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Introduction

Since the world is full of indeterminacy, the Neutrosophics found their
place into contemporary research. We now introduce for the first time the
notions of Neutrosophic Crisp Sets and Neutrosophic Topology on Crisp Sets.
We develop the 2012 notion of Neutrosophic Topological Spaces and give
many practical examples. Neutrosophic Science means development and
applications of Neutrosophic Logic, Set, Measure, Integral, Probability etc., and
their applications in any field. It is possible to define the neutrosophic measure

and consequently the neutrosophic integral and neutrosophic probability in



many ways, because there are various types of indeterminacies, depending on

the problem we need to solve.

Indeterminacy is different from randomness. Indeterminacy can be caused
by physical space, materials and type of construction, by items involved in the
space, or by other factors. In 1965 , Zadeh [1] generalized the concept of crisp
set by introducing the concept of fuzzy set, corresponding to the situation in
which there is no precisely defined set; there are increasing applications in
various fields, including probability, artificial intelligence, control systems,
biology and economics. Thus, developments in abstract mathematics using the
idea of fuzzy sets possess sound footing. In accordance, fuzzy topological
spaces were introduced by Chang [2] and Lowen [3]. After the development of
fuzzy sets, much attention has been paid to the generalization of basic concepts
of classical topology to fuzzy sets and accordingly developing a theory of fuzzy
topology. In 1983, the intuitionistic fuzzy set was introduced by K. Atanassov
as a generalization of the fuzzy set, beyond the degree of membership and the
degree of non-membership of each element. In 1999 and 2002, Smarandache
defined the notion of Neutrosophic Sets, which is a generalization of Zadeh's
fuzzy set and Atanassov's intuitionistic fuzzy set. Some neutrosophic concepts
have been investigated by Salama et al [4-12]. Forwarding the study of

neutrosophic sets, this book consists of seven chapters, targeting to:

@ generalize the previous studies in neutrosophic, and so to define the

neutrosopic crisp set and neutrosophic set concepts;
& discuss their main properties;

@ introduce and study some concepts of neutrosophic crisp and

neutrosophic topological spaces and deduce their properties;

@ deduce many types of functions and give the relationships between
different neutrosophic topological spaces, which helps to build new

properties of neutrosophic topological spaces;



@ stress once more the importance of Neutrosophic Ideal as a nontrivial

extension of neutrosophic set and neutrosophic logic ;

@ propose applications on computer sciences by using neutrosophic sets.

Chapter One



Neutrosophic

Crisp Set

1.1 Neutrosophic Crisp Set

Let us consider some possible definitions for various types of

neutrosophic crisp sets.



Definition 1.1.1

Let X be a non-empty fixed sample space. A neutrosophic crisp set (NCS)
A is an object having the form A = (4,,4,,A3) where A, ,A, and A5 are
subsets of X.

Definition 1.1.2

The object having the form A = (A, ,A, , A3) is called:

a) A neutrosophic crisp set of Type 1 (NCS-Typel) if satisfying
AiNAy,=¢dp, A NAs;=¢pand A,NA;=¢ .

b) A neutrosophic crisp set of Type2 (NCS-Type2) if satisfying
AiNA,=¢p,A;NA3=¢,A,NA;=¢p,A;UA, =X

¢) A neutrosophic crisp set of Type 3 (NCS-Type3) if satisfying
AiNA,NA; =¢pand A,UA, UA; =X

Remark 1.1.1

A neutrosophic crisp set A = (A;,A,,A3;) can be identified to an

ordered triple (A;,A, ,A3), subsets in X, and one can define several relations

and operations between NCSs.

Since our purpose is to construct the tools for developing neutrosophic

crisp set, we must introduce types of CNS ¢y , Xy X.

1) N may be defined as the following four types:
() Tape 1: oy = (9, ¢, X).
(b) Tape 2: oy = (@, X, X).
() Tape 3: oy = {9, X, 9).
(d)Tape 4: oy = {9, 0, ¢).

