Education Ministry of Higher Education University of Babylon
College of Education and Pure Sciences Mathematics department

Modes of Convergence

A proposed research to the council of the college of Education for pure Sciences/University of Babylon As part of the requirements for Bachelor's degree By
Ayat Kazem Talib

Supervised by
Asst . prof . Dr. Janan Hamza

وَقُلْ الْمَلُوا فَسَيَرَى اللَّهُ عَمَاْكُ وَرَسُولُّهُ

صدق الله العظيم سورة التوبة (1-0)

الأهداء

أُلْلى من نظر كلمة "اقر أ... سيد المرسلين الذي أنار برسالثه ظلام الجاهلية "ححم (اللهم صل على يحم وال ححم)"
"وطني الحبيب"
"والاي العزيز"
"والاتي العزيزة"
من حملتني و هناً على وهن وسهرت الليالي على راحتي
إلأزهـار التي معهم أحلى وأجمل الأيام التي لن أنساها
"زملائي وزميلاتي"
"أساتّنتي الأفاضل"
كّلى من علمني حرفاً ليكون لي سلاحاً بوجه الظلام

إليكم جميعاً أهدي مـا وفقتا بهه ربنا حباً واعتزازاً...

شكر وتقدير ...

الحمدله والثكر له على تيسير وإكمال هذا البحث، والصلاة والسلام على رسولنا الكريم
ححمد (اللهم صل على ححم وال ححم) الذي نور لنا الطريق القويم وبعد... يشرفنا أن نقام جميع شكرنا وتققيرنا الى أستاذتنا المشرفة الدكتورة (جنان حمزة) الذي تكرمت بالأشراف على هذا البحث، وكان له الدور الفاعل في العون والدعم والاسناد
 التفاصيل، التي تخص البحث، فجز اها الهُ كل خير وأبقاه ذخراً للبحث العلمي. وأنوجه بالثكر الجزيل والاحترام والمحبة، إلى أساتذة قسم الرياضيات
الالين أخذوا بيدي في طريق الخير والعلم و المعرفة فجزاهه الهَ خير الجزاء...
ومن الله النوفيق...

الباحثة

Subject	Page
Introduction	1
Convergence in Distribution	2
Convergence in probability	6
Weak Law of Large Numbers	7
Convergence Almost Surely	10
Strong Law of Large Numbers	11
Convergence in Rth Mean	11
Relating the Modes of Convergence	13
Central limit theorem	16
Reference	23

We offer in this research subject on modes of convergence that represents by the convergence in distribution, convergence in probability, Convergence almust shurly and convergence in rth mean such that There is only one sense in which a sequence of real numbers $\left(a_{n}\right)_{n \in N}$ is said to converge to a limit. Namely, $a_{n} \rightarrow a$ if for every $\epsilon>0$ there exists a positive integer N such that the sequence after N is always within ϵ of the supposed limit a. In contrast, the notion of convergence becomes somewhat more subtle when discussing convergence of functions. In this note we briefly describe a few modes of convergence and explain their relationship In this research we introduce some theorems. about this like weak law of large number, strong law of large number and the central limit theorem .We express some examples about this subject.

1.Convergence in Distribution

Let F and F_{n} be the distribution functions of X and X_{n}, respectively the sequence of random variables $\left\{X_{n}\right\}$ is said to converge in distribution to random variable X as $n \rightarrow \infty$ if
$\lim _{n \rightarrow \infty} F_{n}(z)=F(z)$
For all $z \in R$ and z is a continuity points of F . We write $X_{n} \xrightarrow{d} X$ or $F_{n} \xrightarrow{d} F$

Example(1):

Let Y_{n} denote the nth order statistic of a random sample $X_{1}, X_{2}, \ldots \ldots X_{n}$ from a distribution having

Probability density function:

$$
\begin{aligned}
& f(x)=\frac{1}{\theta}, \quad 0<x<\theta, \quad 0<\theta<\infty \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Show that the sequence of nth order statistics $\left\{Y_{n}, n=\right.$ $1,2,3, \ldots\}$ convergence in distribution to a random variable that has degenerate distribution at the point $x=\theta$.

