

Republic of Iraq Ministry of Higher Education and Scientific Research College of Materials Engineering Department of Polymer Engineering and Petrochemical Industries

Project:

Study the Extrusion Process of Two Recycled Materials to Obtain a Materials with Good **Properties**

Submitted by:

Zahraa Neama Jihad Anaam Ali Hassan

Supervised by:

Prof. Dr. Ali Al-Zubiedy

السنة الدراسية: 2021 -2 202

E DE D'AR

صَدَوْاللهُ العِ ظَيْمَر

الشكر والتهدير

لابد لنا ونحن نخطو خطواتنا الاخيرة في الحياة الجامعية من وقفة نعود إلى أعوام قضيناها في رحاب الجامعة مع أساتذتنا الكرام الذين قدموا لنا الكثير باذلين بذلك جهودا كبيرة في بناء جيل الغد لتبعث الامة من جديد ...

وقبل أن نمضي نتقدم بأسمى آيات الشكر والامتنان والتقدير والمحبة إلى الذين حملوا أقدس رسالة في الحياة...

إلى الذين مهدوا لنا طريق العلم والمعرفة ... إلى جميع أساتذتنا الأفاضل

الاهداء

هداء الى: إلى صاحب السيرة العطرة، والفكر المُستنير؛ فلقد كان له الفضل الأوَّل في بلوغي التعليم العالي (والدي الحبيب)، اطال الله بعمره. إلى من وضعتني على طريق الحياة، وجعلتني رابط الجأش، وراعتني حتى صرت كبيرًا (أمي الغالية)، أطال الله في عُمرها (أمي الغالية)، أطال الله في عُمرها إلى إخوتي؛ من كان لهم بالغ الأثر في كثير من العقبات والصعاب. إلى جميع أساتذتي الكرام؛ ممن لم يتوانوا في مد يد العون لي أُهدي إليكم بحثي

The aim of project:

<text><text><text>

<section-header><list-item><list-item><list-item><list-item><list-item>

<section-header><list-item><list-item><list-item><section-header><section-header><section-header>

modulus, determined in a flexural test, and impact resistance by a number of different inpact actus, with the historical favorice being the lood impact as unable of the dispersion of moled articles. Strength is usually befined by the strength at break, but breaking strength is usually specified of infact actual hybrid test strength at break, but breaking strength is usually specified of infact actual hybrid test strength at break, but breaking strength is usually specified of infact actual hybrid test strength at break, but breaking strength is usually specified of infact actual hybrid test strength at break, but breaking strength is usually specified of infact actual hybrid test actual from the resin, and it is from the physics governing the fabrication and mechanical testing procedures that the mechanical properties are not measured on the resin, and the physics governing the fabrication and mechanical testing protections at the strength at break bybrid test actual testing testing at a material at the physics governing the fabrication and mechanical testing protections at the specific physics at the trend and the physics governing the fabrication and mechanical testing protections at the specific physics at the trend at the physics governing the fabrication and mechanical testing protections at the specific physics at the trend at the physics at the specific physics at the

<text><section-header><text><text>

<text><section-header><text>

<text><text><text>

<text><section-header><text><section-header><text>

<text><image><image><text><text><text>

<text><figure><text><text>

hollow core of the screw by way of a hole drilled in the trailing edge of one of the flights in the degassing zone. A vacuum is sometimes applied to assist in the

<text><image><text><text> extraction of the vapor. Design and operation must be suitably controlled to minimize plugging of the vent (which, as noted above, is basically an open area) or the possibility Many variations are possible in screw design to accommodate a wide range of polymers and applications. So many parameters are involved, including such variables as screw geometry, materials characteristics, operating conditions, etc., that the industry now uses computerized screw design, which permits analysis of the variables by using mathematical models to derive optimum design of a screw for a given

ring-barrier type; (c) mixing pins; (d) parallel interrupted mixing flights [15].

Fig. 1. 6 A two-stage vented extruder with a valved bypass [16].

Various sc different p L/D of at 1 A constant-pi compressic extrusion, Nylon-6, 6 16:1 is ne I bypass [16]. r extrusion of e long with an nd plastication. lene screw or rew with a r polyethylene usion coating. _/D of at least recommended. Various screw designs have been recommended by the industry for extrusion of different plastics. For polyethylene, for example, the screw should be long with an L/D of at least 16:1 or 30:1 to provide a large area for heat transfer and plastication. A constant-pitch, decreasing-channel-depth, metering-type polyethylene screw or constant-pitch, constant-channel-depth, metering-type nylon screw compression ratio between 3–1 and 4–1 Fig. 1. 7 is recommended for polyethylene extrusion, the former being preferable for film extension and extrusion coating. Nylon-6, 6 melts at approximately. Therefore, an extruder with an L/D of at least 16:1 is necessary. A screw with a compression ratio of 4:1 is recommended.

