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 الأهــــداء
 وصلت رحلتي الجامعية إلى نهايتها بعد تعب ومشقة.. 

 وها أنا ذا أختم بحث تخرجي بكل همة ونشاط 

 باليسير، وأمتن لكل من كان له فضل في مسيرتي وساعدني ولو  

إلى من أفضلها على نفسي، ولِمَ لا؛ فلقد ضحت من أجلي ولم تدَّخر جهداً في سبيل إسعادي  

 على الدوام 

 (. الحبيبة)أمي 

 نسير في دروب الحياة، ويبقى من يسُيطر على أذهاننا في كل مسلك نسلكه

 صاحب الوجه الطيب، والأفعال الحسنة. 

 فلم يبخل علي طيلة حياته

 (. )والدي العزيز

 الى اخوتي( ونور عيوني ومصدر قوتي واحبائي

 الى من وقف بجانبي وساندني بجميع الصعاب 

 صديقي ورفيق دربي صاحب القلب الطيب 

 )زوجي العزيز( 

 الى اساتذتي المبجلين... أهديكم بحث تخرجي.. 

 

 

 

 

 



 
 

 شُكر وتقدير
أود أن أعبر عن خالص شكري وتقديري لكم على دعمكم وتوجيهاتكم القيمة أثناء عملي على  

 .جاح بحثي التخرج. بفضل تعاونكم وإرشاداتكم المهمة، تمكنت من إكمال هذا العمل بن

أود أن أعبر عن امتناني العميق لكم على وقتكم وجهودكم المبذولة في مراجعة البحث وتقديم  

الملاحظات القيمة. كانت تعليقاتكم المفصلة والمنهجية ذات أهمية كبيرة في تحسين جودة  

البحث وتطويره. واستفدت كثيرًا من نصائحكم وملاحظاتكم في توجيه تفكيري وتحديد 

 .لمناسبة للدراسةالاتجاهات ا

كما أود أن أشكركم على التحفيز والتشجيع الذي قدمتموه لي طوال هذه الفترة. بفضل دعمكم  

المستمر وثقتكم في قدراتي، تمكنت من تخطي التحديات والعثور على حلول للمشكلات المعقدة 

 .التي واجهتني

وع واكتساب المهارات  أنا ممتن جداً للفرصة التي منحتوني إياها للعمل على هذا المشر

 .والمعرفة القيمة التي ستساعدني في مستقبلي الأكاديمي والمهني

أود أن أعرب أيضًا عن امتناني العميق للجهود التي بذلها أعضاء هيئة التدريس والمشرفين  

الذين ساعدوني خلال فترة البحث. لقد كنتم دعامة قوية ومصدر إلهام لي، ولن أنسى العطاء  

 .لذي قدمتموه والتشجيع ا 

 أخيرًا، أتمنى أن يكون بحثي قد نال رضاكم وتقديركم، وأن يكون قد ألبى التوقعات المحددة.

 

 

 

 

 

 

 

 

 



 
 

Abstract : 

 

Stable distributions are a class of probability distributions known for 

their stability properties under addition. They exhibit heavy-tailed 

behavior and are widely used to model phenomena such as financial 

returns, natural disasters, and other data with long-tailed characteristics. 

This abstract highlights the key features of stable distributions, including 

their parameterization, estimation methods, and simulation techniques. It 

emphasizes the importance of understanding their properties in various 

fields, such as finance, earthquake engineering, and telecommunications. 

The abstract also acknowledges the mathematical complexity associated 

with stable distributions and the computational advancements that have 

made their analysis and modeling more accessible. Overall, stable 

distributions provide a versatile framework for capturing and analyzing 

data with skewness, excess kurtosis, and outliers. 
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Introduction 

Stable distributions are a fascinating and fruitful area of research in 

probability theory; furthermore, nowadays, they provide valuable models 

in physics, astronomy, economics, and communication theory, 

The general class of stable distributions was introduced and given this 

name by the French mathematician Paul Lévy in the early 1920's, see 

Lévy (1923,1924,1925). 