Solution:

The pdf of Y_{n} is:

$$
\begin{aligned}
& g y_{n}\left(y_{n}\right)=g_{n}\left(y_{n}\right)=n\left(F\left(y_{n}\right)\right)^{n-1} f\left(y_{n}\right) \\
= & n\left[\int_{-\infty}^{y} f(t) d t\right]^{n-1} \frac{1}{\theta}=n\left[\int_{0}^{y} \frac{1}{\theta} d t\right]^{n-1} \frac{1}{\theta}
\end{aligned}
$$

$$
\begin{gathered}
=n\left[\frac{t}{\theta} \left\lvert\, \begin{array}{c}
y \\
0
\end{array}\right.\right]^{n-1} \frac{1}{\theta}=n\left[\frac{y}{\theta}\right]^{n-1} \frac{1}{\theta} \\
\quad=n \frac{y^{n-1}}{\theta^{n-1}} \frac{1}{\theta}=n \frac{y^{n-1}}{\theta^{n}}
\end{gathered}
$$

The p.d.f. of Y_{n} is

$$
\begin{aligned}
& g_{n}(y)=\frac{n y^{n-1}}{\theta^{2}}, 0<y<\theta, \\
= & 0 \text { elsewhere },
\end{aligned}
$$

The distribution function of Y_{n} is:

$$
\begin{aligned}
& F_{n}(y)=\int_{0}^{y} g_{n}(t) d t=\int_{0}^{y} n \frac{t^{n-1}}{\theta^{n}} d t=\left.n \frac{t^{n}}{n \theta^{n}}\right|_{0} ^{y}=\frac{y^{n}}{\theta^{n}}, \quad 0<y \\
& \quad<\theta
\end{aligned}
$$

we get,

$$
\begin{gathered}
F_{n}(y)=0, \quad y<0 \\
F_{n}(y)=\left(\frac{y}{\theta}\right)^{n}, \quad 0 \leq y<\theta \\
=1, \quad \theta \leq y<\infty
\end{gathered}
$$

Then:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} F_{n}(y)=0, \quad-\infty<y<\theta \\
=1, \quad \theta \leq y<\infty \\
F(y)=0, \quad-\infty<y<\theta \\
=1, \quad \theta \leq y<\infty
\end{gathered}
$$

is a distribution function moreover,

$$
\lim _{n \rightarrow \infty} F_{n}(y)=F(y)
$$

The above distribution is degenerate distribution at the point $x=\theta$.

Example(2):

Let Y_{n} denote the nth order statistic of a random sample from the uniform distribution having pdf

$$
\begin{aligned}
& f(x)=\frac{1}{\theta}, \quad 0<x<\theta \\
& \quad 0<\theta<\infty \\
& =0 \text { elsewhere. }
\end{aligned}
$$

Let $Z_{n}=n\left(\theta-Y_{n}\right)$. Show that the sequence of nth order statistic $\left\{Z_{n}, n=1,2,3, \ldots\right\}$ convergence in distribution to a random variable that has an exponential distribution with mean θ.

Solution:

$$
\begin{gathered}
g y_{n}\left(y_{n}\right)=g_{n}\left(y_{n}\right)=n\left(F\left(y_{n}\right)\right)^{n-1} f\left(y_{n}\right) \\
=n\left[\int_{-\infty}^{y} f(t) d t\right]^{n-1} \frac{1}{\theta}=n\left[\int_{0}^{y} \frac{1}{\theta} d t\right]^{n-1} \frac{1}{\theta} \\
=n\left[\frac{t}{\theta}\left[\begin{array}{l}
y \\
0
\end{array}\right]^{n-1} \frac{1}{\theta}=n\left[\frac{y}{\theta}\right]^{n-1} \frac{1}{\theta}\right. \\
=n \frac{y^{n-1}}{\theta^{n-1}} \frac{1}{\theta}=n \frac{y^{n-1}}{\theta^{n}}
\end{gathered}
$$

