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Abstract

In this research a new integral transformation was applied, called the Elzaki
transform method, and it is still not widely known, but it was found that this is a
more efficient and easy way to get an exact solution of ordinary linear differential
equations . In the chapter one we will talk about the definition of differential
equations and the properties. and in Chapter tow we will introduce the basic
principles about the Elzaki transform that we will apply to solve ordinary
differential equation examples.

Introduction

The differential equations represent the most important phenomena occurring in
the world. This phenomenon is importance in applied mathematics, physics, and
issues related to engineering. The importance of obtaining the exact solution of
differential equations is still a big problem that needs new methods to discover new
exact or approximate solutions.

Several techniques such as A domain decomposition method [1], Variational
iteration method [2, 3], Homotopy perturbation method [4], Laplace decomposition
method [5, 6, 8], Sumudu decomposition method [7], have been used Such that is
the original function and to solve linear and nonlinear partial differential equations.
The main aim of this paper is to solve the differential equations by using of ELzaki
transform.
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Chapter one

1.1

1.2

Introductionp

In this chapter we present the definition of DE differential equations in
Section 1.2 and the properties such as order , linearity and
homogeneous and discuss in the sections 1.3 , 1.4 and 1.5 respectively ,
in section 1.6 we will display the definition of the solution of a DE.
Boundary and initial conditions will introduce in 1.7

Definition of Differential Equations
Ordinary differential equations: containing dependent variables with
one independent variable and derivatives of this variable.
Partial differential equations: contain mathematical functions of more
than one independent variable with their partial derivatives.

Examples of the DEs are given by

U = Ku,,, (1.1)
Uy = K(ugy +uyy), (1.2)
x =5y —4y' (1.3)

These equations describe the heat flow in one-dimensional space, two-
dimensional space, and three-dimensional space respectively. In (1.1), the
dependent variable u = u(x, t) depends on the position x and on the time
variable t. However, in (1.2), u = u(x, y, t) depends on three independent
variables, the space variables x, y and the time variable t. Other examples
of DEs are given by

Upr = C2Uyy (1.4)
Upp = c2(uxx + uyy) (1.5)
U = C2 (uxx + uyy_uyy) (1.6)

These equations describe the wave propagation in one-dimensional
space, two-dimensional space, and three-dimensional space respectively.
Moreover, the unknown functions in (1.4), (1.5), and (1.6) are defined by
u=ux,t),u=ux,y,t),and u=u(x,vy, z, t ) respectively.




The well-known Laplace equation is given by:

Uyy + Uy, =0, (1.7)

Uyy + Uyy + U, =0, (1.8)

where the function u does not depend on the time variable t. Moreover,
the Burgers equation and the KdV equation are given by

U + UU, — VUy, = 0, (1.9)

U + 6UU, + Uyy = 0, (1.10)

Respectively, where the function u depends on x and t

1.3 Order of DE

he order of a DE is the order of the highest derivative that appears in the
equation. For example, the following equations

Uy — Uy = 0,
Uy — U =0, (1.11)
Uy — Ullyyy = 0
Example 1. The order of the following DE:s:
(@ur = Uyy + Uy, (buy, +u, =0
(U My +1hgx =2 (@thge + Uy = 1

(a)The highest derivative contained in this equation is Uy, or u,,,. The DE is
therefore of order two.

(b) The highest derivative contained in this equation is u,or u, . The DE is
therefore of order one

(c¢) The highest derivative contained in this equation is u,,, . The DE is
therefore of order three.




(d) The highest derivative contained in this equation is Uy, . The DE is
therefore of order four.

1.4. Linear and Nonlinear DEs

Differential equations are classified as linear or nonlinear. A differential
equation is called linear if:

1. The power of the dependent variable and each derivative contained
in the equation is one, and

2. The coefficients of the dependent variable and the coefficients of
each derivative are constants or independent variables. However, if
any of these conditions is not satisfied, the equation is called
nonlinear.

Example 1. To classify the following DEs as linear or nonlinear
(@) XUyy + YUy, =0
(buu; + xu, = 2
u, +vVu =x

(Dup +ru, + ryugg =0

a) The power of each derivative u,, and u,,, is one. In addition,
the coefficients of the derivatives are the independent
variables x and y respectively. Hence, the DE is linear

b) Although the power of each derivative is one, but u, has the
dependent variable u as its coefficient. Therefore, the DE is
nonlinear.

¢) The equation is nonlinear because of the term V1.

d) The equation is linear because it satisfies the two necessary
conditions.