Formerly, the topic attracted only moderate attention from the leading 

experts, though there were also enthusiasts, of whom the Russian 

mathemati- cian Alexander Yakovlevich Khintchine should be mentioned 

first of all. The inspiration for Lévy was the desire to generalize the 

celebrated Central Limit Theorem, according to which any probability 

distribution with finite variance belongs to the domain of attraction of the 

Gaussian distribution. The concept of stable distributions took full shape 

in 1937 with the appearance of Lévy's monograph soon followed by 

Khintchine's monograph  

 

The theory and properties of stable distributions have been systematically 

presented by Gnedenko & Kolmogorov and Feller . These distribution are 

also discussed in some other classical books in probability theory 

including Lukacs (1960-1970), Feller (1966-1971), Breiman (1968-

1992), Chung (1968- 1974) and Laha & Rohatgi (1979). Also treatises on 

fractals devote particular attention to stable distributions in view of their 

properties of scale invariance, see e.g. Mandelbrot (1982) and Takayasu 

(1990). It is only recently that monographs devoted solely to stable 

distributions and related stochastic processes have been appeared, i.e. 

Zolotarev (1983-1986), Janicki & Weron (1994), and Samorodnitsky & 

Taqqu (1994), Uchaikin & Zolotarev (1999), Nolan (????). In these books 

tables and/or graphs related to stable distributions are also exhibited. 

Previous sets of tables and graphs have been provided by Mandelbrot & 
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Zarnfaller (1959), Fama & Roll (1968), Bo'lshev & Al. (1968) and Holt 

& Crow (1973). 

Stable distributions have three exclusive properties, which can be 

briefly summarized stating that they  

1) are invariant under addition, 

2) possess their own domain of attraction, and  

3) admit a canonical characteristic function. 

In the following sections let us illustrate the above properties which, 

providing necessary and sufficient conditions, can be assumed as 

equivalent definitions for a stable distribution. We recall the basic results 

without proof. 

 

1- Define a Stable Distribution 

 

A stable distribution is a class of probability distributions that possess a 

remarkable property called stability under addition. In other words, when 

you take a linear combination of independent random variables from a 

stable distribution, the resulting random variable also follows a stable 

distribution, albeit potentially with different parameters. This property 

makes stable distributions highly valuable in various fields, including 

finance, physics, and signal processing. 

A random variable X is said to follow a stable distribution if its 

characteristic function has the form: 

ϕ(t) = exp(iδ t - | γ σt|^α(1 - iβsign(t)tan(πα/2))), 

a random variable x is S (α , δ , x , β , 0 ) 

 

 



3 

 

 

where i is the imaginary unit, μ represents the location parameter, σ is the 

scale parameter, α (0 < α ≤ 2) is the stability index, and β (-1 ≤ β ≤ 1) is 

the skewness parameter. The characteristic function ϕ(t) uniquely defines 

the distribution of a random variable. The parameters μ, σ, α, and β 

determine the location, scale, shape, and skewness of the distribution, 

respectively. 

Definition 1.7 A random variable X is S(α,β ,γ ,δ ;0) if 

 

When the distribution is standardized, i.e. scale γ = 1, and location δ = 0, 

the symbol S(α,β ;0) will be used as an abbreviation for S(α,β ,1, 0;0). 

 

Stable distributions exhibit a variety of intriguing properties. One of the 

most notable features is their heavy-tailed nature. Unlike many commonly 

encountered distributions (e.g., Gaussian or exponential), stable 

distributions can have tails that decay more slowly or even infinitely. This 

property makes them suitable for modeling extreme events, such as 

financial market crashes or natural disasters, where outliers and rare 

occurrences are of interest. 

Additionally, stable distributions are closed under various operations, 

such as convolution and linear combinations. This means that if X and Y 

(1) 

(2) 
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are independent random variables following stable distributions, then 

their sum (X + Y) also follows a stable distribution. This property has 

practical implications in areas such as portfolio theory, where the overall 

risk of a portfolio of assets can be determined using stable distribution 

models. 