Let $z=n(\theta-y) \rightarrow y=\theta-\frac{z}{n} \rightarrow d z=-n d y$

The pdf of Z_{n} by using the transformation technique to get the following

$$
h_{n}(z)=g_{n}\left(y=\theta-\frac{z}{n}\right)\left|\frac{d y}{d z}\right|=n \frac{\left(\theta-\frac{z}{n}\right)^{n-1}}{\theta^{n}}\left|-\frac{1}{n}\right|=\frac{\left(\theta-\frac{z}{n}\right)^{n-1}}{\theta^{n}}
$$

and the distribution function of Z_{n} is

$$
\begin{gathered}
G_{n}(z)=\int_{0}^{z} h_{n}(t) d t=\int_{0}^{z} \frac{\left(\theta-\frac{t}{n}\right)^{n-1}}{\theta^{n}} d t=-\left.n \frac{\left(\theta-\frac{t}{n}\right)^{n}}{n \theta^{n}}\right|_{0} ^{z} \\
=-\left.\left(1-\frac{t}{n \theta}\right)^{n}\right|_{0} ^{z}=1-\left(1-\frac{z}{n \theta}\right)^{n}, \quad 0 \leq z \leq n \theta \\
\lim _{n \rightarrow \infty} G_{n}(z)=\lim _{n \rightarrow \infty}\left[1-\left(1-\frac{z}{n \theta}\right)^{n}\right]=1-\lim _{n \rightarrow \infty}\left(1-\frac{z}{n \theta}\right)^{n} \\
=1-\lim _{n \rightarrow \infty}\left(1-\frac{\frac{z}{\theta}}{n}\right)^{n}=1-e^{-\frac{z}{\theta}}=G(z) \\
\therefore \lim _{n \rightarrow \infty} G_{n}(z)=G(z)=1-e^{-\frac{z}{\theta}}
\end{gathered}
$$

The above distribution is an exponential distribution with mean θ.

2. Convergence in Probability

The sequence of random variables $X_{1}, \ldots . X_{n}$ converges in probability to constant c , denoted

$$
X_{n} \xrightarrow{p} c
$$

If
$\lim _{n \rightarrow \infty} P\left[\left|X_{n}-c\right|<\epsilon\right]=1$.
or, equivalently,
$\lim _{n \rightarrow \infty} P\left[\left|X_{n}-c\right| \geq \epsilon\right]=0 \ldots \ldots$. (3)
That is, if the limiting distribution of $X_{1}, \ldots . X_{n}$ is degenerate at c .

Theorem(1)(Weak Law of Large Numbers)

Suppose that $X_{1}, \ldots . X_{n}$ is a sequence of i.i.d. random variables with expectation μ and finite variance σ^{2}. Let Y_{n} be defined by

$$
Y_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

then, for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left[\left|Y_{n}-\mu\right|<\epsilon\right]=1
$$

that is, $Y_{n} \xrightarrow{p} \mu$, and thus the mean $\mathrm{X} 1 \ldots . . \mathrm{Xn}$ convergence in probability of μ

Proof. Using the properties of expectation, it can be shown that Y_{n} has expectation μ and variance $\frac{\sigma^{2}}{n}$, and hence by the chebychev inrquality,

$$
P\left[\left|Y_{n}-\mu\right| \geq \epsilon\right] \leq \frac{\sigma^{2}}{n \epsilon^{2}} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for all $\epsilon>0$. Hence

$$
P\left[\left|Y_{n}-\mu\right|<\epsilon\right] \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

and $Y_{n} \xrightarrow{p} \mu$.

Example(3):

Let $Y_{n} \sim b(n, p)$. Show that $\frac{Y_{n}}{n}$ convergence in probability to p (that is $\frac{Y_{n}}{n} \xrightarrow{p} p$.

Solution:

To prove $\frac{Y_{n}}{n}$ convergence in probability to p
We must prove $\lim _{n \rightarrow \infty} P\left[\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right]=0$
$P\left(\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right)=P\left(\left|Y_{n}-n p\right| \geq n \varepsilon\right)$
For any $\varepsilon>0$ let $n \varepsilon=K \sqrt{n p(1-p} \rightarrow$

$$
K=\frac{n \varepsilon}{\sqrt{n p(1-p)}}=\frac{\sqrt{n} \varepsilon}{\sqrt{p(1-p)}}
$$

where $\operatorname{var}\left(Y_{n}\right)=n p(1-p)$
$P\left(\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right)=P\left(\left|Y_{n}-n p\right| \geq n \varepsilon\right)$
$=P\left(\left|Y_{n}-n p\right| \geq K \sqrt{n p(1-p)}\right) \leq \frac{1}{\left(\frac{\sqrt{n} \varepsilon}{\sqrt{p(1-p)}}\right)^{2}}$ by chebyshev's
theorem,

$$
\therefore P\left(\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right) \leq \frac{1}{\left(\frac{\sqrt{n} \varepsilon}{\sqrt{p(1-p)}}\right)^{2}}
$$

