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ُ الْمَلِكُ الْحَقُّ ۗ وَلاَ تعَْجَلْ بِالْقرُْآنِ مِن قبَْلِ أنَ يقُْضَىٰ إِليَْكَ  َّစ َفَتعَاَلى
بِّ زِدْنِي عِلْمً    اوَحْيهُُ ۖ وَقلُ رَّ
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 الإهداء

 
 الى من أحمل أسمه بكل أفتخار....والدي

.أميإلى من كان دعاؤها سرنجاحي وحنانها بلسم جراحي.....  
 إلى من كان حاضرا في كل مكان 

المهدي صاحب العصر والزمان عجل الله فرجه الشريف وسهل 
 مخرجه 

  
  
  
  
  
  



 

 

لتقديرالشكر وا
﷽༒༑༐༏ الحمد الله رب العالمين الذي وفقنا وأعاننا على إنهاء هذا 
البحث والخروج به بهذه الصورة المتكامل فبالامس القريب بدئنا مسيرتنا التعليمية 

هدفا ساميا وحبا وغايه  المسيرة العلميةونحن نتحسس الطريق برحبه وإرتباك فرئينا 
بحثنا يحمل في طياته طموح شباب يحلمون أن تكون أمتهم تستحق السير لاجلها وإن 

العربيه شامخة  بين الامم وإنطلاقا من مبدأ  من لايشكر الناس لايشكر الخالق فإننا 
) التي رافقتنا في مسيرتنا لإنجازهذا البحث   أمير السويدي نتوجه بالشكر للأستاذ (

الاكاديمي كما و نشكر عائلاتنا وكانت لها بصمات واضحة من خلال توجيهاتها والدعم 
التي صبرت وتحملت معنا ورفدتنا بالكثير من الدعم على جميع الاصعده ونشكر 

  الاصدقاء والاحباب وكل من قدم لنا الدعم المادي والمعنوي

 
  
 
 
 
 

 
                                             
                                              Abstract       
 



 

 

In this research, we hybrid between the some methods of ciphers, in the 
first between vigenere and pohlig-Hellman second between Beaufort and 
pohlig-Hellman and the last between vigenere and Rivest-shamir adleman 
which give more complexity from the analysis and clacker’s from the 
unknoon person’s (Hacker's)  
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1.1CRYPTOGRAPHY 
Cryptography is the science and study of secret writing. 

Acipher is a secret meth-od of writing, whereby plaintext(or 
cleartext) is transformed into ciphertext(sometimes called a 
cryptogram). The process of transforming a plaintext into 
ciphertext is called encipherment or encryption; the reverse 
process of transforming ciphertext into plaintext is called 
ddeciphement or decryption. Both encipherment and 
decipherment are controlled by a cryptographic key or keys [1] 

                             (Figure 1.1) 
 

1.2 cryptanalysis 
is the science and study of methods of breaking ciphers. A 
cipher is breakable if it is possible to determine the plaitext or 
key from the ciphertext, or to determine the key from pplaitext-
cipher text pairs.[1] 
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1.3 CRYPTOGRAPHIC SYSTEMS 
This section describes the general requirements of all 
cryptographic systems, the specific properties of public-key 
encryption, and digital sighatures. A cryptographic system (or 
cryptosystems for short) has five components: 

1. A plaintext message space,݉.  
2. A ciphertext message space, ࣝ. 
3. A key space,݇. 
4. A family of enciphering transformations, ܧ௞: ݉ →  ࣝ 

݇ ݁ݎℎ݁ݓ ∈ K 
5. A family of deciphering transformation, ܦ௞: ࣝ → ݉  

Where k ∈  ܭ
Each enciphering transformation ܧ௞ ݅ݏ ݂݀݁݅݊݁݀ 

By an enciphering algorithm E, which is common to every 
transformation in the family, and a key K, which distinguishes 
it from the other transformations. Similarly, each deciphering 
transformation ܦ௞is defined by a deciphering algorithm D and a 
key K. For a given k,  