Stable distributions have been extensively studied in the field of 

probability theory and statistics. Researchers have derived numerous 

results and established relationships with other statistical distributions, 

such as the Gaussian, Cauchy, and Levy distributions. These connections 

provide a deeper understanding of the behavior and properties of stable 

distributions. 

It is worth noting that stable distributions can be challenging to work with 

due to their complex mathematical expressions and limited closed-form 

solutions. However, numerical techniques, such as simulation methods or 

specialized algorithms, have been developed to estimate parameters and 

generate random samples from stable distributions. 

To gain a more comprehensive understanding of stable distributions, I 

would recommend referring to textbooks on probability theory and 

statistics that cover this topic in detail. Some prominent references include 

"Stable Non-Gaussian Random Processes: Stochastic Models with 

Infinite Variance" by Gennady Samorodnitsky and Murad S. Taqqu, 

"Stable Distributions" by John P. Nolan, and "Stable Probability 

Distributions: Models for Heavy Tailed Data" by Richard L. Tweedie and 

Giovanna Peccati. These resources provide extensive discussions, 

derivations, and applications of stable distributions, allowing readers to 

explore the topic further. 

Please note that the availability of specific books or links may vary, and I 

recommend checking online libraries, bookstores, or academic databases 

for access to these references. 
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2- Parameterizations of stable laws 

 

Definition 1.6 shows that a general stable distribution requires four 

parameters to describe: 

an index of stability or characteristic exponent α ∈ (0,2], a skewness 

parameter β ∈ [−1,1], a scale parameter and a location parameter. We will 

use γ for the scale parameter and δ for the location parameter to avoid 

confusion with the symbols σ and μ, which will be used exclusively for 

the standard deviation and mean. The parameters are restricted to the 

rangeα ∈ (0,2], β ∈ [−1,1], γ ≥0 and δ ∈ R. Generally γ >0, although γ =0 

will sometimes be used to denote a degenerate distribution concentrated 

at δ when it simplifies the statement of a result. Since α and β determine 

the form of the distribution, they may be considered shape parameters. 

There are multiple parameterizations for stable laws and much confusion 

has been caused by these different parameterizations.  

The variety of parameterizations is caused by a combination of historical 

evolution, plus the numerous problems that have been analyzed using 

specialized forms of the stable distributions. There are good reasons to 

use different parameterizations in different situations. If numerical work 

or fitting data is required, then one parameterization is preferable. If 

simple algebraic properties of the distribution are 

desired, then another is preferred. If one wants to study the analytic 

properties of strictly stable laws, then yet another is useful. This section 

will describe three parameterizations; in Section 3.4 eight others are 

described. 

In most of the recent literature, the notation Sα (σ ,β ,μ) is used for the 

class of stable laws. We will use a modified notation of the form S(α,β ,γ 

,δ ; k) for three reasons. First, the usual notation singles out α as different 

and fixed. In statistical applications, all four parameters (α,β ,γ ,δ ) are 

unknown and need to be estimated; the new notation emphasizes this. 

Second, the scale parameter is not the standard deviation (even in the 

Gaussian case), and the location parameter is not generally the mean. So 

we use the neutral symbols γ 
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for the scale (not σ ) and δ for the location (not μ). And third, there 

should be a clear distinction between the different parameterizations; the 

integer k does that. Users of stable distributions need to state clearly 

what parameterization they are using, this notation makes 

it explicit. 

It lets α and β determine the shape of the distribution, while γ and 

δdetermine scale and location in the standard way: if X ∼ S(α,β ,γ ,δ ;0), 

then (X −δ )/γ ∼ S(α,β ,1, 0;0). This is not true for the S(α,β ,γ ,δ ;1) 

parameterization when α = 1. 