Take the limit of two sides:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P\left(\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right) \leq \lim _{n \rightarrow \infty}\left(\frac{1}{\left(\frac{\sqrt{n} \varepsilon}{\sqrt{p(1-p)}}\right)^{2}}\right)=0 \\
\therefore \lim _{n \rightarrow \infty} P\left(\left|\frac{Y_{n}}{n}-p\right| \geq \varepsilon\right)=0 \\
\therefore \frac{Y_{n}}{n} \xrightarrow{p} p
\end{gathered}
$$

Example(4):

Let $Y_{n} \sim b(n, p)$. Show that $1-\frac{Y_{n}}{n}$ convergence in probability to $\mathbf{1}-\mathbf{p}$ (that is $1-\frac{Y_{n}}{n} \xrightarrow{p} 1-p$).

Solution:

$$
\begin{gathered}
P\left(\left|\left(1-\frac{Y_{n}}{n}\right)-(1-p)\right|<\varepsilon\right)=P\left(\left|1-\frac{Y_{n}}{n}-1+P\right|<\varepsilon\right) \\
=P\left(\left|-\frac{Y_{n}}{n}+P\right|<\varepsilon\right)=P\left(\left|(-1)\left(\frac{Y_{n}}{n}-p\right)\right|<\varepsilon\right) \\
=P\left(|-1|\left|\left(\frac{Y_{n}}{n}-p\right)\right|<\varepsilon\right)=P\left(\left|\left(\frac{Y_{n}}{n}-p\right)\right|<\varepsilon\right) \\
=P\left(\left|Y_{n}-n p\right|<n \varepsilon\right)
\end{gathered}
$$

By last example, we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P\left(\left|\left(1-\frac{Y_{n}}{n}\right)-(1-p)\right|<\varepsilon\right) \\
=\lim _{n \rightarrow \infty} P\left(\left|\left(\frac{Y_{n}}{n}-p\right)\right|<\varepsilon\right)=1 \\
\therefore \lim _{n \rightarrow \infty} P\left(\left|\left(1-\frac{Y_{n}}{n}\right)-(1-p)\right|<\varepsilon\right)=1 \\
\therefore 1-\frac{Y_{n}}{n} \xrightarrow{p} 1-p
\end{gathered}
$$

3.Convergence Almost Surely (Convergence with

Probability one)

The sequence of random variables $X_{1}, \ldots . X_{n}$ converges almost surely to random variable x , denoted

$$
X_{n} \xrightarrow{a . s} X
$$

If
$P\left[\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\epsilon\right]=1, \ldots \ldots$.
That is, if $A=\left|\omega: X_{n}(\omega) \rightarrow X(\omega)\right|$, then $P(A)=1$.

Theorem(2) (Strong Law of Large Numbers)
Suppose that $X_{1}, \ldots . X_{n}$ is a sequence of i.i.d. random variables with expectation μ and (finite) variance σ^{2} let Y_{n} be defined by

$$
Y_{n}=\frac{1}{\mu} \sum_{i=1}^{n} X_{i}
$$

Then, for all $\epsilon>0$

$$
P\left[\lim _{n \rightarrow \infty}\left|Y_{n}-\mu\right|<\epsilon\right]=1,
$$

4.Convergence in Rth Mean

The sequence of random variables $X_{1}, \ldots . X_{n}$ converges in rth mean to random variable X , denoted

$$
X_{n} \xrightarrow{r} X
$$

If

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left[\left|X_{n}-X\right|^{\mathrm{r}}\right] \ldots \ldots . .(5 \tag{5}
\end{equation*}
$$

For example, if
$\lim _{n \rightarrow \infty} E\left|\left(X_{n}-X\right)^{2}\right|=0 \ldots \ldots$. (6)
Then we write

$$
X_{n} \xrightarrow{r=2} X
$$

In this case, we say that $\left|X_{n}\right|$ converges to X in mean-square or in quadratic mean.