2) Xy may be defined as the following four types:
(a) Tape 1: Xy = (X, @, ).



(b)Tape 2: Xy = (X, X, ).
(c) Tape 3: Xy = (X, ¢, X).
(d)Tape 4: Xy = (X, X, X).

Every neutrosophic crisp set A on a non-empty set X is obviously NCS

having the form A = (4,4, ,A3).
Definition 1.1.3

Let A =(A;,A,,A3) be a NCS in X, then the complement of the set A
(A° for short) may be defined as three kinds of complements:

(CAC = (Af, A3, A3) o1

(C)A =(A3,4;,4y)

(C3)AC = (43,45, A7)

One can define several relations and operations between NCS as it follows:
Definition 1.1.4

Let X be a non-empty set, and the NCSS A and B be in the form
A=(A,,A,,A;), B =(B;,B,,B;). We consider two possible definitions for
subsets (A € B). So (A € B) may be defined as two types:

TypelAQB = AlgBllAngZ andA32B3
Type2A§B = AlgBIJAZQBZ andA32B3.

Propositionl.1.1

For any neutrosophic crisp set A, we hold the following:
a)pn S A, Py € Py
b)A € Ay , Xy S Xy
Definition 1.1.5

Let X be a non-empty set, and the NCSS A and B be of the form
A= (Al ,AZ ,A3) ) B = (Bl ,BZ ,B3) be NCSS. Then:



1. A N B may be defined as two types:
Typel.ANB =(A;NnB;,A,NB,,A; U By),
Typel.ANB =(A;,NB;,A, UB,,A; U Bs),
2. A U B may be defined as two types:
Type1.AUB =(A; UB;,A, UB, ,A3 U B3),
Typel.AUB =(4A; UB;,A, UB,,A; N By),
3. [ JA=(4,,4;,4A7)
4. (YA = (45,45, 43)

Proposition 1.1.2
For all two neutrosophic crisp sets A and B in X, the following assertions
are true:
(ANB) = A°UB°;
(AUB) = A°NnB°;

We can easily generalize the operations of intersection and union in
Definition 1.1.2 to an arbitrary family of neutrosophic crisp subsets as it

follows:
Proposition 1.1.3
Let {Aj tj €] } be an arbitrary family of neutrosophic crisp subsets in X,
then:
1) N A; may be defined as the following two types:
(a) Type l.n A] = (n A]l N A]Z U A]3)
2) N Aj may be defined as the following types:



(b)Type l.U A] = (U A]l U A]Z N A]3)

Definition 1.1.6

The product of two neutrosophic crisp sets A and B is a neutrosophic crisp set
AX B givenbyAX B =A=(A; XBy,A, X B, ,A; X B3).

Definition 1.1.7

ANCS-Typel ¢y, , Xy, in X may be defined as it follows:

1. ¢y, may be defined as three types:
(a) Tape 1: ¢y, = (¢, ¢, X).
(b)Tape 2: ¢y, = (¢, X, ).
(c) Tape 3: oy = (¢, b, P).
2. Xy, may be defined as one type:
(a) Tape 1: Xy, = (X, ¢, P).
Definition 1.1.8

A NCS-Type2 , ¢y, , Xy, in X may be defined it as follows:

1. ¢y, may be defined as three types:
(a) Tape 1: ¢y, = (¢, ¢, X).
(b)Tape 2: ¢y, = (¢, X, D).

2. Xy, may be defined as one type:
(a) Tape 1: Xy, = (X, §,p).

Definition 1.1.9

A NCS-Type 3, ¢y, , Xy, in X may be defined as it follows:

1. ¢y, may be defined as three types:
(a) Tape 1: oy, = (¢, ¢, X).