On the other hand, if one is primarily interested in a simple form for the 

characteristic function and nice algebraic properties, the S(α,β ,γ ,δ ;1) 

parameterization is favored. Because of these properties, this is the most 

common parameterization in use and we will generally use it when we are 

proving facts about stable distributions. The main practical disadvantage 

of the S(α,β ,γ ,δ ;1) parameterization is that the location of the mode is 

unbounded in any neighborhood of α = 1: if X ∼ S(α,β ,γ ,δ ;1) and β > 0, 

then the mode of X tends to +∞ as α ↑ 1 and tends to −∞ as α ↓ 1. 

Moreover, the S(α,β ,γ ,δ ;1) parameterization does not have the intuitive 

properties desirable in applications (continuity of the distributions as the 

parameters vary, a scale and location family, etc.).  

for densities in the 1-parameterization and Section 3.2.2 for more 

information on modes. 

When α = 2, a S(2,0,γ ,δ ;0) = S(2,0,γ ,δ ;1) distribution is normal with 

mean δ , but the standard deviation is not γ . Because of the way the 

characteristic function is defined above, S(2,0,γ ,δ ;0) =N(δ ,2γ 2), so the 

normal standard deviation σ = √ 

2γ . This fact is a frequent source of confusion when one tries to compare 

stable quantiles when α = 2 to normal quantiles. This complication is not 

inherent in the properties of stable laws; it is 
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1 : 

2 : 
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a consequence of the way the parameterization has been chosen. The 2-

parameterization mentioned below rescales to avoid this problem, but the 

above scaling is standard in the literature. Also, when α = 2, β is irrelevant 

because then the factor tan(πα/2) = 0. While you can allow any β ∈ [−1,1], 

it is customary take β = 0 when α = 2; this emphasizes that 

the normal distribution is always symmetric. 

Since multiple parameterizations are used for stable distributions, it is 

perhaps worthwhile to ask if there is another parameterization where the 

scale and location parameter have a more intuitive meaning. Section 3.4 

defines the S(α,β ,γ ,δ ;2) parameterization so that the location parameter 

is at the mode and the scale parameter agrees with the standard scale 

parameters in the Gaussian and Cauchy cases. While technically more 

cumbersome, this parameterization may be the most intuitive for 

applications. In particular, it is useful in signal processing and in linear 

regression problems when there is skewness. Figure 1.4 shows plots of 

the densities in this parameterization. 

3 : 
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A stable distribution can be represented in any one of these or other 

parameterizations. 

For completeness, Section 3.4 lists eleven different parameterizations that 

can be used, and the relationships of these to each other. We will generally 

use the S(α,β ,γ ,δ ;0) and S(α,β ,γ ,δ ;1) parameterizations in what follows 

to avoid (or at least limit) confusion. In these two parameterizations, α, β 

and the scale γ are always the same, but the location parameters will have 

different values. The notation X ∼ S(α,β ,γ ,δk; k) for k = 0,1 will be 

shorthand for X ∼ S(α,β ,γ ,δ0;0) and X ∼ S(α,β ,γ ,δ1;1) simultaneously. 

In this case, the parameters are related by (see Problem 1.9) 

 

 

 

 

 

 

 

 

 

 

 

 

(3) 
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3- Invariance under addition 

A random variable X is said to have a stable distribution P(x) = Prob {X 

≤ x} if for any n>2, there is a positive number cn and a real number dn 

such that 

X1+ X2+...+Xn Cn X + dn, 

(2.1) 

where X1, X2,...Xn denote mutually independent random variables with 

common distribution P(x) with X. Here the notation denotes equality in 

distribution, i.e. means that the random variables on both sides have the 

same probability distribution. 

When mutually independent random variables have a common 

distribution [shared with a given random variable X], we also refer to 

them as independent, identically distributed (i.i.d) random variables 

(independent copies of X]. In 

 

general, the sum of i.i.d. random variables becomes a random variable 

with a distribution of different form. However, for independent random 

variables with a common stable distribution, the sum obeys to a 

distribution of the same type, which differs from the original one only 

for a scaling (c) and possibly for a shift (dn). When in (A.1) the d2 = 0 

the distribution is called strictly stable. 