<text><text><text>

<text><section-header><text>

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<image><image><caption><text>

the properties of the server o

<text><image><image><image><text>

<text><section-header><text><text><equation-block><text><text><text>

$$I. S. = U_C / A$$

Test result:

Tensile test result

22222222222222222

Fig 2. 6. The tensile test inspection of pp + pe speed 40-

Fig. 2. 7. The tensile test inspection of pp shows a speed of 40-

able 2. 1	. It shows the	e value of the	elastic	modulus	of the	samples	resulting from
------------------	----------------	----------------	---------	---------	--------	---------	----------------

I esno	e test result	ts:					
Tab	ble 2. 1. It s	hows the	value of the	e elastic mo	dulus of t	he samples	resulti
Name	of sample		th	Elastic	modulus	F (Gna)	
Pn+n	e20			0.14	modulus		
$\frac{1}{P_{1}P_{1}}$	620			0.14			
Pp+pe	e30			0.27			
Pp30				0.68			
Pp+pe	e40			0.09			
Pp40				0.13			
From The lis 30.	the above t best speed t so the med	able we no for pure en lium spee	ote xtrusion is d is suitab	30, The be	est speed a	for extrusion	n of th of ela
From The is 30, pure 1 Hard	the above t best speed t so the med materials an	able we no for pure es dium spee nd compos esults:	ote xtrusion is d is suitab ite materia	30, The be le for obtai ls. It has go	est speed a ning a hig ood mecha	for extrusion gh modulus anical prope	n of th of ela rties
From The is 30, pure 1 Hard	the above t best speed t so the med materials an ness test re Table	able we no for pure es dium spee ad compos esults: 2. 2. It sho	ote xtrusion is d is suitab ite materia	30, The be le for obtai ls. It has go <u>ults of the</u> l	est speed i ning a hig ood mecha	for extrusion gh modulus unical proper	n of th of ela rties mples
From The is 30, pure 1 Hard	the above to best speed to so the med materials and mess test re Table Sequence	able we not for pure en dium spee ad compos esults: 2. 2. It sho pp 30	ote xtrusion is d is suitab ite materia <u>ows the res</u> Pp+pe 40	30, The be le for obtai ls. It has go ults of the l Pp+pe 30	est speed a ning a hig pod mecha	for extrusion gh modulus unical proper est of the sa Pp+pe 20	n of th of ela rties <u>mples</u> Pp :
From The I is 30, pure 1 Hard	the above to best speed to so the med materials and mess test re Table Sequence	able we not for pure en dium spee ad compos esults: 2. 2. It sho pp 30 67.1	ote xtrusion is d is suitab ite materia <u>ows the res</u> Pp+pe 40 64.3	30, The be le for obtai ls. It has go ults of the l Pp+pe 30 53.9	est speed a higher bood mechanologies the speed a higher bood mechanologies the spectrum of th	for extrusion gh modulus anical proper est of the sa Pp+pe 20 53.9	n of th of ela rties <u>mples</u> Pp 1

est results:						
2. 1. It shows the	value of the	e elastic mo	odulus of t	he samples	resulting f	
	ne tensile te	nsile test				
sample		Elastic	e modulus	E (Gpa)		
		0.14				
		0.66				
		0.27				
		0.68				
)	0.09	0.09				
		0.13				
e above table we r st speed for pure e o the medium spee	note extrusion is ed is suitab	0.13 30, The balle for obtain	est speed t	for extrusion	n of the m of elastici	
e above table we r st speed for pure e o the medium spee terials and compo ss test results:	note extrusion is ed is suitab site materia	0.13 30, The balle for obtain ls. It has go	est speed a ining a hig bod mecha	for extrusion gh modulus unical prope	n of the m of elastici rties	
e above table we r at speed for pure e the medium spee terials and compo ss test results: Table 2. 2. It sh	note extrusion is ed is suitab site materia	0.13 30, The balls for obtained by the second secon	est speed : ining a hig bod mecha	for extrusion gh modulus unical prope	n of the m of elastici rties mples	
e above table we r st speed for pure e o the medium spee terials and compo ss test results: Table 2. 2. It sh equence pp 30	note extrusion is ed is suitab site materia nows the res Pp+pe 40	0.1330, The basele for obtainls. It has gasults of thePp+pe30	est speed : ining a hig bod mecha hardness t pp 40	for extrusion gh modulus unical prope est of the sa Pp+pe 20	n of the m of elastici rties <u>mples</u> Pp 20	
e above table we r t speed for pure e t the medium spect terials and compo ss test results: Table 2. 2. It sh equence pp 30 67.1	note extrusion is ed is suitab site materia nows the res Pp+pe 40 64.3	0.13 30, The backson backso	est speed fining a hig bod mecha hardness t pp 40 50.9	for extrusion gh modulus anical prope est of the sa Pp+pe 20 53.9	n of the m of elastici rties mples Pp 20 65	

