other. Thus, if both E, and D
poses the other. Thus, all the requirements for both secrecy and
authenticity rated from authenticity, however, because making

either Ex or hold in one-key systems



(Figure 1.2)

write-key

User with
Write Authority

User with
Read Authonty

read-key

(Figure 1.3)

In asymmetric or two-key cryptosystems the enciphering and

deciphering. Keys differ in such a way that at least one key is
computationally infeasible to Determine from the other. Thus,
one of the transformations EjorD, can be re-Vealed without
endangering the other.Secrecy and authenticity are provided by
protecting the separate transforma-Tions—D,for secrecy,E}, for
authenticity. illustrates how this principle Can be applied to
databases, where some users have read-write authority to the
Database, while other users have read authority only. Users

with read-write au-thority are given both D,and E}so they can
5




decipher data stored in the database Or encipher new data to
update the database. IfE}) cannot be determined fromD; Users
with read-only authority can be given Djso they can decipher

the data but Cannot update it. Thus D, is like a read-key,

whileE), is like a write-key (more Precisely, the deciphering key

describing D, is the read-key, and the enciphering Key
describing E K the write-key). [2]

1.4 Public-Key Systems

The concept of two-key cryptosystems was introduced by
Diffie and Hellman in 1976 . They proposed a new method of
encryption called public-key en- cryption, wherein each user
has both a public and private key, and two users can

communicate knowing only each other’s public keys

In a public-key system, each user A has a public enciphering
transformation E, which may be registered with a public
directory, and a private deciphering transformation D4 which is
known only to that user. The private transformation D4 is
described by a private key, and the public transformation E,, by
a public key (Figure 1.4)




Derived from the private key by a one-way transformation. It
must be computa- tionally infeasible to determineD,, fromEy,

(or even to find a transformation equivalent toDy,).[3]

1.5 NUMBER THEORY

This section summarizes the concepts of number theory needed
to understand the cryptographic techniques described in
Chapters 2 and 3. Because we are primarily interested in the
properties of modular arithmetic rather than congruences in
gen- eral, we shall review the basic theorems of number theory
in terms of modular arithmetic, emphasizing their

computational aspects. We shall give proofs of these

Fascinating theorems for the benefit of readers unfamiliar with

them.[4]

1.6 Congruences and Modular Arithmetic

Given integers a, b, and n#0, a, is congruent to b modulo n,

written A
a=b
If and only if

a—b=kn



for some integer k; that is n divides (a — b), written
n| (a—b).
For example, 17= 7, because (17-7) = 2*5.

If a=, b, then b is called a residue of a modulo n
(conversely, a is a residue of b modulo n). A set of n integers
{ry....., ,, Jis called a complete set of residues modulo n if, for
every integer a, there is exactly one r in the set such that a =,
For any modulus n, the set of integers {0, 1,...,n-}) forms a

complete set of Residues modulo n. We shall write
amod n

To denote the residue r of a modulo n in the range [0. n-1]. For

example, 7 mod 3 = 1. Clearly,
a mod n=r implies a=[] r
but not conversely. Furthermore,
a =[] b if and only if a mod n = b mod n;

Thus, congruent integers have the same residue in the in the

range[0,n—1].[5]
1.7 Computing Inverses

Unlike ordinary integer arithmetic, modular arithmetic
sometimes permits the Computation of multiplicative inverses;

that is, gives an integer a in the range [0,n—1].



it may be possible to find a unique integer x in the range [0,n—

1] such that
ax mod n=1.

For example, 3 and 7 are multiplicative inverses mod 10
because 21 mod 10=1. It Is this capability to compute inverses
that makes modular arithmetic so appealing In cryptographic

applications.

We will now show that given a [0O,n— 1], a has a unique
inverse mod n When a and n are relatively prime; that is when
gcd(a,n)= 1, where “ged” Denotes the greatest common

divisor.[6]
1.7.1 Theorem

If gcd (a, n) = 1, then there exists an integer x, 0 < x < n, such

that ax mod n=1.
Proof:

Because the set {ai mod n};_, . ;is a permutation of

{0, 1. ....n—1}, x=1, where ai mod n = 1, 1s a solution. [7]

1.7.2 Theorem

For n=pq and p, q prime,

@(n) =0(P)(q) = (p ~1)(q-D).

Proof:



Consider the complete set of residues modulo n: {0, 1,...,
pg-1}. All of these residues are relatively prime to n except for

the p- 1 elements{q, 2q,...,(p-1)q}, the g- 1 elements {p. 2p...
(q-1)p}, and 0.

Therefore,
@(n) =pq—[(p-1) +(q— 1)+ 1] =pq -p -q+1

=(p-1) (g-1). [3]

1.7.3 Example
Let a=3 and n=7. Then

X =3°mod 7. Which we saw earlier is 5. This checks,

because 3*5 mod 7= 1.
1.8 Theorem Chinese Remainder Theorem:

Let dy ..., d¢, be pairwise relatively prime, and let n=

d,d,,...ds. Then the System of equations
(X mod dl) =X (1: 1,....,t)

has a common solution x in the range [0,n— 1].[6]

1.9 Vigenere and variant Beaufort

1.9.1 Vigeneére

Vigenere and Beaufort Ciphers
10



A popular form of periodic substitution cipher based on shifted
alphabets is the Vigenere cipher. As noted by Kahn this cipher
has been falsely attrib- uted to the 16th Century French
cryptologist Blaise de Vigenere. The key K is Specified by a

sequence of letters:
K= kl kd,

Where k; (i = 1,...,d) gives the amount of shift in the ith
alphabet; that is, f;(a) = (a + k;)mod n.