It is known, see [20], that the norming constants in (2.1) are of the 

form(1) 

 

 

(4) 
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The parameter a is called the characteristic exponent or the index of 

stability of the stable distribution. We agree to use the notation X ~ 

Pa(x) to denote that the random variable X has a stable probability 

distribution with characteristic exponent a. We simply refer to Pa(x), 

Pa(x) = dPa(x)/dx (probability density functions = pdf) and X as a-stable 

distribution, density, random variable, respectively. 

Definition (2.1) with theorem (2.2) can be stated in an alternative 

version that needs only two i.i.d. random variables. see also Lukacs 

(1960-1970). A random variable X is said to have a stable distribution if 

for any positive numbers A and B, there is a positive number C and a 

real number D such that 

 

 

(2) where X1 and X2 are independent copies of X. Then there is a 

number a € (0,2] such that the number C in (2) satisfies Ca = A + Ba. 

For a strictly stable distribution Eq. (2) holds with D = 0. This implies 

that all linear combinations of i.i.d. random variables obeying to a 

strictly stable distribution is a random variable with the same type of 

distribution. 

A stable distribution is called symmetric if the random variable --X has 

the same distribution. Of course,  α symmetric stable distribution is 

necessarily strictly stable. 

Noteworthy examples of stable distributions are provided by the 

Gaussian (or normal) law (with  α = 2) and by the Cauchy-Lorentz law 

( α = 1). The corresponding pdf's are known to be 

 

(6) 

(5) 
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where σ2 denotes the variance and μ the mean, 

 

 

 

4- Properties Of Stable Distribution 

 

• Stability: Stable distributions exhibit stability under addition. This 

means that if two independent random variables follow stable 

distributions, their sum (or linear combination) will also follow a 

stable distribution. This property makes stable distributions 

suitable for modeling the sum of a large number of random 

variables. 

• Heavy Tails: Stable distributions have heavy tails, which means 

they have a higher probability of observing extreme values 

compared to other distributions such as the normal distribution. 

This property makes stable distributions useful for modeling 

phenomena that exhibit rare or extreme events, such as financial 

market returns or natural disasters. 

• Infinite Variance: Stable distributions have infinite variance, 

except for the special case of the normal distribution. This implies 

(7) 

(8) 

(9) 



13 

 

that stable distributions can have high variability and do not have a 

finite second moment. The lack of finite moments makes them 

suitable for modeling processes with long-range dependence and 

outliers. 

• Parameterization: Stable distributions are characterized by four 

parameters: alpha (α), beta (β), gamma (γ), and delta (δ). The 

parameter α, known as the stability index, controls the shape of the 

distribution. The parameters β and γ determine the location and 

scale, respectively. The parameter δ represents a shift in the 

distribution. 

• Levy's Theorem: Stable distributions satisfy Levy's theorem, which 

states that the sum of a large number of independent and 

identically distributed random variables, properly normalized, 

converges to a stable distribution. This property makes stable 

distributions a fundamental concept in the theory of stochastic 

processes. 

• Levy Flight: Stable distributions are often associated with Levy 

flights, which are random walks characterized by long jumps. Levy 

flights have been observed in various fields, including physics, 

biology, and finance. Stable distributions provide a mathematical 

framework to model Levy flights and analyze their properties. 

It's worth noting that stable distributions encompass a wide range of 

shapes and behaviors, depending on the values of their parameters. 

Different choices of parameters lead to different types of stable 

distributions, such as the Cauchy distribution, the Levy distribution, and 

the Gaussian distribution (for α = 2). Each type has its own 

characteristics and applications. 
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5- Characteristic Function Representation 

From a practitioner's point of view the crucial drawback of the stable 

distribution is that, with the exception of three special cases, its 

probability density function (PDF) and cumulative distribution function 

(CDF) do not have closed form expressions. These exceptions include the 

well known Gaussian ( α = 2 ) law, whose density 

function is given by: 

 

 

 

 

 

 

(10) 

(11) 
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Note, that the traditional scale parameter of the Gaussian distribution is 

not the same as in the above representation. A comparison of formulas 

(13) and (14) yields the relation: .    

