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Chapter 1 
Introduction  
 
 
 
 
 
 
 
 
 
1-1 Introduction to Maximum Likelihood Estimation 
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Maximum likelihood is a widely used technique for estimation with applications in 
many areas including time series modeling, panel data, discrete data, and even 
machine learning. 
Maximum likelihood estimation is a statistical method for estimating the 
parameters of a model. In maximum likelihood estimation, the parameters are 
chosen to maximize the likelihood that the assumed model results in the observed 
data. 
This implies that to implement maximum likelihood estimation we must: 

1. Assume a model, also known as a data-generating process, for our data. 
2. Be able to derive the likelihood function for our data, given our assumed 

model (we will discuss this more later). 
Once the likelihood function is derived, maximum likelihood estimation is nothing 
more than a simple optimization problem. 
At this point, you may be wondering why you should pick maximum likelihood 
estimation over other methods such as least squares regression or the generalized 
method of moments. The reality is that we shouldn't always choose maximum 
likelihood estimation. Like any estimation technique, maximum likelihood 
estimation has advantages and disadvantages. 
1-2 What is the Likelihood Function 

Maximum likelihood estimation hinges on the derivation of the likelihood 
function. For this reason, it is important to have a good understanding of 
what the likelihood function is and where it comes from. 
 
Let's start with a very simple case where we have one series  
 with 10 independent observations: 5, 0, 1, 1, 0, 3, 2, 3, 4, 1. 

 
1-3 The Likelihood Function  
Let X1,…….. Xn be an iid sample with pdf ƒ(xi; θ), where θ is a (k ×1) vector 
of parameters that characterize ƒ(xi; θ), 
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The joint density of the sample is, by independence, equal to the product of 
the marginal densities 

 
 

1-4 Advantages of Maximum Likelihood Estimation 
There are many advantages of maximum likelihood estimation: 

 If the model is correctly assumed, the maximum likelihood estimator is the 
most efficient. 

 It provides a consistent but flexible approach which makes it suitable for a 
wide variety of applications, including cases where assumptions of other 
models are violated. 

 It results in unbiased estimates in larger samples. 
1-5 Disadvantages of Maximum Likelihood Estimation  

 It relies on the assumption of a model and the derivation of the likelihood 
function which is not always easy. 

 Like other optimization problems, maximum likelihood estimation can be 
sensitive to the choice of starting values. 

 Depending on the complexity of the likelihood function, the numerical 
estimation can be computationally expensive. 

 Estimates can be biased in small samples. 
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1-6  The Maximum Likelihood Estimator 

 
Figure (1-1) position of likelihood functions  
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Chapter 2 
Properties, Applications.  
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2-1 Properties of Maximum Likelihood Estimators 
 
Certainly! Let’s delve into the properties of Maximum Likelihood Estimators 
(MLE), a widely used statistical estimation method. MLE aims to estimate the 
parameters of a statistical model based on observed data. Here are the key 
properties: 

1. Consistency: 
o MLE is a consistent estimator. As the sample size increases, the 

estimates obtained by MLE converge in probability to their true 
values, provided certain conditions are met(1). 

o In other words, as we collect more data, the MLE becomes more 
reliable and approaches the actual parameter values. 

2. Asymptotic Normality: 
o MLE follows the asymptotic normality property. As the sample size 

grows, the distribution of the MLE converges to a normal distribution. 
o This property is crucial for statistical inference, as it allows us to use 

normal-based approximations for hypothesis testing and confidence 
intervals(2). 

3. Efficiency: 
o An efficient estimator achieves equality with the Cramér–Rao 

Lower Bound (CRLB). The CRLB provides a lower bound on the 
variance of any unbiased estimator(3). 

o In simple terms, an efficient estimator has the smallest possible 
variance among all unbiased estimators(4). 

o For MLE, the variance cannot be lower than the CRLB, making it an 
efficient choice(5). 

4. Invariance: 
o MLE exhibits an invariance property. If we transform the parameter 

(e.g., take the logarithm), the MLE of the transformed parameter 
remains the MLE of the original parameter. 

o This property ensures that MLE is robust to changes in 
parameterization(6). 

