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Abstract



In this work , the Block matrices have
been studied as an important topic In
many applications. Some Fundemental
facts of the block matrices are studied
such as Block matrix multiplication,
Addition of block matrices, the block
matrix inversion

and others. On the other hand, Some
theorems of the block matrices are used
In applications, for example the special
reduction formula, Generalization of
Brauer theorem on stochastic matrices
and other applications.



Chapter one
Block matrix



1.1 Introduction

In mathematics, a block matrix or a partitioned matrix is a matrix that is
interpreted as having been broken into sections called blocks or
submatrices. Intuitively, a matrix interpreted as a block matrix can be
visualized as the original matrix with a collection of horizontal and
vertical lines, which break it up, or partition it, into a collection of
smaller matrices.Any matrix may be interpreted as a block matrix in one
or more ways, with each interpretation defined by how its rows and
columns are partitioned.

1.2 Important Facts to Block Matrices

A matrix is a rectangular array of numbers treated as a single object. A
block matrix is a matrix whose elements are themselves matrices, which
are called submatrices. By allowing a matrix to be viewed at different
levels of abstraction, the block matrix viewpoint enables elegant proofs
of results and facilitates the development and understanding of
numerical algorithms.

A block matrix is defined in terms of a partitioning, which breaks a
matrix into contiguous pieces. The most common and important case is
for an nxn matrix to be partitioned as a block 2x2

matrix (two block rows and two block columns).

For n =4, partitioning into 2x2 blocks gives

a1 12 a3 14

] = a21 A22 | A23 A24 - A Aqo
- — — "1—)—) -

aszn a3 ass azq

41 g2 gz g4

where

a-21 aoo

A, = A(1: 2,1: 2) = [”’“ ”’12} ,

and similarly for the other blocks.[2]



Definition 1.2.1( Block Matrix)

A block matrix is a matrix that is defined using smaller matrices, called
blocks. For example,

[AB

where A, B, C, and D are themselves matrices, 1s a block matrix. In the
specific example

10



Azp() 2‘
2 0
B=F3 3 3]
3 3 3
i o]

C=|4 4
_4 4_

5 0 5
D=|0 5 0f
3 0 3

therefore, it 1s the matrix
0 2 3
2 0 3
4 4 5
4 4 0
4 4 5

Block matrices can be created using ArrayFlatten.
Definition 1.2.2 ( Block Matrix Multiplication)

It is possible to use a block partitioned matrix product that involves only

algebra on submatrices of the factors.

11

nh © W W

0

S |

S W\ W W

(6)



The partitioning of the factors is not arbitrary, however, and requires
"conformable partitions" between two matrices A and B such that all
submatrix products that will be used are defined.

Given an (m xp) matrix A with q row partitions and S column
partitions

An Ap - Ay
Ay Ay - Ay
A =
-Aql qu T Aqs J

and a (pxn) matrix B with S row partitions and r column partitions
T Bi11 B2 .. Bi, |
B2y Boo -+ B,

- - -
- - -
-

_le Bs2 =" Bsr

that are compatible with the partitions of A <the matrix product
C=AB

can be performed blockwise, yielding C as an (mx n) matrix with q
row partitions and r column partitions. The matrices in the resulting
matrix C are calculated by multiplying:

—

qu — i A-qi B;,.
==

Or, using the FEinstein notation that implicitly sums over repeated
indices:

12



qu - Aquir-
2]

Example 1.2.1

Theorem 1.2.1 : that the dot product formula can be applied to block
matrices follows.

Proof:-

The proof, although tedious, allows us to better understand under what
condition all the blocks can be multiplied. The partitions need to be such
that a vertical partition of M[! leaves S[! columns to the left and S[J to
the right if and only if an horizontal partition of M[] leaves S[I rows in
the upper part of the matrix and S[! in the lower part.There are no
constraints on the horizontal partitions of M[] and the vertical partitions
of M, - u

13



Definition 1.2.3 (Addition of block matrices)

If two block matrices M[] and M| have the same dimension and are
partitioned in the same way, we obtain their sum by adding the
corresponding blocks.