 

For numerical purposes, it is often useful to use Nolan's (1997) 

parameterization: 

(12) 

4 : 
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Then the follwing laws are satified for the stable distributions 

- The Mean δ when α > 1 , otherwise undefined 

- Median δ when ẞ = 0 otherwise not analytically 

- Mode δ when ẞ = 0 otherwise not analytically 

- Variance 2δ 2 when α = = 2, otherwise infinite 

- Skewness 0 when α = = 2, otherwise undefined 

- Ex. Kurtosis  0 when α = = 2, otherwise undefined 

- Entropy not analytically expressible, except for certain parameter 

values 

- MGF  exp (tu+c2t2) when α = 0 , otherwise undefined 

 

6- Relations with other Distributions 

Stable distributions are a class of probability distributions that exhibit 

certain properties. They have interesting relationships with other well-

known distributions, including the normal (Gaussian) distribution, 

Cauchy distribution, and Levy distribution. Here are some of the key 

relationships: 

(13) 

(15) 

https://en.m.wikipedia.org/wiki/Moment-generating_function
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1. Relationship with the Normal Distribution: The normal distribution 

is a special case of the stable distribution when the stability index α 

equals 2. In this case, the stable distribution reduces to the familiar 

bell-shaped Gaussian distribution. The Gaussian distribution is 

characterized by finite mean and variance, while stable 

distributions (except for the normal distribution itself) have infinite 

variance. 

 

2. Relationship with the Cauchy Distribution: The Cauchy 

distribution is another well-known stable distribution. It can be 

considered a special case of the stable distribution when α equals 1 

and β (the skewness parameter) equals 0. The Cauchy distribution 

has heavy tails and does not have a finite mean or variance. It is 

often used to model extreme events or outliers. 

 

3. Relationship with the Levy Distribution: The Levy distribution is 

another special case of the stable distribution. It occurs when α 

equals 1/2, and it is characterized by even heavier tails than the 

Cauchy distribution. The Levy distribution is commonly used to 

model phenomena with extreme variability, such as financial 

market returns. 
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4. Stable Distribution as a Limiting Distribution: Stable distributions 

can arise as limiting distributions for certain stochastic processes. 

For example, the sum of a large number of independent and 

identically distributed random variables, properly normalized, 

converges to a stable distribution according to Levy's theorem. 

This property makes stable distributions important in the theory of 

stochastic processes and provides a framework to model various 

complex phenomena. 

5. Stable Distributions in Multivariate Analysis: Stable distributions 

also have implications in multivariate analysis. The multivariate 

stable distribution generalizes the concept of stable distributions to 

multiple dimensions. It is characterized by a stability index α and a 

matrix of skewness parameters. Multivariate stable distributions 

have been employed in fields such as finance, telecommunications, 

and image processing. 

 

 

7- Maximum Likelihood Method 

The maximum likelihood (ML) estimation scheme for α -stable 

distributions does not differ from that for otherlaws, at least as far as the 

theory is concerned. For a vector of observations  the ML 

estimateof the parameter vector  is obtained by maximizing 

the log-likelihood function: 

 



19 

 

where  is the stable density function. The tilde denotes the fact that, in 

general, we do not know theexplicit form of the stable PDF and have to 

approximate it numerically. The ML methods proposed in theliterature 

differ in the choice of the approximating algorithm. However, all of 

them have an appealing commonfeature - under certain regularity 

conditions the maximum likelihood estimator is asymptotically normal 

with thevariance specified by the Fischer information matrix ([30]). The 

latter can be approximated either by using theHessian matrix arising in 

maximization or, as in [81], by numerical integration.Because of 

computational complexity there are only a few documented attempts of 

estimating stable lawparameters via maximum likelihood. [29] 

developed an approximate ML method, which was based on groupingthe 

data set into bins and using a combination of means to compute the 

density (FFT for the central values of x and series expansions for the 

tails) to compute an approximate log-likelihood function. This function 

was thennumerically maximized. 