:௞ܧ ݂݋ ݏݎ݁ݒ݊݅ ℎ݁ݐ ݏ݅ ௞ܦ ,ݏ݅ ℎܽ݊ݐ ൯(ܯ)௞ܧ௞൫ܦ =  ܯ
For every plaintext message M, In a given cryptographic 
system, the transformations ܧ௞ܽ݊݀ ܦ௞ are described by 
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parameters derived from k(or directly by k). the set of 
parameters describing ܧ௞ 
is called the enciphering key, and the set of prametrts 
describing ܦ௞ ݐℎ݁ ݀݁ܿ݅݌ℎ݁ݕ݁݇ ݃݊݅ݎ. 
illustrates the enciphering and deciphering of data.  
Cryptos systems must satisfy three general require ments: 
1.the enciphering and deciphering transformations must be 

efficient for all keys.  
2.the system must be easy to use.  
3.the security of the system should depend and the secrecy of 

the keys and not on the secrecy of the algorithems E or D.  
In symmetric or one-key cryptosystems the encipherings and 
Deciphering keys are the same (or easily determined from each 
other) Because we have assumed the general method of 
encryption is known, this means the transformationܧ௞  andܦ௞  
are also easily derived from each other.thus,if both ܧ௞  and ܦ௞  
Are protected, both secrecy and authenticity are achieved. 
Secrecy cannot be seps mations & and D are also easily De 
available a derived from each other. Thus, if both E, and D 
poses the other. Thus, all the requirements for both secrecy and 
authenticity rated from authenticity, however, because making 
either Ex or hold in one-key systems 
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                                            (Figure 1.2) 

                              
(Figure 1.3) 

In asymmetric or two-key cryptosystems the enciphering and 
deciphering. Keys differ in such a way that at least one key is 
computationally infeasible to Determine from the other. Thus, 
one of the transformations  ܧ௞orܦ௞  can be re-Vealed without 
endangering the other.Secrecy and authenticity are provided by 
protecting the separate transforma-Tions—ܦ௞for secrecy,ܧ௞ for 
authenticity. illustrates how this principle Can be applied to 
databases, where some users have read-write authority to the 
Database, while other users have read authority only. Users 
with read-write au-thority are given both ܦ௞and ܧ௞so they can 
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decipher data stored in the database Or encipher new data to 
update the database. Ifܧ௞ cannot be determined fromܦ௞ Users 
with read-only authority can be given ܦ௞so they can decipher 
the data but Cannot update it. Thus ܦ௞ is like a read-key, 
whileܧ௞ is like a write-key (more Precisely, the deciphering key 
describing ௞ܦ  is the read-key, and the enciphering Key 
describing E K the write-key). [2] 
1.4 Public-Key Systems 
The concept of two-key cryptosystems was introduced by 
Diffie and Hellman in 1976 . They proposed a new method of 
encryption called public-key en- cryption, wherein each user 
has both a public and private key, and two users can 
communicate knowing only each other’s public keys 
In a public-key system, each user A has a public enciphering 
transformation ܧ஺  which may be registered with a public 
directory, and a private deciphering transformation ܦ஺ which is 
known only to that user. The private transformation ܦ஺  is 
described by a private key, and the public transformation ܧ஺, by 
a public key (Figure 1.4) 
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Derived from the private key by a one-way transformation. It 
must be computa- tionally infeasible to determineܦ஺, fromܧ஺, 
(or even to find a transformation equivalent toܦ஺,).[3] 
 
 
1.5 NUMBER THEORY 
This section summarizes the concepts of number theory needed 
to understand the cryptographic techniques described in 
Chapters 2 and 3. Because we are primarily interested in the 
properties of modular arithmetic rather than congruences in 
gen- eral, we shall review the basic theorems of number theory 
in terms of modular arithmetic, emphasizing their 
computational aspects. We shall give proofs of these 
Fascinating theorems for the benefit of readers unfamiliar with 
them.[4] 

 
1.6 Congruences and Modular Arithmetic 
Given integers a, b, and n≠0, a, is congruent to b modulo n, 
written A 

anb 
If and only if 
     a–b=kn 
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for some integer k; that is n divides (a – b), written 
n| (a – b). 
For example, 17  7, because (17–7) = 2*5. 
If a  n b, then b is called a residue of a modulo n 