Example 1.2.2 If

I e W% |
A, = 5 &
C:, D,
A~ B>
.;‘[: —_—
C> D

we can compute their sum as
“!l_*'“[: = A1 + A2 B'_: +B:
C"_ . C:_- D:'. -+ D:

All the couples of summands need to have the same dimension. For
instance, in the example above, if A;is JBK (J rows and K columns),
then A, must be JEK:

This property of block matrices is a direct consequence of the definition

of matrix addition.Two matrices having the same dimension can be
added together by adding their corresponding entries.
Definition 1.2.4 (Block Matrix Inversion)

If a matrix 1s partitioned into four blocks, it can be inverted blockwise as
follows:

14



A B -1
|: :I
C D

B [A 4+ AT'B(D - CA-YB) "CA™? A 'B(D - CA 'B)
—(D -cCcA 'B) 'ca ! (D —-caAa 'B) '

where A and D are square blocks of arbitrary size, and B and C are
conformable with them for partitioning. Furthermore, A and the Schur
complement of A in P: P/A =D — CA™ 'B must be invertible.

If A and D are both invertible, then:

= |
p_ {A B] _
C D
(A-BD'C)" -(A-BD'C) 'BD!

-D'c(A-BD'C)' D'4+D'C(A-BD'C)'BD!]
Here, D and the Schur complement of D in P: P/D = A — BD™ 'C must

be invertible.
If A and D are both invertible, then:

15

1



[& 2] -

{{A—BD ic) ™! 0 ][ I BD]}
0 (D-caAa'B) ' [L-cA™ I '

The formula for the determinant of a 2x2 matrix above continues to
hold, under appropriate further assumptions, for a matrix composed of
four submatrices A,B,C,D. The easiest such formula, which can be
proven using either the Leibniz formula or a factorization involving the
Schur complement, is

16



A o A =
det . D) = det(A) det (D) = det ( & D)

If A is invertible (and similarly if D is
invertible’ ), one has
det g g — det(A)det (D — CA 'B).
If I isa l >< 1-matrix, this simplifies to
det(A) (D — CA*B).

If the blocks are square matrices of the same
size further formulas hold. For example, if C~
and IDJ commute (i.,e.,, CID — DDC), then

asef = 2Y — det((AD — BC"

&4 A

This formula has been generalized to
matrices composed of more than 2 < 2
blocks, again under appropriate
commutativity conditions among the
individual blocks!

For A — DD and B — (C, the following
formula holds (even if A and B do not
commute)
det (g i — det(A — B)det(A + B).

Example 1.2.3

17






Definition 1.2.5 (Block Diagonal Matrices)
A block diagonal matrix is a block matrix that is a square matrix such

that the main-diagonal blocks are square matrices and all off-diagonal
blocks are zero matrices. That is, a block diagonal matrix A has the form

-Al 0 0
0 A, --- 0

0 0 --- A,

where A, 1s a square matrix forallk =1, ..., n.

In other words, matrix A is the direct sum of A, ..., AZ. It can also be
indicated as A& A2 ... B A, or diag(Al, A2, ..., An) (the latter being the
same formalism used for a diagonal matrix). Any square matrix can
trivially be considered a block diagonal matrix with only one block.

For the determinant and trace, the following properties hold

det A
tr A

det A; X --- x det A,,,
trA;{ +---+trA,.

|

19



A block diagonal matrix is invertible if and only if each of its main-
diagonal blocks are invertible, and in this case its inverse is another
block diagonal matrix given by

Al 0 O”Hl wAl_l 0 0 i
0 As +» D 0 A2_1 0
0 0o --- A, 0 0 Agl

The eigenvalues and eigenvectors of A are simply those of the Al
combined.

Definition 1.2.6(Block tridiagonal matrices)

A block tridiagonal matrix is another special block matrix, which is just
like the block diagonal matrix a square matrix, having square matrices
(blocks) in the lower diagonal, main diagonal and upper diagonal, with
all other blocks being zero matrices. It is essentially a tridiagonal matrix
but has submatrices in places of scalars. A block tridiagonal matrix A
has the form

(B, C; 0

20



where Al], B[] and CLJ are square sub-matrices of the lower, main and
upper diagonal respectively.

Block tridiagonal matrices are often encountered in numerical solutions
of engineering problems (e.g., computational fluid dynamics).
Optimized numerical methods for LU factorization are available and
hence efficient solution algorithms for equation systems with a block
tridiagonal matrix as coefficient matrix.