ו	e)	,
-1	h	16	2
_			
S	5		3
b)]	le 1	3
	5] a	le	3 e s
	5] a	: le	3 e s
) a	1	3 e s
	5 [] [] [] [] [] [] [] [] [] [] [] [] []	1 1	
	5 a	1 U	
	5 a		
	5 a		
	5 [] a		

3	50.2	59.5	66.7	50	61.4	57.4
4	60.1	46.2	55.5	64	63.7	59.3
5	68.3	66.2	51.1	67.9	63	60.5
average	65.9	60.6	54.8	62.1	62.4	61.4

pact test:					
Table showing the r	esults of the	e impact test	t:		
	Table	2. 3. hardne	ss test chart	ie	is
sample	Length	width	THICKIESS	1.0	1.5
name+					
Speed					
Speed					
Pp20	55	18.44	2.78	0.27	5.266
- r		16.00	2.1.4	0.00	6.105
Pe+pp 30	55	16.02	2.14	0.22	6.185
Pp30	55	18.67	2.13	0.51	12.824
Pp+pe20	55	13.98	2.17	0.23	7.581
Pp40	55	16.3	3.48	0.8	14.10
- p - 0		15.0	2.76		10.00
Pp+pe 40	55	15.9	3.76	0.6	10.28
Pp+pe40	55	15.2	2.5	0.5	13.15
PP+pe40	55	12.9	3	0.4	10.33
	7				
			17		

Table 2.	3.	hardness	test	chart

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Deferences
1). Robert O. Ebewele POLYMER SCIENCE AND TECHNOLOGY Department of Chemical Engineering University of Benin Benin City, Nigeria 2000.
(2). Harutun G. Karian RheTech, Inc. Whitmore Lake, Michigan, U.S.A.HANDBOOK OF POLYPROPYIENE AND POLYPROPYLENE COMPOSITES SecondEdition, RevisedandExpanded edited by
(3). Geyer, Roland; Jambeck, Jenna R.; Law, Kara Lavender (1 July 2017). Troduction, use, and fate of all plastics ever made". Science Advances. 3 (7): e1700782. Bibcode:2017SciA...3E0782G. doi:10.1126/sciadv.1700782. PMC 5017107. PMID 28776036.
(4). "Plastics: The Facts" (PDF). Plastics Europe. Archived from the original (PDF) on 4 February 2018. Retrieved 29 August 2018.
(5). Schenkel, G. . Plastics Extrusion Technology and Theory, Elsevier, New York.1960
(6). Bikales, N. M. . Extrusion and Other Plastics Operations, Interscience, New York.1970
(7). Fischer, E. G. . Extrusion of Plastics, Newness-Butterworth, London.1974
(8). Flizikowski J., Kamyk W., Macko M.: Grinding of elastic -plastics pips.Intyrnieria I Aparatura Chemiczna 2008, 2 (Gliwicz)
(9). Harutun G. Karian: Hand book of Polypropylene and Polypropylene formosoites. 2nd Edition, Rhe Tech, Inc, Whitmore Lake, Michigan, USA,2003.
(10). Ibrahim Sara: Studying the effect of extrusion condition for two Polymers by inviscrew device on their mechanical properties. M.S.c., Thesis, Collage of Materials Engineering, University of Babylon, 2014.

[11]. James E. Mark.: Physical Properties of Polymers Handbook, 2nd Edition, Polymer Research Center and Department of Chemistry University of Cincinnati, Cincinnati, Ohio, 2007.
[12]. James M. Margolis: Engineering Plastics Handbook. McGraw-Hill, USA, 2006.
[13]. Manas Chanda & Salil K. Roy.: Plastic Technology Handbook. 4th Edition, CRC Press, USA, 2007.
[14]. Manas Chanda & Salil K. Roy.: Plastics Fabrication and Recycling. CRC Press, USA, 2007.
[15]. Muncer M. Ruaa: Studying the effect of Cold and Hot runner in Polypropylene Pf njection molding machines on some Mechanical and Morphological properties for medical syringes. M.S.c., Thesis, Collage of Materials Engineering. University of Babylon, 2013
[16]. Osama Fezzani Recycling and environmental protection. Case study, the General Electron Company, Republic of Libya.
[17]. Peter Jones: The Mould Design Guide. Smithers Rapra Technology Limited, U, 2008.
[18]. Robert O. Ebewele: Polymer Science and Technology, CRC Press, USA 2000.
[19]. Vannessa Goodship: Introduction to Plastics Recycling. 2nd Edition Smithers Rapra Technology Limited, UK, 2008.
[20]. William D Callister: Materials Science and Engincering, An Introduction. John Wiley & Sons, Inc., 2007.
[21]. Zehev Tadmor: Principles of Polymer Processing. 2nd Edition, A John Wiley & Sons, Inc., Publication, 2006.