Applying Zolotarev's (1964) integral formulas, [17] formulated another 

approximate ML method, however, onlyfor symmetric stable random 

variables. To avoid the discontinuity and nondifferentiability of the 

symmetricstable density function at  the tail index was restricted 

to be greater than one. 

Much better, in terms of accuracy and computational time, are more 

recent maximum likelihood estimationtechniques. [76] utilized the FFT 

approach for approximating the stable density function, whereas [81] 

used thedirect integration method. Both approaches are comparable in 

terms of efficiency. The differences inperformance are the result of 

different approximation algorithms, see Sect. 1.2.2. 

As [83] observes, the ML estimates are almost always the most accurate, 

closely followed by the regression-typeestimates, McCulloch's quantile 

method, and finally the method of moments. However, as we have 

already saidin the introduction to this section, maximum likelihood 
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estimation techniques are certainly the slowest of all thediscussed 

methods. For example, ML estimation for a sample of 2000 observations 

using a gradient search routine which utilizes the direct integration 

method needs 221 seconds or about 3.7 minutes 

 

The calculationswere performed on a PC equipped with a Centrino 1.6 

GHz processor and running STABLE ver. 3.13 (see alsoSect. 1.2.2 

where the program was briefly described). For comparison, the STABLE 

implementation of theKogon-Williams algorithm performs the same 

calculations in only 0.02 seconds (the XploRe quantlet stabregneeds 

roughly four times more time, see Table 1.1). Clearly, the higher 

accuracy does not justify the applicationof ML estimation in 

many real life problems, especially when calculations 

are to be performed on-line. For thisreason the program STABLE also 

offers an alternative - a fast quasi ML technique. It quickly 

approximatesstable densities using a -dimensional spline interpolation 

based on pre-computed values of the standardizedstable density on a 

grid of  values. 
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At the cost of a large array of coefficients, the interpolation is 

highlyaccurate over most values of the parameter space and relatively 

fast – 0.26 seconds for a sample of 2000 observations. 
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8- Stable Distributions Applications 

Many techniques in modern finance rely heavily on the assumption that 

the random variables under investigation follow a Gaussian distribution. 

However, time series observed in finance - but also in other applications 

- often deviate from the Gaussian model, in that their marginal 

distributions are heavy-tailed and, possibly, asymmetric. In such 

situations, the appropriateness of the com- monly adopted normal 

assumption is highly questionable. 

It is often argued that financial asset returns are the cumulative outcome 

of a vast number of pieces of information and individual decisions 

arriving al- most continuously in time. Hence, in the presence of heavy-

tails it is natural to assume that they are approximately governed by a 

stable non-Gaussian dis- tribution. Other leptokurtic distributions, 

including Student's t, Weibull, and hyperbolic, lack the attractive central 

limit property. 

Stable distributions have been successfully fit to stock returns, excess 

bond returns, foreign exchange rates, commodity price returns and real 

estate returns (McCulloch, 1996; Rachev and Mittnik, 2000). In recent 

years, however, several studies have found, what appears to be strong 

evidence against the stable model (Gopikrishnan et al., 1999; 

McCulloch, 1997). These studies have estimated the 
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tail exponent directly from the tail observations and commonly have 

found a that appears to be significantly greater than 2, well outside the 

stable domain. Recall, however, that in Section 1.5.1 we have shown 

that estimating a only from the tail observations may be strongly 

misleading and for samples of typical size the rejection of the a-stable 

regime unfounded. Let us see ourselves how well the stable law 

describes financial asset returns. 

