Republic of Iraq Ministry of Higher Education and Scientific Research University of Babylon College of Materials Engineering Department of Metallurgical Engineering

physical vapor deposition

project Submitted to the College of Engineering Materials / University of Babylon partial fulfillment of the requirements of the Bachelor of Engineering Materials in / College of Engineering

> By Zainab Salem Obaid

By Super visor Asst. Prof. Dr Nabaa Sattar Radhi

2022

2023

بسم الله الرحمز الرحيم

{ يَرْفَعِ اللهُ الَّذِينَ آمَنُوا مِنكُمْ وَالَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ }

DEDICATION

Dedicate My Project to My Supervisor

Asst. Prof. Dr Nabaa Sattar Radhi Also to My Father, My Mother, My Brothers & My Sisters Who always encouraged and supported me, and without them this work would not have been possible.

Zainab Salem Obaid

Table of Content

Subject	No
Title page	i
Verse from the Holy Quran	ii
Dedication	iii
Table of content	v
Abstract	vi
Introduction	vii
Chapter One :Introduction	2
1.1 AL-Alloy	4
1.2 Applications. Aluminum alloys	6
Chapter Two :Letcher Revue	10
1- Surface Modification	
2.22-phsical ph	12
3-conductive if materials	12
4- Literature Review Carbon as Deposited Film by Sputtering Method	14
Chapter Three :Experimental Work	18
3.1: DC plasma sputtering	18
3.2 Practical steps	19
3.4 Light Optical Microscope (LOM)	20
3.5 DC plasma sputtering	20
3.6 Thermal treatment of thin films	21
3.7- Thermal conductivity device	22
3.8.Roughness Measurement.	22

3.9 Micro hardness	23
	24
3.10 Scanning Electron Microscopy	
3.11 Contact angle:	25
Chapter four: Result and discussion28	
Chapter Five: Conclusion	38
Reference	40

Abstract

DC plasma sputtering: DC plasma spraying was done by a machine made in Korea at the College of Materials Engineering at the University of Babylon, Two types of targets, silver and copper, were used (2). Diameter (48 mm) and (1.2 mm) thick with a purity of 98.9999% Practical steps Sample chemical analysis. Sample preparation. painting method. conductivity. SEM .roughness. Cotact angle Salad Al-alloy used in this work The sample is required to be coated of aluminum alloy (2024-T4) THE Composition of alloy is tested In this paper the samples were prepared with dimensions(dimeter25mm and 5 mm in thickness) preparation steps as shown first grinding by silicon carbide paper with a softness(1000,1200,1400, and 2000) Light Optical Microscope (LOM) The microscopic structure was studied using optical microscopy in order to identify the existing phases and to see the shape and size of the grains, after grinding, polishing, and etched in a solution for base substrate before coating, coating thickness (cross-section), wear test results and after corrosion test. After coating, This test was done at specimens preparation laboratory, the microscope is type (BEL PHOTONICS). Located in the Laboratories of the Department of Metallurgical - University of Babylon DC plasma sputtering: DC plasma spraying was done by a machine made in Korea at the College of Materials Engineering at the University of Babylon, .Two types of targets, silver and copper, were used .Diameter (48 mm)and (1.2 mm) thick with a purity of 98.9999%. Thermal treatment of thin filmsThe annealing process was carried out in Ar gas atmosphere to avoid or minimize sample oxidation or contamination. The heating ramp was adjusted to 2 °C/min during thermal treatment process until the target temperature was reached, kept for 60 min. The sample was preheated at 200 °C for 15 min. In the last stage, the sample was left in the furnace to cool down to room temperature Thermal conductivity device is a compact, operator-friendly hot wire instrument that facilitates a fast determination of the thermal conductivity, thermal diffusivity and specific heat capacity in a wide temperature and pressure range by means of the transient hot wire (THW) method, according Conclusion The rate of deposition of aluminum is higher than that of silver and copper, and thus the hardness is higher We noticed that the surface roughness of copper is higher than that of silver and aluminum, and therefore the surface of aluminum is smoother than that of silver and copper

جمهورية العراق وزارة التعليم العالي والبحث العلمي جامعة بابل كلية هندسة المواد:قسم هندسة المعادن

ترسيب البخار الفيزيائي مشروع تخرج مقدم لكلية الهندسة المواد الاستيفاء جزء من متطلبات بكالوريوس هندسة المواد في كلية الهندسة الطالبة زينب سالم عبيد

المشرفة ا.م .د. نبا ستار راضي

2023-2022