(conversely, a is a residue of b modulo n). A set of n integers 
 is called a complete set of residues modulo n if, for{௡ݎ ,..…ଵݎ}
every integer a, there is exactly one r in the set such that a =,, 
For any modulus n, the set of integers {0, 1,…,n-}) forms a 
complete set of Residues modulo n. We shall write 

a mod n 
To denote the residue r of a modulo n in the range [0. n-1]. For 
example, 7 mod 3 = 1. Clearly, 

a mod n=r implies a≡ₙ r 
but not conversely. Furthermore, 
 a ≡ₙ b if and only if a mod n = b mod n;  

Thus, congruent integers have the same residue in the in the 
range[0,n–1].[5] 
1.7 Computing Inverses 
Unlike ordinary integer arithmetic, modular arithmetic 
sometimes permits the Computation of multiplicative inverses; 
that is, gives an integer a in the range [0,n–1]. 
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it may be possible to find a unique integer x in the range [0,n– 
1] such that 

ax mod n=1. 
For example, 3 and 7 are multiplicative inverses mod 10 
because 21 mod 10=1. It Is this capability to compute inverses 
that makes modular arithmetic so appealing In cryptographic 
applications. 

We will now show that given a [0,n– 1], a has a unique 
inverse mod n When a and n are relatively prime; that is when 
gcd(a,n)= 1, where “gcd” Denotes the greatest common 
divisor.[6] 
1.7.1 Theorem  
If gcd (a, n) = 1, then there exists an integer x, 0 < x < n, such 
that ax mod n = 1. 

Proof: 
Because the set ሼܽ݅ ݉݀݋ ݊}௜ୀ଴…..௡–ଵ is a permutation of 

{0, 1. …. n–1}, x=i, where ai mod n = 1, is a solution. [7] 
 

1.7.2 Theorem 
For n= pq and p, q prime,  

∅(n) = ∅(p)∅(q) = (p −1)(q–1). 
Proof: 
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Consider the complete set of residues modulo n:{0, 1,…, 
pq-1}. All of these residues are relatively prime to n except for 
the p- 1 elements{q, 2q,…,(p-1)q}, the q- 1 elements {p. 2p… 
(q-1)p}, and 0. 
Therefore, 

∅(n) = pq– [(p-1) + (q – 1) + 1] = pq -p -q+1 
=(p-1) (q-1). [5] 

 
 
1.7.3 Example 
Let a=3 and n=7. Then 

X = 3ହ mod 7. Which we saw earlier is 5. This checks, 
because 3*5 mod 7= 1. 
1.8 Theorem Chinese Remainder Theorem: 
Let ݀ଵ …, ݀௧ , be pairwise relatively prime, and let n= 
݀ଵ݀ଶ,…݀௧ . Then the System of equations 

(x mod ݀௜) = ݔ௜    (i= 1,.…,t) 
has a common solution x in the range [0,n– 1].[6] 
 

1.9 Vigenère and variant Beaufort 
1.9.1 Vigenère 

 Vigenère and Beaufort Ciphers 
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A popular form of periodic substitution cipher based on shifted 
alphabets is the Vigenere cipher. As noted by Kahn  this cipher 
has been falsely attrib- uted to the 16th Century French 
cryptologist Blaise de Vigenère. The key K is Specified by a 
sequence of letters: 

K= ݇ଵ … ݇ௗ , 
Where ݇௜  ( ݅  = 1,...,d) gives the amount of shift in the ith 
alphabet; that is, ௜݂(ܽ) = (ܽ + ݇௜)݉݀݋ ݊. 
Example: 
The encipherment of the word RENAISSANCE under the key 
BAND is show next: 

M  =RENA ISSA NCE 
K.   =BAND BAND BAN  
 ௞ (M)=SEAD JSFD OCRܧ

In this example, the first letter of each four-letter group is 
shifted (mod 26) by 1, the second by 0, the third by 13, and the 
fourth by 3.[2] 
1.9.2 variant Beaufort 

The Variant Beaufort cipher uses the substitution 
௜݂=(a–݇௜) ݉݀݋ ݊. 