1.4.1. Some Linear Differential Equations




As stated before, linear differential equations arise in many areas of
scientific applications, such as the diffusion equation and the wave
equation. In what follows, we list some of the well-known models that
are of important concern:

1. The heat equation in one-dimensional space is given by
Uy = ki, (1.12)
Where k is a constant
2. The wave equation in one-dimensional space is given by
Upr = C2Uyy (1.13)
where c is a constant.
3. The Laplace equation is given by
Uyy + Uyy =0 (1.14)
4. The Linear Schrodinger’s equation is given by
iUy + Uy, = 0.,i =1 (1.15)
5. The Telegraph equation is given by
Uyy = AUy + buy + cu (1.16)

where a, b and c¢ are constants. It 1s to be noted that these linear models
and others will be studied in details in the forthcoming chapters.

1.4.2. Some Nonlinear Differential Equations

It was mentioned earlier that differential equations arise in different
areas of mathematical physics and engineering, including fluid
dynamics, plasma physics, quantum field theory, nonlinear wave
propagation and nonlinear fiber optics [8]. In what follows we list some
of the well-known nonlinear models that are of great interest:




1. The Advection equation is given by

u; +uu, = f(x,t). (1.17)

2. The Burgers equation is given by

U + UL, = AU,y (1.18)

3. The Korteweg de-Vries (KdV) equation is given by

U; + auu, + by, = 0. (1.19)
4. The modified KdV equation (mKdV) is given by

U — 6UZ Uy + Uyyyy = 0 (1.20)

5. The Boussinesq equation is given by

Ut — Uy + 3(U2)XX — Uy = 0 (1.21)

6. The sine-Gordon equation is given by

Upr Uy = @SINU (1.22)

7.The sinh-Gordon equation is given by

Usr — Uy = @ Sinhu (1.23)

8. The Liouville equation is given by

Ut — Uy = €1 U (1.24)

9. The Fisher equation is




Uy = Du,,, + u(l —u). (1.25)

10. The Kadomtsev-Petviashvili (KP)equation is given by

(ue + auty, + by, )x + uyy, =0 (1.26)

11. The K(n,n)equation is given by

us +a(un)x + b(un)xx =0 ,n>1 (1.27)
12. The Nonlinear Schrodinger (NLS) equation is

Uy + Uy, + ylul2u = 0. (1.28)
13. The Camassa-Holm(CH)equation is given by

Up — Upyr T AUy + 3UU, = 22U Usy + Ullyyy (1.29)

14. The Degasperis-Procesi (DP) equation is given by

Up — Uy T AUy + AU, = U Uyy + Ullyyy- (1.30)

The above-mentioned nonlinear differential equations and many others will
be examined in the forthcoming chapters. These equations are important and
many give rise to solitary wave solutions.

1.5. Homogeneous and Inhomogeneous DEs
Differential equations are also classified as homogeneous or inhomogeneous.

Adifferential equation of any order is called homogeneous if every term of the
DE contains the dependent variable u or one of its derivatives, other- wise, it




is called an inhomogeneous DE. This can be illustrated by the following
example.

Example 3. To classify the following differential equations as homogeneous
or inhomogeneous

(a) U = 4Uyy
(b)) u;y = Uy, +x

(€) Uyy +Uyy =0
(duytu, =u+4
Have we:

a) The terms of the equation contain derivatives of u only, therefore it is a
homogeneous DE.

b) The equation is an inhomogeneous DE, because one term contains the in-
dependent variable x.

c) The equation is a homogeneous DE.

d) d) The equation is an inhomogeneous DE.

1.6. Solution of a DE

A solution of a DE is a function u such that it satisfies the equation under
discussion and satisfies the given conditions as well. In other words, for u to
satisfy the equation, the left hand side of the DE and the right hand side
should be the same upon substituting the resulting solution. This concept will
be illustrated by examining the following examples. Examples of differential
equations subject to specific conditions will be examined in the coming
chapters.