(b)Tape 2: ¢y, = (¢, X, ).
(c) Tape 3: oy, = (¢, X, X).
2. Xy, may be defined as one types:
(a) Tape 1: Xy, = (X, ¢, P).
(b) Tape 2: Xy, = (X, X, ¢).
(c) Tape 3: Xy, = (¢, @, X).
Corollary 1.1.1
In genera ,
(a) Every NCS-Type 1, 2, 3 is NCS.
(b) Every NCS-Type 1 is not NCS-Type2, 3.
(¢) Every NCS-Type 2 is not NCS-Typel, 3.
(d) Every NCS-Type 3 is not NCS-Type2, 1, 2.
(e) Every crisp set is NCS.

The following Venn diagram represents the relation between NCSS:

NCS-Type 1

Example l.l'"igure 1. Venn diagram representing the relation between NCSS.

LetX = {a,b,c,d,e f},A(={a,b,c,d},{e},{f}),D = {{a b}, {e c},{f,.d})
be a NCS-Type 2, B = ({a, b, c},{d},{e}) be a NCT-Typel, but not NCS-
Type2, 3, C = ({a, b}, {c,d},{e, f, a}) be a NCS-Type 3, but not NCS-Typel,2.



Definition 1.1.10
Let X be a non-empty set, A = (A, ,4, ,A3).
1) If A is a NCS-Typel in X, then the complement of the set A(A€) may be
defined as one kind of complement Typel: A€ = (45,4, ,4;).
2) If A is a NCS-Type 2 in X, then the complement of the set A(A°) may be
defined as one kind of complement A¢ = (43,4, ,A;).
3) If A is NCS-Type3 in X, then the complement of the set A(A€) may be
defined as one kind of complement defined as three kinds of complements:
(C,)Typel: A® = (A;,4;, A7)
(C;)Type2: A° = (43,4, ,4A3)
(C3)Type3: A° = (43,43, A1)
Example 1.1.2

Let X = {a,b,c,d,e,f} , A=({a,b,c,d},{e},{f}) be a NCS-Type 2,
B = ({a, b, c},{4},{d, e}) be a NCS-Typel, C = ({ab},{c,d},{e, f}) be a NCS-
Type 3, then
1) the complement A = ({a, b, ¢, d}, {e}, {f}),
A =({f}.{e} {a, b, c,d}) NCS-Type 2;
2) the complement of B = ({a, b, c},{0},{d, e}),
B = ({d, e},{0},{a, b, c}) NCS-Typel;
3) the complement of C = ({a,b),(c,d},{e, f}) may be defined as three
types:
Type 1: C¢ = ({c,d,e, f},{a,b,e, f},{a,b,c,d}).
Type 2: C¢ = ({e, f}.{a, b, e, f},{a, b}),
Type 3:C° = ({e, f},{c,d},{a, b}).

Proposition 1.1.4



Let {A;: j € ]} be an arbitrary family of neutrosophic crisp subsets
in X, then:
1) N A; may be defined as two types:
(a) Typel: NA;,= (N Aj; ,N Ajp U Aj3)
(b) Type2: N A;,= (N Aj; ,U Aj; U Aj3)
2) U Aj, may be defined as two types:
(a) Typel: U A; = (U Aj; ,N Ajp N Aj3)
(b) Type2: U A; = (U Aj; ,U Ajp N Aj3)
Definition 1.1.11
If B = (B,,B,, B3) is a NCS in Y, then the preimage of B under f. denoted
by f~1(B),is a NCS in X defined by f~1(B) = (f~1(B,), f~1(B,), f~1(B3)).
If A = (A;,A4,,A3) is a NCS in X, then the image of A under f, denoted by
f(A),is the aNCS in Y defined by f~1(B) = (f "1 (4,),f 1 (4,), f ~1(45)).
Here we introduce the properties of images and preimages, some of which
we frequently use in the following chapters.

Corollary 1.1.2

Let 4, {Aj: [ € ]} be a family of NCS in X, and B, {Bj: [ € ]} NCSinY, and
f: X—Y a function. Then:
(aA)4; €A, © f(A) €S f(4,),B, €SB, = f1(B) € f1(B,)
(b)A € f7(f(A)) and if tis injective,then A = f~1(f(4)),
(©)f~X(f(B)) € B and if tis surjective,then f~*(f(4)) =B,
(dfHUBY) = 1By, fTH(N B =nf~(By),
(e)f(UA) =Uf(A); f(nA) €n f(A,), and if tis injective ,then
f(NAy) =0 f(Ay);

) 7 W) =Xy, f 7 (Pn) = du



(@) f(pn) = dn, f(Xy) =Yy ,if tis subjective.