Because           
(a–݇௜) mod n= (a + (n-݇௜)) mod n,  
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The Variant Beaufort cipher is equivalent to a Vigenère cipher 
with key character (n–݇௜). 

The variant Beaufort cipher is also the inverse of the 
Vigenere cipher;  thus if one is used to encipher. The other is 
used to decipher. [4] 
1.10  Pohlig Heilman Scheme 
In the pohlig- Heilman scheme, the modulus is choses to be a 
trags prime p The enciphering and deciphering functions are 
thus given by  

C=ܯ௘݉݌ ݀݋ 
M=ܿௗ݉݌ ݀݋ 

Wher all arithmetic is done in the Gsion field GF(p)  
Bocease p is.prime.∅(p)=p–1 which is trivially derived from p 
thusThe scheme can only be used for conventional cocryption, 
where e and d are both kept secret .[3] 
 

 Example 
 Let p =11, whence ∅(p)=p–1= 10. Choose and d=7 

compute e=inv(7,10)=3 Suppose M=5 Then M is enciphered as 
C=ܯ௘ mod p = 5ଷ mod 11=4 
Similarly, c is deciphered as: 
M=ܥௗ݉݌ ݀݋ = 4଻ ݉11 ݀݋ = 5. 

1.11 Hivest- Shamir- Adleman (RSA) Scheme 
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In the RSA scheme, the modulus n is the product of two large 
primes p and q.  

n=pq 
Thus 
∅(n) =(p–1)(q–1) 

(see theorem 1.3 in section 1.6.2) the enciphering and 
deciphering functions are given by Eq. (2.2)and (2.3).Rivest, 
shamir and Adleman recommend picking a relatively prime to 
∅(n) in the interval [max (p, q) +1,n–1] (any prime in the 
interval will do);e I’d computed using Eq. (2.5).If inv(d, ∅(n))  
such that 
e<log 2 nceypt݋ݐ ݀݁݇ܿ݅݌ ܾ݁ ݈݀ݑ݋ℎݏ ݀ ݂݋ ݁ݑ݈ܽݒ ݓ݁݊ ܽ ℎ݁݊ݐ ݊ 
ed message undergoes some wrap-around(reduction modulo n). 
[7] 
Example: 
Let p=5 and q=7whence n=pq=35 and ∅(n) =(5–1)(7–1)=24 
pick d=11. Then e=inv(11,24)=11(in fact, e and d will always 
be the same for p=5 and q=7—see exercises at end of chapter). 
Suppose M=2 Then 

C=ܯ௘݉݀݋ ݊ = 2ଵଵ݉35 ݀݋ = 35 ݀݋݉ 2048 = 18, 
and 

݊ ݀݋ௗ݉ܥ = 18ଵଵ݉35 ݀݋ = 2 =   .ܯ



 

 
 

 
 
 
 
 
 

Chapter tow 
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Introduction 
In this chapter, we hybrid between the public key algorithem, 
and classical clyptaglaphy 
2.1 hybrid between vigenere and pohlig–Hellman 
algorithem.  
In this method we encipher by vigenere method after that 
encipher by pohlig and decipher by pohlig method after that 
decipher by vigenere.  
Example: Let the plaintext (M≡F≡5) with the keys 
(k=4,p=11and e=3) 

To Encipher 
ଵܥ  = ݌ +  26 ݀݋݉ ݇
ଵܥ  = 5 + 26 ݀݋4݉ = 9 
ଶܥ  = ௘݌  ݌ ݀݋݉ 
ଶܥ  = 9ଷ݉11 ݀݋ = 3 
To Decipher 
Comput d=݁ఝ൫ఝ(௣)൯ିଵ ݉(݌)߮݀݋ 
d=3ఝ(ఝ(ଵଵ)ିଵ  ݉(11)߮݀݋ = 7 
ଵܯ  = ܿଶௗ  ݌ ݀݋݉ 
ଵܯ  = 3଻݉11 ݀݋ = 9 
ଶܯ  = ଵܯ − ଶܯ →26 ݀݋݉ ݇ = 9– 26 ݀݋݉ 4 = 5 
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2.2 hybrid between Beaufort and pohlig–Hellman 
algorithem 
In this method we encipher by Beaufort method after that 
encipher by pohlig and decipher by pohlig method after that 
decipher by Beaufort.  