The Thomas algorithm, used for efficient solution of equation systems
involving a tridiagonal matrix can also be applied using matrix
operations to block tridiagonal matrices .

Definition 1.2.7 (Direct sum)

For any arbitrary matrices A (of size m x n) and B

(of size p x q), we have the direct sum of A and B, denoted by

A®B and defined as

apipz -+ Qip o --- 0
A1 Amn 0 0

APB-=
® 0 0 by bi,
R 0 0 bpl bpq_

For instance,
1 3 2 0 O
!132]@[1 6]_ 2 3 1 0 0
2 & 1 0 1/ |0 0o 0 1 6
0O 0 0 0 1

This operation generalizes naturally to arbitrary dimensioned arrays
(provided that A and B have the same number of dimensions).

21



Note that any element in the direct sum of two vector spaces of matrices
could be represented as a direct sum of two matrices.

Chapter two

Applications of Block
Matrix

22



Applications of Theorem on Partitioned Matrices

2.1Introduction

In a previous paper a general reduction formula was given for
certain Partitioned matrices

L A N e O

of order N , where the submatrices Ai,; have dimensions nixn;,

One of the special cases of this general theorem

23



is of particular interest in practical applications to the problem of
ftnding the eigenvalues of a matrix and, in fact, has been applied
successfully to such

problems. This special case is given below as theorem 1, since its
proof is simpler than that for the general theorem and exhibits the
transformation matrices needed for the reduction formula. This
result is used insection 3 to give generalizations of some
theorems by A. Brauer 2 on stochastic matrices. Other
applications are given in later sections. As in the previous paper,
for a given partitioning of a matrix A we shall call the submatrices,
Ai the blocks of A and we sball write A = (Aij). The clements of the
blocks will be denoted by, al i1 i.e.

Unless otherwise stated, the matrices will be arbitrary complex
matrices. Also, since we will be dealing throughout with matrices
A = (Aijj) of form (1) , we will assume,unless otherwise indicated,
that the statements and formulas given are true for i,j=1,2, ..., t.

[3].
2.2 Special Reduction Formula

For the sake of completeness we include a lemma from the
previous paper which is needed in the proofs of theorems 1 and
3. In this lemma we consider three cases where there are zeros
in convenient places in the blocks of a partitioned matrix, A. In
each of these cases A is reducible, and the proof consists merely
in defining the permutation matrix which puts A into the reduced
form,

24



(|

-
.
|y S

D1

where C and T are square matrices and O is a matrix composed
entirely of zeros. [4]

Lemma2.2.1: Given a partitioned matrix A of order N with njx
nj blocks Aij:

1.1f ni=n (i=1,2, ..., t) and the blocks Ajj

are lower triangular with elements A Jh) |, h=1,2, .... n, on the
diagonal, A is similar to a matrix A, with blocks Al C=(Aj

h= 1,2, ...,n, on the diagonal, and zero blocks above the diagonal

e ! O
Ay ( ) (3)
I, 1;:;

where all matrices T; are square, of order r, and the matrices
Cij are (ni-r)x(n;-r), then A has the form (2), where C=(Cj)and T =
(Ti).

3. If Ajj has the form (3) where the matrices Tijj are lower
triangular, we will say A j is partially triangular. Then if A has
blocks A ij which are all partially trianoular with submatrices, Tj; of
order r, having

elements tj1h(])), h= 1,2, ... ,r, on the diagonal, tr roots of A are
roots of the r matrices, (tj[Ih(]) .

25



The proofs given below would follow in a corresponding manner
if all blocks were transposed.
Proof :
1. The rows and columns of A should be arranged in the order
1, n+1,2n+1,.., (t-1)n+1; ...(4)
2, nt2 2n+2,.,(t-1)n+ 2;
n, 2n, 3n, ..., tn.
Then the new matrix A will have the matrices A= (Ajh[]) on

the diagonal and A. . =0 for i<j, soits roots are the roots of the
n matrices ,A[1[] .

k
2. Liet 2> 71y IN - Then Nyi—mg, INe—IN
fom 1

If we arrange the rows and columns of A in the following order:

1,2,....NO-r,
N, +1,N: +2,..,N. -, ...(5)

N. - +1,N, - . +2,...,N, -,

NC-r+1,N-r+2,.... N[,

NC-r+1,N1-r+2,.... N[,
we have a new matrix A in which the matrices Cj are together in
the upper left corner, and the matrices Tjj are together in the lower
right corner. So A will have the form (2) where C= (Cij) and T=
(Ti).