5. Unbiasedness (in large samples): 
o Although MLE may be biased in small samples, it 

becomes asymptotically unbiased as the sample size increases. 
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o In large samples, MLE tends to have negligible bias, making it a 
desirable property(7). 

6. Unique (in some cases): 
o MLE is often unique for a given model and dataset. This uniqueness 

simplifies the estimation process. 
o However, uniqueness depends on the specific statistical model and the 

likelihood function. 
In summary, Maximum Likelihood Estimators combine consistency, asymptotic 
normality, efficiency, invariance, and often uniqueness, making them powerful 
tools for parameter estimation in statistical modeling. 
2-2 Applications of Maximum Likelihood Estimation 

2-2-1 find the likelihood function 
Example 2-1:  
For the following random samples, find the likelihood function:  Xi∼Binomial(3,θ)ܺ݅∼(ߠ,3)݈ܽ݅݉݊݅ܤ, and we have observed 

(x1,x2,x3,x4)=(1,3,2,2)(4ݔ,3ݔ,2ݔ,1ݔ)=(1,3,2,2). 
 Xi∼Binomial(3,θ)ܺ݅∼(ߠ,3)݈ܽ݅݉݊݅ܤ, and we have observed 

(x1,x2,x3,x4)=(1,3,2,2)(4ݔ,3ݔ,2ݔ,1ݔ)=(1,3,2,2). 
Solution: 
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Now that we have defined the likelihood function, we are ready to define 
maximum likelihood estimation. Let X1ܺ1, X2ܺ2, X3ܺ3, ......, Xnܺ݊ be a 
random sample from a distribution with a parameter θߠ. Suppose that we 
have observed X1=x1ܺ1=1ݔ, X2=x2ܺ2=2ݔ, ⋯⋯, Xn=xnܺ݊=݊ݔ. The maximum 
likelihood estimate of θߠ, shown by θ^MLܮܯ^ߠ is the value that maximizes 
the likelihood function L(x1,x2,⋯,xn;θ).(ߠ;݊ݔ,⋯,2ݔ,1ݔ)ܮ. 
Figure 2.1 illustrates finding the maximum likelihood estimate as the 
maximizing value of θߠ for the likelihood function. There are two cases 
shown in the figure: In the first graph, θߠ is a discrete-valued parameter, 
such as the one in Example 2.1 . In the second one, θߠ is a continuous-
valued parameter, such as the ones in Example 8.8. In both cases, the 
maximum likelihood estimate of θߠ is the value that maximizes the likelihood 
function. 

 
Figure 2.1 - The maximum likelihood estimate for θߠ. 
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2-2-2 piecewise distributions and find for me the maximum potential 
estimator.MLE. 

In statistics problems, the maximum potential estimator. We will Choose five 
examples of piecewise distributions and find for me the maximum potential 
estimator.MLE. 
Let's delve into piecewise distributions and explore some examples. Then, I'll 
explain how to find the maximum likelihood estimator (MLE) for these 
distributions. 
 

A. Piecewise Uniform Distribution(8): 
 

 Piecewise-uniform distribution for an uncertain revenue, which is between 100 and 140 with 
20% probability, between 140 and 160 with 60% probability, and between 160 and 200 with 

20% probability. This distribution is an approximation of the normal distribution shown by the 
grey line. 

   
 - Example 2-2 Some distributions are split into parts. They are not necessarily 
continuous, but they are continuous over particular intervals. These types of 
distributions are known as Piecewise distributions. Below is an example of this 
type of distribution 
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for 0<1>ݔ. The pdf of ܺ is shown below. 

 
The first step is to show this is a valid pdf. To show it is a valid pdf, we have to 
show the following: 
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The next step is to know how to find expectations of piecewise distributions. If we 
know how to do this, we can find the mean, variance, etc of a random variable with 
this type of distribution. Suppose we want to find the expected value, ܧ(ܺ). 