Proof: Obvious.



Chapter Two

Neutrosophic

Crisp Points



1.2 Neutrosophic Crisp Points

One can easily define the nature of neutrosophic crisp set in X, called

neutrosophic crisp point in X, corresponding to an element X.

Now we present some types of inclusion of a neutrosophic crisp point to a

neutrosophic crisp set.
Definition 1.2.1

Let A =(A4;,A,,A;) be a neutrosophic crisp set on a set X, then

p = {p1 Hp2 Hps}).-p1 # v, # ps € X is called a neutrosophic crisp point.

An NCP p = ({pHp:}{p3}) belongs to a neutrosophic crisp set
A = (A, A, A3) , of X, denoted by pe A, if it may be defined by two types:

(a) Typel: {p1} € A1 ,{p.} € 4, and {p3} € A3
(b) Typel: {p1} € A1 ,{p2} 2 4; and {p3} € A3
Theorem 1.2.1

Let A = (A;,A,,A3) and B = (B, B,, B3) be neutrosophic crisp subsets of
X. Then A € B if p € A and p € B for any neutrosophic crisp point p in X.

Proof



Let A € B and p € A. Then we have:
(a) Typel: {p1} S A1, {p2} S Az and {ps} € A3, 0r
(b) Typel: {p1} S Ay, {p.} 2 4; and {p;} < A;
Thus, p € B. Conversely, take any x in X. Let p; € 4; , and p, € A, and
p; € A;. Then p is a neutrosophic crisp point in X, and p € A. By the

hypothesis, p € B. Thus p; € B, or Type 1: {p,} € B, ,{p,} S B, and {p5} S
B3, or Type 2: {p,} € B; ,{p2} € B, and {p3} S Bs,. Hence, A € B.

Theorem 1.2.2
Let A = (A4, A,, A3) be a neutrosophic crisp subset of X.
Then A =U {p:p € A}.

Proof

Since U {p: p € A}, we get the following two types:

(a) Typel: (U {p;:p1 € A1}, U {py:p, € A2} ,N {p3:p3 € A3} ).0or
(b) Type2: (U {p;:p; € A1} .N{p2:p; € Az} ,N{p3:p3 € A3}).
hence A = (A, 4A,, As)

Proposition 1.2.1

Let {Aj: [ € ]} be a family of NCSS in X. Then:
n . .
(a) p = ({p1} . {p2} . {p:3}) = €A if p € A; foreachi € J.
N o
(az) p EjE]Aj if 3j € ] such that p € 4;.

Proposition 1.2.2

Let A = (A;,A,,A3) and B = (B,, B,, B3) be two neutrosophic crisp sets in
X. Then A € B if for each p we have p € A < p € B and for each p we have
pEA = peB.IfA=B foreachpwehavep €A = p € B and for each p
wehavep €A = p €B.



Proposition 1.2.3

Let A = (A4, A,, A3) be a neutrosophic crisp set in X. Then:

A =U<p;:p; € A1}, 02: P2 € Az}, {p3:p3 € A3},

Definition 1.2.2

Let f: X = Y be a function and p be a neutrosophic crisp point in X. Then
the image of p under f, denoted f (p), is defined by:

f®) = {41}, {a2}, {qs}), where g1 = f(p1), g2 = f(p1) and g, = f(p1).
It is easy to see that f(p) is indeed a NCP in Y, namely f(p) = q,

where g = f(p), and it has exactly the same meaning of the image of a NCP

under the function f.
Definition 1.2.3

Let X be a non-empty set and p € X. Then the neutrosophic crisp point py
defined by py = ({p}, ¢, {p}°) is called a neutrosophic crisp point (NCP) in X,
where NCP is a triple ({only element in X}, empty set, {the complement of the

same element in X}).