Theorem(3):
For $r_{1}>r_{2} \geq 1$,

$$
X_{n} \xrightarrow{r=r 1} X \quad X_{n} \xrightarrow{r=r 2} X
$$

Proof.

$$
E\left[\left|X_{n}-X\right|^{r 2}\right]^{1 / r 2} \leq E\left[\left|X_{n}-X\right|^{r 1}\right]^{1 / r 1}
$$

so that

$$
E\left[\left|X_{n}-X\right|^{r 2}\right] \leq E\left[\left|X_{n}-X\right|^{r 1}\right]^{r 2 / r 1} \rightarrow 0
$$

as $n \rightarrow \infty$, as $r_{2}<r_{1}$, thus

$$
E\left[\left|X_{n}-X\right|^{r 2}\right] \rightarrow 0
$$

and $X_{n} \xrightarrow{r=r 2} X$

Note: the converse does not hold in general.

Example(5):

Let $X_{n} \sim$ Uniform $\left(0, \frac{1}{n}\right)$. show that

$$
X_{n} \xrightarrow{r} 0, \text { for any } r \geq 1 .
$$

Solution:

The PDF of X_{n} is given by

We have

$$
f X_{n}(x)=\left\{\begin{array}{cc}
n & 0 \leq x \leq \frac{1}{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{gathered}
E\left(\left|X_{n}-0\right|^{r}\right)=\int_{0}^{\frac{1}{n}} x^{r} n d x \\
=\frac{1}{(r+1) n^{r}} \rightarrow 0, \quad \text { for all } r \geq 1 .
\end{gathered}
$$

5.Relating the Modes of Convergence

Theorem4:

For sequence of random variables $X_{1}, \ldots . X_{n}$, following relationships hold

$$
X_{n} \xrightarrow{r} X \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{d} X
$$

So almost sure convergence and convergence in rth mean for some r both imply convergence in probability, which in turn implies convergence in distribution to random variable X .

No other relationships hold in general.
That is, we can prove that
(a) $\mathrm{x}_{\mathrm{n}} \xrightarrow{\text { a.s }} \mathrm{x} \Longrightarrow \mathrm{x}_{\mathrm{n}} \xrightarrow{p} \mathrm{x}$
(b) $\mathrm{x}_{\mathrm{n}} \xrightarrow{r} \mathrm{x} \Rightarrow \mathrm{x}_{\mathrm{n}} \xrightarrow{p} \mathrm{x}$
(c) $\mathrm{x}_{\mathrm{n}} \xrightarrow{p} \mathrm{x} \Rightarrow \mathrm{x}_{\mathrm{n}} \xrightarrow{d} \mathrm{x}$

Proof.

(a) $X_{n} \xrightarrow{\text { a.s }} X \Rightarrow X_{n} \xrightarrow{p} X$, suppose $X_{n} \xrightarrow{\text { a.s }} X$, and let $\epsilon>0$ then

$$
P\left[\left|X_{n}-X\right|<\epsilon\right] \geq P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right]
$$

as, considering the original sample space,
$\left(\omega:\left|X_{m}(\omega)-X(\omega)\right|<\epsilon, \forall m \geq n\right) C\left(\omega:\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right)$
But, as $X_{n} \xrightarrow{\text { a.s }} X, P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right] \rightarrow 1$,
as $n \rightarrow \infty$, so after taking limits in equation (1), we have

$$
\lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right|<\epsilon\right] \geq \lim _{n \rightarrow \infty} P\left[\left|X_{m}-X\right|<\epsilon, \forall m \geq n\right]=1
$$

and so:

$$
\lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right|<\epsilon\right]=1 \quad \therefore X_{n} \xrightarrow{p} X
$$

(b) $X_{n} \xrightarrow{r} X \Rightarrow X_{n} \xrightarrow{p} X$. suppose $X_{n} \xrightarrow{r} X$, and let $\mathbf{\epsilon}>\mathbf{0}$ then, using an argument similar to chebychev's Lemma.

$$
\mathrm{E}\left[\left|X_{n}-X\right|^{r}\right] \geq E\left[\left|X_{n}-X\right|^{r} I_{\left.\|\left|X_{n}-X\right|>\epsilon\right]}\right] \geq \epsilon^{r} P\left[\left|X_{n}-X\right|>\epsilon\right]
$$

Taking limits as $n \rightarrow \infty$, as $X_{n} \xrightarrow{r} X, E\left[\left|X_{n}-X\right|\right]^{r} \rightarrow 0$ as $n \rightarrow \infty$, so therefore, also, as $n \rightarrow \infty$,

$$
P\left[\left|X_{n}-X\right|>\epsilon\right] \rightarrow 0 \quad \therefore \quad X_{n} \xrightarrow{p} X
$$