 
The variance and other expectations can be found similarly. 
The final step is to find the cumulative distribution function. cdf. Recall the 
cdf of ܺ is (ݐ≥ܺ)ܲ=(ݐ)ܺܨ. Therefore, for 12>ݐ, we have 

 
   - The MLE for the parameter (in this case, there's no parameter) would be the 
maximum value of the likelihood function, which is 1. 
 

B. Piecewise Linear Distribution(9): 
- Example 2-3 Fixed Number of Linear Segments 
To find the piecewise-linear approximation with a fixed number T  of linear 
segments that minimizes the squared error, the following problem is solved: 
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  Models and Algorithms for Optimal Piecewise-Linear Function Approximation 

 
 - Consider a random variable \(Y\) with the following: 
     \[ f(y) = \begin{cases}  
       2y, & \text{if } 0 \leq y < 1 \\ 
       0, & \text{otherwise} 
     \end{cases} \] 
   - The MLE for the parameter (again, no parameter here) would be the maximum 
value of the likelihood function, which occurs at \(y = 1\). 
 

C. Mixture Distribution(10)(11): 
   - Example 2-4  Let's say we have a mixture of two distributions, \(Z_1\) and 
\(Z_2\), with pdfs \(f_1(z)\) and \(f_2(z)\), respectively. The overall pdf is given 
by: 
     \[ f(z) = a f_1(z) + (1 - a) f_2(z) \] 
     where \(0 \leq a \leq 1\). 
   - The MLE for the parameter \(a\) would be the value that maximizes the 
likelihood function based on the observed data. 

D. Piecewise Exponential Distribution(12): 
   - Suppose we have a random variable \(T\) representing time until an event 
occurs. The pdf is: 
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     \[ f(t) = \begin{cases}  
       \lambda_1 e^{-\lambda_1 t}, & \text{if } 0 \leq t < 1 \\ 
       \lambda_2 e^{-\lambda_2 t}, & \text{if } t \geq 1 
     \end{cases} \] 
   - Here, \(\lambda_1\) and \(\lambda_2\) are parameters. The MLE would involve 
maximizing the likelihood function with respect to these parameters. 
 

E. Piecewise Normal Distribution(13): 
   - Example 2-5  Consider a random variable \(X\) with the following: 
     \[ f(x) = \begin{cases}  
       \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(x - \mu_1)^2}{2\sigma_1^2}}, & 
\text{if } x < 0 \\ 
       \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(x - \mu_2)^2}{2\sigma_2^2}}, & 
\text{if } x \geq 0 
     \end{cases} \] 
     where \(\mu_1\), \(\mu_2\), \(\sigma_1\), and \(\sigma_2\) are parameters. 
   - The MLE involves finding the parameter values that maximize the likelihood 
function based on the observed data. 
 
Remember that the MLE aims to find parameter values that make the observed 
data most probable under the assumed distribution. 
2-2-3 continuous distribution in maximum likelihood estimation in 
statistic: 
And her are the five example of continuous distribution in maximum likelihood 
estimation in statistic: 
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1. Normal Distribution (Gaussian Distribution)(14):  The normal distribution is widely used in statistics due to its  
symmetry and applicability to various real-world scenarios.  MLE can be used to estimate the mean (μ) and variance (σ²) of a 
normally distributed random variable based on observed data. 

 MLE can be used to estimate the mean (μ) and variance (σ²) of a 
normally distributed random variable based on observed data. 

Normal distribution is the most important distribution in probability and statistics. 
It has extremely rich structures and connections with other distributions. A random 
variable X is Gaussian with mean µ and variable σ2, denoted by N (µ, σ2 

), if its pdf i 
fX(x) = 1 √ 2πσ e −(x−µ) 2/2σ 2 , x ∈ R. 

In particular, if µ = 0 and σ = 1, we say X is standard Gaussian. One can verify 

 
by using the trick from multivariate calculus. Let’s verify E X = 0 and Var(X) = 1. 

 
since xe−x 2/2 is an odd function. How about E X2 ? 