 
Example:Let the plaintext (M≡F≡5) with the keys (k=4,p=11 
and e=3) 

To Encipher 
ଵܥ  = ݌ −  26 ݀݋݉ ݇
ଵܥ  = 5– 26 ݀݋݉ 4 = 1 
ଶܥ  = ௘݌  ݌ ݀݋݉ 
ଶܥ  = 1ଷ ݉11 ݀݋ = 1 
To Decipher 
Comput d= ݁ఝ൫ఝ(௣)൯ିଵ ݉(݌)߮ ݀݋ 
d= 3ఝ൫ఝ(௣)൯ିଵ ݉(݌)߮ ݀݋ = 7 
ଵܯ  = ܿଶௗ  ݌ ݀݋݉ 
ଵܯ  = 1଻݉11 ݀݋ = 1 
ଶܯ  = ଵܯ +  26 ݀݋݉ ݇
ଶܯ  = 1 + 26 ݀݋4݉ = 5 
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2.3 hybrid between vigenere and Hivest-shamir-
Adleman(RSA) algorithem 
In this method we encipher by vigenere method after that 
encipher by Hivest-shamir-Adleman(RSA) and decipher by 
Hivest-shamir-Adleman(RSA) method after that decipher 
vigenere.  
Example:Let the plaintext (M≡F≡5) with the keys 
(k=4,p=5,q=7 
n=35 and e=11) 

To Encipher 
ଵܥ  = ݌ +  26 ݀݋݉ ݇
ଵܥ  = 5 + 26 ݀݋4݉ = 9 
ଶܥ  = ௘݌  ݊ ݀݋݉ 
ଶܥ  = 9ଵଵ ݉35 ݀݋ = 4 
To Decipher 
Comput d= ݁ఝ൫ఝ(௡)൯ିଵ ݉݀݋ ߮(݊) 
d= 11ఝ൫ఝ(ଷହ)൯ିଵ ݉(35)߮ ݀݋ = 11 
ଵܯ  = ܿଶௗ  ݊ ݀݋݉ 
ଵܯ  = 4ଵଵ ݉35 ݀݋ = 9 
ଶܯ  = ଵܯ −  26 ݀݋݉ ݇
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ଶܯ  = 9– 26 ݀݋݉ 4 = 5 
2.4 hybrid between Beaufort and Hivest-shamir-Adleman 
(RSA) algorithem 
In this method we encipher by Beaufort method after that 
encipher by Hivest-shamir-Adleman(RSA) and decipher by 
Hivest-shamir-Adleman(RSA) method after that decipher 
Beaufort . 
Example:Let the plaintext (M≡F≡5) with the keys 
(k=4,p=5,q=7 
n=35 and e=11) 

To Encipher 
ଵܥ  = ݌ −  26 ݀݋݉ ݇
ଵܥ  = 5– 26 ݀݋݉ 4 = 1 
ଶܥ  =  ݊ ݀݋݉  ௘݌
ଶܥ  = 1ଵଵ ݉35 ݀݋ = 1 
To Decipher 
Comput d= ݁ఝ൫ఝ(௡)൯ିଵ ݉݀݋ ߮(݊) 
d= 11ఝ൫ఝ(ଷହ)൯ିଵ ݉(35)߮ ݀݋ = 11 
ଵܯ  = ܿଶௗ  ݊ ݀݋݉ 
ଵܯ  = 1ଵଵ ݉35 ݀݋ = 1 
ଶܯ  = ଵܯ +  26 ݀݋݉ ݇
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ଶܯ  = 1 + 26 ݀݋݉ 4 = 5 
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