In this section we want to apply the discussed techniques to financial 

data. Due to limited space we chose only one estimation method – the 

regression approach of Koutrouvelis (1980), as it offers high accuracy at 

moderate computational time. We start the empirical analysis with the 

most prominent example the Dow Jones Industrial Average (DJIA) 

index, see Table 1.1. The data set covers the period February 2, 1987 - 

December 29, 1994 and comprises 2000 daily returns. Recall, that it 

includes the largest crash in Wall Street history the Black Monday of 

October 19, 1987. Clearly the 1.64-stable law offers a much better fit to 

the DJIA returns than the Gaussian distribution. Its superiority, 

especially in the tails of the distribution, is even better visible in Figure 

1.6. 
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To make our statistical analysis more sound, we also compare both fits 

through Anderson-Darling and Kolmogorov test statistics (D'Agostino 

and Stephens, 1986). The former may be treated as a weighted 

Kolmogorov statistics which 

 

puts more weight to the differences in the tails of the distributions. 

Although no asymptotic results are known for the stable laws, 

approximate p-values for these goodness-of-fit tests can be obtained via 

the Monte Carlo technique. First the parameter vector is estimated for a 

given sample of size n, yielding Ø, and the test statistics is calculated 

assuming that the sample is distributed according to F(x; Ô), returning a 

value of d. Next, a sample of size n of F (x; 0)- distributed variates is 

generated. The parameter vector is estimated for this simulated sample, 

yielding 01, and the test statistics is calculated assuming that the sample 

is distributed according to F(x; 01). The simulation is repeated as many 

times as required to achieve a certain level of accuracy. The estimate of 

6 : 
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the p-value is obtained as the proportion of times that the test quantity is 

at least as large as d. 

For the a-stable fit of the DJIA returns the values of the Anderson-

Darling and Kolmogorov statistics are 0.6441 and 0.5583, respectively. 

The corresponding approximate p-values based on 1000 simulated 

samples are 0.02 and 0.5 allowing us to accept the a-stable law as a 

model of DJIA returns. The values of the test statistics for the Gaussian 

fit yield p-values of less than 0.005 forcing us to reject the Gaussian law, 

see Table 1.1. 

Next, we apply the same technique to 1635 daily returns of Boeing stock 

prices from the period July 1, 1997 - December 31, 2003. The 1.78-

stable distribution fits the data very well, yielding small values of the 

Anderson-Darling (0.3756) and Kolmogorov (0.4522) test statistics, see 

Figure 1.7 and Table 1.2. The approximate p-values based, as in the 

previous example, on 1000 simulated samples are 0.18 and 0.8, 

respectively, allowing us to accept the a-stable law as a model of Boeing 

returns. On the other hand, the values of the test statistics for the 

Gaussian fit yield p-values of less than 0.005 forcing us to reject the 

Gaussian distribution. 
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9- Conclusion 

stable distributions are a class of probability distributions that possess 

several distinctive properties. These distributions exhibit stability under 

addition, making them suitable for modeling the sum of a large number 

of random variables. They have heavy tails, indicating a higher 

probability of extreme values compared to other distributions like the 

normal distribution. Stable distributions have infinite variance, except 

for the special case of the normal distribution, making them appropriate 

for modeling processes with long-range dependence and outliers. 

Stable distributions are characterized by four parameters: alpha (α), beta 

(β), gamma (γ), and delta (δ), which control the shape, location, scale, 

and shift of the distribution, respectively. They satisfy Levy's theorem, 

which states that the sum of a large number of properly normalized 

independent and identically distributed random variables converges to a 

stable distribution. 

Stable distributions have relationships with other well-known 

distributions. The normal distribution is a special case of the stable 

distribution when α equals 2. The Cauchy distribution is another special 

case when α equals 1 and β equals 0, while the Levy distribution arises 

when α equals 1/2. 

These distributions find applications in various fields, including finance, 

physics, biology, and telecommunications. They are used to model 

phenomena with heavy-tailed behavior, extreme events, and complex 

dependencies. The study of stable distributions provides a mathematical 

framework to understand and analyze these phenomena. 

In summary, stable distributions are valuable tools in probability theory 

and statistical modeling due to their unique properties, broad 

applicability, and connections with other distributions. 
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