(c) $X_{n} \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{d} X$, suppose $X_{n} \xrightarrow{p} X$, and let $\epsilon>0$, denote, in the usual way,
$F_{X_{n}}(x)=P\left[X_{n} \leq x\right] \quad$ and $\quad F x(x)=[X \leq x]$
Then, by the theorem of total probability, we have two inequalities

$$
\begin{gathered}
F_{X_{n}}(x)=P\left[X_{n} \leq x\right]=P\left[X_{n} \leq x, X \leq x+\epsilon\right]+ \\
P\left[X_{n} \leq x, X>x+\epsilon\right] \leq F_{X}(x+\epsilon)+P\left[\left\{\mid X_{n}-X\right]>\epsilon\right] \\
F_{X}(x-\epsilon)=P[X \leq x-\epsilon]=P\left[X \leq x-\epsilon, X_{n} \leq x\right]+ \\
P\left[X \leq x-\epsilon, X_{n}>x\right] \leq F_{X}(x)+P\left\{\left[X_{n}-X\right]>\epsilon\right] . \\
\text { as } A \underline{c} B \Rightarrow P(A) \leq P(B) \text { yields } \\
P\left[X_{n} \leq x, X \leq x+\epsilon\right] \leq F_{X}(x+\epsilon) \text { and } \\
P\left[X \leq x-\epsilon X_{n} \leq x\right] \leq F_{X_{n}}(x) .
\end{gathered}
$$

Thus

$$
\begin{gathered}
F_{x}(x-\epsilon)-P\left[\left|X_{n}-X\right|>\epsilon\right] \leq F_{X_{n}}(x) \\
\leq F_{X}(x+\epsilon)+P\left[\left|X_{n}-X\right|>\epsilon\right]
\end{gathered}
$$

and taking limits as $n \rightarrow \infty$ (with care; we cannot yet write

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)
$$

as we do not know that this limit exists) recalling that $X \xrightarrow{p} X$,

$$
F_{x}(x-\epsilon) \leq \lim _{n \rightarrow \infty} \inf F_{X_{n}}(x) \leq \lim _{n \rightarrow \infty} \sup F_{X_{n}}(x) \leq F_{X}(x+\epsilon)
$$

Then if F_{X} is continuous at $x, F_{X}(x-\epsilon) \rightarrow F_{X}(x)$ and

$$
\begin{gathered}
F_{X}(x+\epsilon) \rightarrow F_{X}(x) \text { as } \epsilon \rightarrow 0, \text { and hence } \\
F_{X}(x) \leq \lim _{n \rightarrow \infty} \inf F_{X_{n}}(x) \leq \lim _{n \rightarrow \infty} \sup F_{X_{n}}(x) \leq F_{X}(x)
\end{gathered}
$$

and thus $F_{X_{n}}(x) \rightarrow F_{X}(x)$ as $n \rightarrow \infty$.

Theorem (5):Central Limit Theorem

Let X_{1}, \ldots, X_{n} be iid random variables with $\mathrm{E}\left[X_{k}\right]=\mu$ and $\operatorname{Var}\left(X_{k}\right)=\sigma^{2}<$ ∞, Then

$$
\begin{equation*}
\sqrt{n}\left(Y_{n}-\mu\right) \xrightarrow{d} \mathrm{~N}\left(0, \sigma^{2}\right) . \tag{7}
\end{equation*}
$$

where $^{Y_{n}}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$.

Proof.

It is sufficient to prove that

$$
\sqrt{n}\left(\frac{Y_{n}-\mu}{\sigma}\right) \xrightarrow{d} \mathcal{N}(0,1)
$$

Let $Z_{n}=\sqrt{n}\left(\frac{Y_{n}-\mu}{\sigma}\right)$. The moment generating function of Z_{n} is

$$
\begin{gathered}
\operatorname{MZn}(s) \stackrel{\operatorname{def}}{=} \mathrm{E}\left[e^{s Z n}\right]=\mathrm{E}\left[\mathrm{e}^{\mathrm{s}} \sqrt{n}\left(\frac{y_{n-\mu}}{\sigma}\right)\right]=\quad \prod_{\mathrm{K}=1} \\
E\left[\frac{s}{e \sigma / \sqrt{n}}(X k-\mu)\right]
\end{gathered}
$$