Example 4. The function (x,y) = sinx e — 4t is a solution of the following
DE

Uy = 4u,., (1.31)

Since




Right Hand Side (RHS)= 4u,,, = —4 sinx e — 4t = LHS

Example 5. The function u(x,y) = sinx siny + x2 is a solution of the following
DE

Uyy = Uyy + 2 (1.32)
Since
Left Hand Side (LHS)=u,, = —sinxsiny + 2
Right Hand Side (RHS)= u,,, + 2 = —sinxsiny + 2 = LHS
Example 6. Show that u(x,y) = cos x cost is a solution of the following DE
Upr = Upy (1.33)
Since
Left Hand Side (LHS)=u;; = —cosx cost
Right Hand Side (RHS)= u,,, = —cosx cost = LHS

1.7. Initial Conditions

It was indicated before that the DEs mostly arise to govern physical
phenomenon such as heat distribution, wave propagation phenomena and
phenomena of quantum mechanics. Most of the DEs, such as the diffusion
equation and the wave equation, depend on the time t . Accordingly, the
initial values of the dependent variable u at the starting time t = 0 should be
prescribed. It will be discussed later that for the heat case, the initial value
u(t = 0), that defines the temperature at the starting time, should be
prescribed. For the wave equation, the initial conditions u(t = 0) and ut(t = 0)
should also be prescribed.

10




Chapter two




Chapter tow :
2.1 Introduction

In this chapter, we will introduce the basic properties for the ELzaki
Transform in sections 2.2, 2.3 and 2.4, then we will apply this transform to
solve the ordinary differential equations in section 2.5.

2.2 ELzaki Transform

Elzaki Transform is derived from the classical Fourier integral[1]. Based on
the mathematical simplicity of the Elzaki transform and its fundamental
properties. Elzaki transform was introduced by Tarig Elzaki to facilitate the
process of solving ordinary and partial differential equations in the time
domain.[2, 3]

Typically, Fourier, Laplace and Sumudu transforms are the convenient
mathematical tools for solving differential equations,[5, 6, 7, 8] also Elzaki
transform and some of its fundamental properties are used to solve differential
equations.

A new transform called the Elzaki transform defined for function of
exponential order we consider functions in the set A defined by:

A={f(©):3IM, ki, k; >0,|f(©)| < Me®%,if t € (1) X[0,0)} (2.1

For a given function in the set A, the constant M must be finite number, k4, k,
may be finite or infinite. The ELzaki transform denoted by the operator E (.)
defined by the integral equations

E[f] =Tw) =v [*f(Oev dt, t>0, ky <v<k, 2.2)

The variable v in this transform is used to factor the variable ¢t in the
argument of the function f. This transform has deeper Connection with the
Laplace transform. We also present many different of properties of this new
transform and Sumudu transform, few properties exptent The purpose of this
study is to show the applicability of this interesting new transform and its
efficiency in solving the linear differential equations.
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2.3 Elzaki Transform of the Some Functions.

For any function f(t) .we assume that the integral equation (2) exist.
The Sufficient Conditions for the existence of ELzaki transform are that f(t)
fort = 0 be piecewise continuous and of exponential order, Otherwise
ELzaki transform may or maynot exist In this section we find ELzaki

transform of simple functions.

In this section we find ELzaki transform of simple functions.

(D) let f(t)=1 , then:

E(1 ® e d v 2
= v qt = — v =
(1) vfo € v[ ve ]0 v

(ii) let f(t) =t ,then:
o =t
E(t)y=v [, tevdt
Integrating by parts to find that:E(t) = v3

In the general case if n > 0 is integer number, then.

E(t™) = nlv"*?
-t

(iii) E[e*] = v fooo e’ eddt =

'UZ

1—av
This result will be useful, to find ELzaki transform of:

3 2

av v

E[sin at] =T E[cosat] = ——

. av? av?
E[sinhat] = o E[coshat] = 0
Theorem:

Let T(v) is the Elzaki transform of [E ( f (t)) = T(v)].then:

® Ef'©]="2-v£(0)

13




(i) E[f"®] =22 - £(0) — vf'(0)
(iii) E[f(")(t)] T(v) Zn p2-ntk f(k) (0)

Proof:
@ EIF @O =v [ f(©) ev dt
Integrating by parts to find that :
E[f'(H)] = —v f(0)
(ii) let g(t) = f' (t), then:
Elg'(®)] =3 E[g(®)] —v g(0)
we find that by using (i),
E[f"(®] = — f(0) —vf'(0)

(iii) Can be proof by mathmatical induction

T (v)

T(v)

2.4 The Inverse of Elzaki Transform

Definition: Let the functions f(u) = E{f} is the Elzaki transform of the
function f(t), thenf (u) called the inverse transform of the function f( u) and

we will write it as :

f@® =E"Hf(w)}

Remark: The inverse transform has the linear combination property, i.e.