3. Case 3 follows immediately now by first applying the

permutation in 2 to the rows and columns of A and then applying
the permutation in 1 to the rows and columns containing T.

26



Theorem2.2. 1: Suppose the blocks Aj; of the partitioned matrix
given in (1) satisjy the equation

AiXi=XBj ....(6)
where Bjj is a square matrix of order
O<r<n;
with strict inequality for at least one value of i, and Xiis an nixr
matrix with a nonsingular matrix of
order r, X;_1[1[], in the first r rows. Let the last ni-r rows of Xi be
XOOO0, and let

-‘_‘(—;—1;. “'.i__;- (=)
A, = -
7 11__,-"(!') _l_:) .

where AL is square, of order r. Then A is similar to the
matrix,

27



Ve =
R—=— ) (8S)
o !

where I3 is a partitioned matric of order tr with blocks
3,;, as defined in (6), and ' has blocks,

C';‘j: (A‘lé;j)_—\'éi) (-\'1(”)__]4'11{:‘;.”.) (9)

with dimensions (n,—r) < (n,—r). (If either 7, or
r;=—1r, the corresponding block 7, does not appear.
By hypothesis not all 7, are equal to 7, or else we
would be left with the matrix — (/5,,) which would
be similar to 1.)

Thus the roots of A are the roots of the smaller
matrices 2 and .

Proor: lLiet /7, be a matrix of order 7,:

X102 O |
])i=<‘\'§_$f> ]ni__,>; (10)
then
(5 () O
Pr=_xwxm) - 1,,,._,>’ (a2

where 7, represents an identity matrix of order /4.
Since by (7)) and (10)
— ([A;{j)_{\"lj) —{—;l;é”:&vé”] xfl;é“)
<A gj Ig— g = - ’
[AS» X P+ AY XD AY
then by (6),
[X{"-B.,]  Ag>
Al y—
B (1) i )’
[X:9-B,,] AS3

and, using (11) and (9),

_ B.; (X{P)—rAEP
: (1

“"l ‘-j':I);_:_ 14"1,- 1’ == 2)
77 \o iy

So, if we let /2 be the direct sum of the matrices
1’,
I):E'],f:l)l+1)2+ . s - _f_I)f, (}.:3)

28



and let

A=P- 'AP
then A has the blocks Aj; given in (12), and the simultaneous
permutation of rows and columns of A given by case 2 of the
lemma above, will put it into form (8)

2.3 Generalizations of Brauer Theorems on Stochastic
Matrices

A. Brauer proved a number of interesting
theorems about generalized stochastic matrices, i.e.,
matrices A = (ajj) of order n snch

> A==, (2 1,2, . . .7n). (14)

Such matrices have as one root, s, and the vector corresponding
to this root is
Un=(1,1,...,1) ...(14a)

The reduction formula of theorem 1 is applied in this section to
matrices which can be partitioned into stochastic blocks, to give
generalizations of Brauer's results.

If a matrix A of order N can be partitioned in to rectangular
(nixn;) blocks, in each of which the row-sums are all equal , i.e.,

29



A= (ail??), 5 1,25 = = o 5 gz =152, < & .5 73]

with

ml 4"
-

A is a block-stochastic matrix.

2.4 Other Applications

In this section we will mention several other types of partitioned
matrices,

A = (Aj), such that

B *
PAP-1 ( ), (20)
O C

where P is the direct sum of transformation matrices
Pi, and B =(Bjj), C = (Cjj), are partitioned matrices

which will be defined in each case. We also give a case where the

transformation PAP~ " produces a real matrix from a complex
one. Since the proof in each case is the same and consists

merely in performing the indicated matrix multiplications, it will not

be given in detail.

2.4.1. Block-Circulant Matrices

This is the case where each block Ajj is a circulant
matrix of order n. The result (21) is given by Williamson.
The roots of A are roots of the n matrices of order t

30



n
()= ;1 a-‘ﬁ{-’ei') (h=1,2,...,m) (21)

where €, is one of the nth roots of unity.

[5]
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