By Taylor approximation, we have

$$
\left.\begin{array}{rl}
\mathbb{E}\left[e^{\frac{s}{\sigma \sqrt{n}}}\left(X_{k}-\mu\right)\right.
\end{array}\right]=\mathbb{E}\left[1+\frac{s}{\sigma \sqrt{n}}\left(X_{k}-\mu\right)+\frac{s^{2}}{\sigma^{2} n}\left(X_{k}-\mu\right)^{2}+O\left(\frac{1}{\sigma^{3} \sqrt{n^{3}}}\left(X_{k}-\mu\right)^{3}\right)\right]
$$

Therefore,

$$
M_{Z_{n}}(s)=\left(1+0+\frac{s^{2}}{2 n}\right)^{n} \xrightarrow{n} e^{\frac{s^{2}}{2}},
$$

as $n \rightarrow \infty$. To prove (a), we let $y_{n}=\left(1+\frac{s^{2}}{2 n}\right)^{n}$. Then, $\log y_{n}=n \log \left(1+\frac{s^{2}}{2 n}\right.$), and by Taylor approximation we have

$$
\log \left(1+x_{0}\right) \approx x_{0}-\frac{x_{0}^{2}}{2}
$$

Therefore,

$$
\log y_{n}=n \log \left(1+\frac{s^{2}}{2 n}\right)=n\left(\frac{s^{2}}{2 n}-\frac{s^{4}}{4 n^{2}}\right)=\frac{s^{2}}{2}-\frac{s^{4}}{4 n} \xrightarrow{n \rightarrow \infty} \frac{s^{2}}{2}
$$

As a corollary of the Central Limit Theorem, we also derive the following proposition.

Example(6):

Let \bar{X} denote the mean of a random sample of size 75 from the distribution that has the pdf:

$$
f(x)=\left\{\begin{array}{cc}
1 & 0<x<1 \\
0 & \text { elsewhere } .
\end{array}\right.
$$

Find $\mathrm{P}(0.45<\bar{X}<0.55)$

Solution:

$$
\begin{gathered}
\begin{array}{c}
\Rightarrow \mu=E(x)=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x d x=\frac{1}{2} . \\
E\left(x^{2}\right)=\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
\Rightarrow \sigma_{x}^{2}=E\left(x^{2}\right)-(E(x))^{2}=\frac{1}{3}-\frac{1}{4} \\
=\frac{4-3}{12}=\frac{1}{12} \\
\therefore n=75 \Rightarrow \sqrt{n}=\sqrt{75} \\
p(0.45<\bar{X}<0.55)=P\left(\frac{\sqrt{n}(0.45-\mu)}{\sigma}<\right. \\
\left.\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}<\frac{\sqrt{n}(0.55-\mu)}{\sigma}\right) \\
=P\left(\frac{\sqrt{75}\left(0.45-\frac{1}{2}\right.}{\left.\sqrt{\frac{1}{12}}<\frac{\sqrt{75}\left(\bar{X}-\frac{1}{2}\right.}{\sqrt{\frac{1}{12}}}<\frac{\sqrt{75}\left(0.55-\frac{1}{2}\right.}{\sqrt{\frac{1}{12}}}<\right)}\right. \\
=P(-1.5<z<1.5)=P(z<1.5)-p(z<-1.5) \\
P(z<1.5)-(1-P(z<1.5))
\end{array} \\
=
\end{gathered}
$$

From below table normal distribution, we have

Example(7) :
Let $X_{1}, X_{2}, \ldots . ., X_{n}$ be independent and identically random sample from $b(1, p)$ where $p=0.5$ such that \bar{X} denote a mean of a random sample of size 100 from this distribution. Find $P(47.5<$ $Y<52.5$) where $Y=\sum_{i=1}^{n} X_{i}$ i.e, find the approximate value of $P(47.5<Y<52.5)$ where $Y=\sum_{i=1}^{n} X_{i}$ when one uses the central limit theorem.