The neutrosophic crisp points in X can sometimes be inconvenient when
expressing the neutrosophic crisp set in X in terms of neutrosophic crisp points.
This situation occurs if A = (A;,4,,43), p € A;, where A, A,, A5 , are three
subsets such that A, N A, = ¢$, A1 N A3 = ¢, 4,1 N Az = .

Therefore, we have to define "vanishing" neutrosophic crisp points.

Definition 1.2.4

Let X be a non-empty set and p € X be a fixed element in X. The
neutrosophic crisp set py, = (¢.{p} {p}°) is called "vanishing"

Y



neutrosophic crisp point (VNCP) in X, where VNCP is a triple (empty set,

{only element in X}, {the complement of the same element in X}).

Example 1.2.1
LetX = {a,b,c,d}andp = b € X. Then:
pn = ({b}, ¢,{a,c,d}),
Pny = (&, {b}{a,c,d})
p = ({b},{a}, {d}),

Definition 1.2.5

Let py, ={(¢.{p} {p}°) be a NCP in X and A= (A;,A,, A3) be a

neutrosophic crisp set in X.
(a) py 1s said to be contained in A(py € A) if p € A;.
(b) pn,, is VNCP in X and A = (A, A3, A3) a neutrosophic crisp set in

X. Then py,, is said to be contained in A(py € A) if p € As.

Proposition 1.2.4

Let {4;,j € J} be a family of NCSS in X. Then:

N
(1) py € je]Af if py € Aj forsuchi € J.
n . .
(az) pny € je]Af if py, € Aj forsuchi € J.
N .
(b)) Py € jE]Af if 3;€ A; for such py € A;.

N
(b2) PN, € jE]Af if 3;€ A; for such py, € 4;.

Yy



Proof

Straightforward.
Proposition 1.2.5

Let A = (A4, A,, A3) and B = (B;, By, B3) be two neutrosophic crisp sets
in X. Then:

(a) A € B if for each py we have py € A & py € B and for each
Pny We have py € A = py, € B.
(b) A = B if for each py we have py € A & py € B and for each

Pny We havepy, €A & py, €B.
Proof: Obvious.
Proposition 1.2.6
Let A = (A4, 4,, A3) be a neutrosophic crisp set in X. Then:
A= (U{py:py € A} U (U {pyn:Dan € AD).
Proof
It is sufficient to show the following equalities:
Ay = (U{{p}:py € A}) U (U {p:pyy € AD) A3 = ¢, and
Ay = (0 {{p}c:py € AD N (N {p}: pyn € A}), which are fairly obvious.

Definition 1.2.6

Let f: X = Y be a function and pn be a neutrosophic crisp point in X.

Then the image of py under t denoted by f(py) is defined by
f(on) = {q}- ¢ ,{q})where q = f(p). Let PNN be a VNCP in X. Then the

image of pyy under f denoted by f (pyy) is defined by f(pyn) = ( b, {q}, {q}°)
where ¢ = f(p). It is easy to observe that f(py) is indeed a NCP in Y, namely

f(py) = gN where q = f(p), and it has exactly the same meaning of the

Yy



image of a NCP under the function t f. f(pyy) is also a VNCP in Y, namely
f(onn) = qun, where g = f(p).

Proposition 1.2.7

We state that any NCS A in X can be written in the form:

_AUAU 4

A_N NN NNN

Where 1’3 =U {py:pn € 4}

A
N=¢N

A
NNN =U {pyn:Dnn € A}

It is easy to show that, if A = (4, A,, A3), then:

A
N = <A1J ¢r Ai)

and

A

Proposition 1.2.8

Let f:X—Y be a function and A = (A, 4,, A3) be a neutrosophic crisp set

in X. Then we have f(4) = f(;‘[) U f( NAN) U f( N;‘[ W)
Proof

This is obvious from 4 = A U A U A

N NN NNN

Y¢
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