Example:

The encipherment of the word RENAISSANCE under the key
BAND is show next:

M =RENA ISSA NCE
K. =BAND BAND BAN
E, (M)=SEAD JSFD OCR

In this example, the first letter of each four-letter group is
shifted (mod 26) by 1, the second by 0, the third by 13, and the
fourth by 3.[2]

1.9.2 variant Beaufort
The Variant Beaufort cipher uses the substitution
fi=(a—k;) mod n.

Because

(a—k;) mod n= (a + (n-k;)) mod n,

11



The Variant Beaufort cipher is equivalent to a Vigenére cipher

with key character (n—k; ).

The variant Beaufort cipher is also the inverse of the
Vigenere cipher; thus if one is used to encipher. The other is

used to decipher. [4]

1.10 Pohlig Heilman Scheme

In the pohlig- Heilman scheme, the modulus is choses to be a
trags prime p The enciphering and deciphering functions are
thus given by

C=M°®mod p
M=c%mod p
Wher all arithmetic is done in the Gsion field GF(p)

Bocease p is.prime.@(p)=p—1 which is trivially derived from p
thusThe scheme can only be used for conventional cocryption,

where e and d are both kept secret .[3]

Example

Let p =11, whence @(p)=p—1= 10. Choose and d=7
compute e=inv(7,10)=3 Suppose M=5 Then M is enciphered as

C=M* mod p = 53 mod 11=4
Similarly, ¢ is deciphered as:
M=C%mod p = 4”7 mod 11 = 5.

1.11 Hivest- Shamir- Adleman (RSA) Scheme

12



In the RSA scheme, the modulus n is the product of two large

primes p and q.

n=pq

Thus

@(n) =(p-1)(q-1)
(see theorem 1.3 in section 1.6.2) the enciphering and
deciphering functions are given by Eq. (2.2)and (2.3).Rivest,
shamir and Adleman recommend picking a relatively prime to
@(n) in the interval [max (p, q) +1,n—1] (any prime in the
interval will do);e I’"d computed using Eq. (2.5).If inv(d, @(n))
such that
e<log 2 n then a new value of d should be picked tonceypt

ed message undergoes some wrap-around(reduction modulo n).
[7]
Example:

Let p=5 and gq=7whence n=pq=35 and @(n) =(5-1)(7-1)=24
pick d=11. Then e=inv(11,24)=11(in fact, ¢ and d will always
be the same for p=5 and q=7—see exercises at end of chapter).

Suppose M=2 Then
C=M®mod n = 2" mod 35 = 2048 mod 35 = 18,
and

C%%mod n = 18'mod 35 = 2 = M.

13



Chapter tow



Introduction

In this chapter, we hybrid between the public key algorithem,
and classical clyptaglaphy

2.1 hybrid between vigenere and pohlig—Hellman

algorithem.

In this method we encipher by vigenere method after that
encipher by pohlig and decipher by pohlig method after that

decipher by vigenere.

Example: Let the plaintext (M=F=5) with the keys
(k=4,p=11and e=3)

To Encipher

C; =p+ kmod 26
Ci=5+4mod 26 =9

C, = p®modp

C, =93mod 11 = 3

To Decipher

Comput d=e?*®)~1 modep(p)
d=3%@0D-1 modep(11) = 7
M; = c$ mod p

M; =3"mod 11 =9

M, = M; — k mod 26— M, = 9-4mod 26 =5
15



2.2  hybrid between Beaufort and pohlig—Hellman

algorithem

In this method we encipher by Beaufort method after that
encipher by pohlig and decipher by pohlig method after that
decipher by Beaufort.

Example:Let the plaintext (M=F=5) with the keys (k=4,p=11
and e=3)

To Encipher

C; =p—kmod?26

Ci =5-4mod 26 =1

C, =p®modp
C,=13mod11 =1

To Decipher

Comput d= e?(¢®)-1 mod o(p)
d= 3%@®@)-1 mod (p) = 7
M; = c$ modp

M; =1"mod 11 =1

M, = M; + k mod 26

M, =1+ 4mod 26 =5

16



2.3 hybrid between vigenere and Hivest-shamir-

Adleman(RSA) algorithem

In this method we encipher by vigenere method after that
encipher by Hivest-shamir-Adleman(RSA) and decipher by
Hivest-shamir-Adleman(RSA) method after that decipher

vigenere.

Example:Let the plaintext (M=F=5) with the keys
(k=4,p=5,9=7

n=35 and e=11)
To Encipher
C; =p+ kmod 26
Ci=5+4mod 26 =9
C, = p®modn
C, = 9 mod 35 = 4
To Decipher
Comput d= e?(®M)=1 mod (n)
d= 112(¢G9)~1 1mod ¢(35) = 11
M; = c$ modn
M; =41 mod 35 =9

M2 =M1—km0d26
17



M, =9-4mod 26 =5

2.4 hybrid between Beaufort and Hivest-shamir-Adleman

(RSA) algorithem

In this method we encipher by Beaufort method after that
encipher by Hivest-shamir-Adleman(RSA) and decipher by
Hivest-shamir-Adleman(RSA) method after that decipher

Beaufort .

Example:Let the plaintext (M=F=5) with the keys
(k=4,p=5,q=7

n=35 and e=11)
To Encipher
C; =p—kmod 26
Ci =5-4mod 26 =1
C, = p® modn
C, =11 mod35 =1
To Decipher
Comput d= e?(?M)~1 mod ¢ (n)
d= 119(*G5)-1 mod ¢(35) = 11
M; = c$ mod n
M; =1"mod 35 =1

M, = M; + k mod 26
18



M, =1+4+4mod 26 =5
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