Solution:

$$
\begin{aligned}
& \text { since, } E(x)=n p=(1) p=p=0.5 \\
& \qquad \begin{array}{c}
\operatorname{var}(x)=n p q=(1) p q=p q \\
=p(1-p)=0.5(1-0.5)=0.25 \\
n=100 \rightarrow \sqrt{n}=25
\end{array}
\end{aligned}
$$

We get

$$
\begin{gathered}
E(y)=E\left(\sum_{i=1}^{n} x_{i}\right)=\left(\sum_{i=1}^{n} E\left(x_{i}\right)\right) \\
=\sum_{i=1}^{n} p=n p=(100)(0.5)=50 \\
\operatorname{var}(y)=\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)
\end{gathered}
$$

$$
\begin{gathered}
=\sum_{i=1}^{n} p q=n p q=(100)(0.25)=25 \\
\therefore z=\frac{\sum_{i=1}^{n} X_{i}-E\left(\sum_{i=1}^{n} x_{i}\right)}{\sqrt{\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)}}=\frac{Y-n p}{\sqrt{n p q}} \sim N(0.1) \\
P(47.5<Y<52.5)=P\left(\frac{47.5-n p}{\sqrt{n p q}}<\frac{Y-n p}{\sqrt{n p q}}<\frac{52.5-n p}{\sqrt{n p q}}\right) \\
=P\left(\frac{47.5-50}{5}<\frac{Y-50}{5}<\frac{52.5-50}{5}\right) \\
P(-0.5<z<0.5)=P(z<0.5)-P(z<-0.5) \\
P(z<0.5)-(1-P(z<0.5))
\end{gathered}
$$

From the table normal distribution, we have

$$
\begin{aligned}
& P(47.5<Y<52.5)=P(z<0.5)-(1-P(z<0.5)) \\
& \quad=0.691-(1-0.691)=0.691-0.309=0.382
\end{aligned}
$$

Example(8):

Let $X \sim N(6.1)$ and $Y \sim N(7.1)$. find $P(X>Y)$.
Solution:
Since $P(X>Y)=P(X-Y>0)=1-P(X-Y \leq 0)$

$$
\begin{gathered}
\therefore X-Y \sim N(6-7.1+1) \Rightarrow X-Y \sim N(-1.2) \\
\therefore P(X>Y)=P(X-Y>0)=1-P(X-Y \leq 0) \\
\quad=1-P\left(\frac{(X-Y)-(-1)}{\sqrt{2}} \leq \frac{0-(-1)}{\sqrt{2}}\right)
\end{gathered}
$$

$$
=1-P\left(z \leq \frac{1}{\sqrt{2}}\right)=0.24
$$

Example(9):

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size $\mathrm{n}=25$ from a population that has a mean $\mu=71.43$ and variance $\sigma^{2}=56.25$. let \bar{X} be the sample mean. What is the probability that the sample mean is between 68.91 and 71.97 ?

Solution:

Since, $E(\bar{X})=E\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)=\mu=71.43$

$$
\begin{gathered}
v(\bar{X})=v\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)=\frac{\sigma^{2}}{n}=\frac{56.25}{25}=2.25 \\
P(68.91 \leq \bar{X} \leq 71.97) \\
=P\left(\frac{68.91-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{71.97-\mu}{\frac{\sigma}{\sqrt{n}}}\right) \\
=P\left(\frac{68.91-71.43}{\sqrt{2.25}}<\frac{\bar{X}-71.43}{\sqrt{2.25}}<\frac{71.97-71.43}{\sqrt{2.25}}\right) \\
=P(-0.68<Z<0.36)=P(z<0.36)-P(z<-0.68) \\
\quad P(z<0.36)-(1-P(z<0.68))=0.5941
\end{gathered}
$$

References

[1]Bexheti, B. , Ibraimi, a. , sadiki, F. and pollozhani, F. L., (the
Relations Between models of convergence for sequences of
Random Variables), Department of Natural Sciences and Mathematic, University of tetovo, NMK
[2]Imai, k. , (pol 571: Convergence of Random Variables), Department of politics, princeton University, 2006.
[3] Jordan, M. I., (stat210B:Theoretical Statistics), Lecture Date, January, 2007.
[4]Salim, R.E., (Analysis of Random signals: Lecture Chapter 6:Convergence of Random sequences), ECE 511,2016.
[5] Whitt, (Stochastic Models 1:Lecture Notes Modes of convergence), IEoR 6711, 2013.
[6]https://engineering.purdue.edu/ChanGroup/ECE645Notes/Stu dentLecture04.pdf
[7]https://www.math.mcgill.ca/dstephens/OldCourses/556-2006/Math556-ModesOfConvergence.pdf