E7'(3hoianfiw} = Xioi arE~ {fi (W)}

14




2.5 Application of ELzaki Transform of Ordinary Differential Equations.

As stated in the 2.1 of this paper, the ELzaki transform can be used as an effective
tool. For analyzing the basic characteristics of a linear system governed by the
differential equation in response to initial data. The following examples illustrate

the use of the ELzaki transform in solving certain initial value problems
described by ordinary differential equations.

Consider the first-order ordinary differential equation.

G tP@ =f©), t>0 (2.3)
With the initial condition
x(0) =a (2.4)

Where p and a are constants and f(t) is an external input function so
that its ELzaki transform exists.

Applying ELzaki transform of the equation (3) we have :

= % (v) — vx(0) + px (v) = f (v)

_ vf (v) av?
X\V) =
@) 1+pv  1+pv

The inverse ELzaki transform leads to the solution. The second order
linear ordinary differential equation has the general form

a’y dy _

dx2+2pdx+qy—f(x) x>0 (2.5)
The initial conditions are

y(0) =a, Z(0)=b

Are constants. Application of the ELzaki transforms b and p, g, a where to this
general initial value problem gives

=7 @) = y(0) = vy'(0) + 2p |57 ) — vy (0)| + g7() = F(¥) (2.6)

15




The use of (6) leads to the solution for y(v) as

v2f(v) av? (b+2pa)v?
qu2+2pv+1  qvi+2pv+1  qui+2pv+1

yw) =
The inverse transform gives the solution.

Example (1): Consider the first order differential equation

Y= 0) =1
dx Y= ’ Y=

Take ELzaki transform to this equation gives:
1
~E(y) —vy(0)+E(y) =0

_ i — X
E(y) = - and y(x)=e
The New Integral Transform "ELzaki Transform”

Where E(y) is the ELzaki transform of the function y(x).

Example (2): Solve the differential equation
y+2y=x, y0)=1

Take ELzaki transform to this equation is

~E(y) - vy(0) + 2E(y) = v*

@3+
E(y) T 1+42v
_1,3.5 1’2)_12
E(y)_zv +4(1+2v i
The inverse transform of this equation gives the Solution:
1 5 _ 1
y(x) =x+ce -~

Example (3): Let us consider the second—order differential equation

16




y'+y=0, y(0)=y'(0)=1

we take ELzaki transform to this equation gives
1
v—zE(y)—1+E(y)—v=0

We solve this equation for E(y) to get

V2 v3

v2+1  vZ+1

E(y) =

The inverse ELzaki transform of this equation is simply obtained as

y(x) = sinx + cosx

Example (4): Consider the following equation

y"—=3y"+2y=0 , y(0)=1, y'(0) = 4Take ELzaki transform of this
equation we find that:

_ _viw+1) o, 2 3
E(y)_(2v—1)(v—1)_ [v—l 217—1]
—2v? 3v2
E(y)-_ 1-v 1-2v

Then the solution is y(x) = —2e* + 3e?¥

Example (5): Let the second order differential equation:

y'+9y=cos2t if y(0)=1, y(—)z—l

Since y'(0) is not know, let y'(0) =c .

Take Elzaki transform of this equation and using the conditions, we have

v?2 v3 v

5 c z [ 4 cv 1 ]
rw)=v [(1+4v2)(1+9v2)] + 149v2 + vz ¥ 5(1+9v?) + 3(1+9v?) + 5(1+4v2)

And invert to find the solution.

y = gcos 3t +§sin3t +§cos 2t

17




To determine ¢ not that y(g) = —1 thin we find ¢ = % then,

y = gcos 3t +§sin3t +§cos 2t

Example (6): Solve the differential equation:
y" =3y +2y =4e3 , y(0)=-3, y'(0)=5

Taking the Elzaki transforms both side of the differential equation and using the
given conditions we have,

4p?
1-3v

T(v)
vz

+3-5v-3|"2+3v|+2T(v) =

v

2
2 L 14p -3
v

[ =5 2fron =55

!

The New Integral Transform' ELzaki Transform/

Or

T(v):vz[ SR - 9]

1-2v 1-3v 1-v
Inverting to find the solution in the form.

y(t) = 4e?t + 2e3t — 9et

18




Conclusion

The definition and application of the new transform " Elzaki transform"
to the solution of ordinary differential equations has been demonstrated
we have proven that the Elzaki transformation is a very effective and
convenient method for solving differential equations in time domain.
The purpose of this study is to show the applicability and efficiency of
this new interesting transformation to solve linear differential equations.
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