 
Gaussian random variable is linearly invariant: suppose X ∼ N (µ, σ2 ), then aX + 
b is still Gaussian with mean aµ + b and variance a 2σ 2 , i.e., N (aµ + b, a2σ 2 ) 
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Moreover, suppose X ∼ N (µX, σ2 X) and Y ∼ N (µY , σ2 Y ) are two 
independent random variables, then 

 
This can be extended to the sum of n independent Gaussian random variables. For 
example, 

 
if Xi ∼ N (0, 1) are i.i.d. random variables. 

2. Exponential Distribution(15): 
 

 The exponential distribution models the time between events in a 
Poisson process (e.g., time between arrivals at a service center). 

 MLE can be used to estimate the rate parameter (λ) of the exponential 
distribution based on observed inter-arrival times. 

 Applications include reliability analysis and queueing theory. 
Exponential distribution: X has an exponential distribution with parameter β, i.e., 
E(β) if 

 
where β > 0. 
 

 
Example 2-6   
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3. Weibull Distribution(16): 

 

  The Weibull distribution is commonly used to model the lifetime of 
products or systems. 

 MLE helps estimate the shape parameter (k) and scale parameter (λ) 
of the Weibull distribution. 

 It is useful for reliability engineering and survival analysis. 
4. Gamma Distribution(17): 
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  The gamma distribution is versatile and can model various types of 
continuous data (e.g., waiting times, rainfall, insurance claims). 

 MLE is used to estimate the shape parameter (α) and scale parameter 
(β) of the gamma distribution. 

 It has applications in finance, hydrology, and quality control. 
 

5. Log-Normal Distribution(18): 
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 The log-normal distribution is often used for modeling positive 
continuous data that follow a skewed pattern. 

 MLE helps estimate the parameters of the underlying normal 
distribution (mean and standard deviation) after transforming the data 
to the log scale. 

 Examples include modeling stock returns, income, and particle sizes. 
 We muest Remember that MLE aims to find parameter values that maximize the 
likelihood function, which represents the probability of observing the given data 
under a specific distribution. 
On the other hand, MLE is not as widely recognized among modelers in 
psychology, but it is a standard approach to parameter estimation and inference in 
statistics. MLE has many optimal properties in estimation: sufficiency (complete 
information about the parameter of interest contained in its MLE estimator); 
consistency (true parameter value that generated the data recovered asymptotically, 
i.e. for data of sufficiently large samples); efficiency (lowest-possible variance of 
parameter estimates achieved asymptotically); and parameterization invariance 
(same MLE solution obtained independent of the parametrization used). In 
contrast, no such things can be said about LSE. As such, most statisticians would 
not view LSE as a general method for parameter estimation, but rather as an 
approach that is primarily used with linear regression models. Further, many of the 
inference methods in statistics are developed based on MLE. For example, MLE is 
a prerequisite for the chi-square test, the G-square test, Bayesian methods, 
inference with missing data, modeling of random effects, and many model 
selection criteria such as the Akaike information criterion (Akaike, 1973) and the 
Bayesian information criteria (Schwarz, 1978). 
 
In this tutorial paper, I introduce the maximum likelihood estimation method for 
mathematical modeling. The paper is written for researchers who are primarily 
involved in empirical work and publish in experimental journals (e.g. Journal of 
Experimental Psychology) but do modeling. The paper is intended to serve as a 
stepping stone for the modeler to move beyond the current practice of using LSE to 
more informed modeling analyses, thereby expanding his or her repertoire of 
statistical instruments, especially in non-linear modeling. The purpose of the paper 
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is to provide a good conceptual understanding of the method with concrete 
examples. For in-depth, technically more rigorous treatment of the topic, the reader 
is directed to other sources(19) . 
 
 
 
 
 
 
 
 
 
2-4 conclusion and recommendations 
The purpose of this paper is to provide a good conceptual explanation of the 
method with illustrative examples so the reader can have a grasp of some of the 
basic principles. 
The relationship between the gamma distribution and the piecewise distributions 
and find for me the maximum potential estimator.MLE.shows its importance in 
many fields, including statistics, probability, medical science, engineering, and 
others. Here are some benefits of this relationship. 
The Weibull distribution is commonly used to model the lifetime of products or 
systems, MLE helps estimate the shape parameter (k) and scale parameter (λ) of 
the Weibull distribution. 
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