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Abstract.  A big challenge that faces many applications in different fields suffers in dealing with datasets of massive 

size. Additionally, retrieving and casting this data is somewhat time-consuming. Applications such as government or any 

institution election, surveys, healthcare …etc., leverage techniques of data reduction, dimensionality reduction, matrix 

decomposition, or compression such as the Singular Value Decomposition Technique. Our paper shows the use of this 

technique as a method in certain circumstances where data is of binary type and can be retrieved, cast, or updated in less 

time and in a smaller size without losing any information. In other words, we prove practically that the massive size of 

binary values can be managed in a form of matrices with low rank (low rank is one of the bases used in the Singular 

Value Decomposition technique) to return the exact matrix of information instead of dealing with the original large 

matrix of data. The experimental results are implemented on a Lenovo machine, Intel Corei5, CPU 2.5GH with 8GB of 

RAM, using visual basic, C#, in Visual Studio 2019 environment. 

INTRODUCTION 

One of the data mining methods which are used to decompose and analyze a high-dimension matrix of data is the 

Singular Value Decomposition technique (SVD) which results in a low-dimensional representation of that matrix of 

data. Eliminating parts of data that are less or not important which makes it easier to represent with any desired 

number of dimensions [1].  

SVD is the basis of machine learning and data mining in many fields [2]. It makes it simple to ignore data that 

are not necessarily needed (which is zero in this research, as it deals with binary data of zeros and ones) [3].  

The general base of this technique is to divide a given matrix of input data into three vectors (U, S, and the 

transpose V), then apply the product operation to these vectors such that X = USV
T
 (where T is the transpose of 

vector V). U and V 
T
 are unitary matrices that produce a rotation of the input data. S is a diagonal matrix of singular 

values [1, 4].  

Any matrix of a two-dimension form A of size m×n can be factorized into three matrices, m refers to rows, n 

refers to columns, and "m ≥ n" [5, 6]. Multiplying the three matrices produce an approximately equal matrix to the 

original matrix A, as explained in equations (1), (2), and (3) [6, 7]. 
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U and V
T
 are vector matrices where: U

T
U= UU

T
= I (I is the identity matrix), and V

T
V=VV

T
=I, and S is a 

diagonal matrix where only the diagonal singular values are non-zero values in which: σ 1 ≥ σ 2 ≥ σ 3…. ≥ σ m ≥ 0. 

When n≥ m, the matrix S has at most m non-zero elements on the diagonal. Therefore, it is possible to exactly  

represent the original matrix A using the economy SVD as shown in equation (4) which is denoted as shown in 

equation (5) (Economy SVD)  [8]. 

 

 mmm vuvuvu     ............222111  (4) 
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In equation (4) r=1, and if there are very low singular values σ ( the number of  non-zero singular values 

represents the rank (r) ), then the low singular values σ  (zero or less) can be truncated and the truncated SVD may 

still be exact [9] as written in equation (6)  (Truncated SVD) Where: 
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  (6) 

 

 With rank k ≤ m ( k is an estimated value chosen several times practically in this study to find the best rank that 

retrieves the exact matrix after applying the SVD technique which separates' the original matrix into three different 

forms that can be, for example, stored in three different places such as Clouds …etc.), the left singular vector (U) is 

n*k, the right singular vector (V 
T
) is k*m, and the matrix of singular values is the sub-block of k*k.  

 In the truncated SVD the property of Ũ 
T
 Ũ = Ik*k, but Ũ Ũ

T
 ≠Ik*k because the "identity matrix" is of size n*n 

which is not true for Ik*k [8]. Applying SVD on a huge matrix (resulting in U, S, and V 
T
 ) can be retrieved in less 

time by multiplying the three small matrices (after truncating unimportant values), based on the best low-rank 

approximation, as shown in Fig. 1. 

 

 
 

FIGURE 1. Size reduction of applying SVD on matrix G resulting in three small separated matrices  

 

 In the figure above the shadow, area means the low-rank singular value matrix and singular matrices, moreover, 

the area size can reflect the number of matrix elements [10]. In many applications, SVD provides a robust tool when 

the objective is the exact Binary Matrix Decomposition (BMD) [11]. For A ∈ {0, 1} m×n, we note that A is an m ×n 

Binary matrix. BMD aims to find two matrices "U ∈ {0, 1}m×k and V ∈ {0, 1}k×n such that the difference {M −U ◦ 

V }L under some norm L is minimized with a given k as small as possible". The minimum possible k is called the 

Boolean rank of a binary matrix A which may be smaller or larger than its real rank [12].  

 The exact BMD is satisfying and pleasing and it is useful for many applications in the future. However, it can be 

used for approximate BMD, by finding the product of U ◦ V that covers most of the ones and no zeros in A. This is 

sometimes called the “from-below” approximation [13]. 

An Algorithm that illustrates the general SVD  and how this data mining technique generates three different 

matrices reducing the size of the original matrix without losing important information is shown in Fig. 2. 
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Algorithm 1rSVD 
 

 

 
 

FIGURE 2. SVD algorithm resulting the three matrices that reduce the size of the original matrix  

SVD APPLICATIONS 

 The following sections illustrate the SVD data mining technique dealing with data in matrices of different values 

as a data reduction and dimensionality reduction tool.  

Low-Rank Approximation of Matrices 

 Many fields of science use SVD to get the effective low rank that can decompose data separately such as data 

compression, image processing, engineering, and approximating a matrix by a rank that is low as possible matrix 

according to a norm that is given previously[15, 16]. 

Image Compression Using the Singular Value Decomposition 

  In general, the SVD decomposes the original matrix into three matrices. The aim is to approximate the data set of 

high dimensions using fewer dimensions. SVD displays the substructure of the high-dimensionality original data by 

reducing it into a lower-dimensional matrix and arranging the data from the most to the least variation[17].  

 SVD factorizes the m*n original matrix into three matrices, written as A = UΣV
T
 where U m*m and V

T
n*n are 

orthogonal matrices known as left and right singular vectors of A respectively and Σ is a diagonal matrix of real 

numbers that are non-negative numbers known as singular values of A in the order m×n [18].  

The SVD of a given matrix can be calculated as follows: 

 

 From a given matrix A, calculate AA
T
 and A

T
A ( A

T
 is the transpose matrix of A).  

 Use AA
T
 to form U, which is calculated by calculating eigenvalues and eigenvectors of AA

T
. 

 V can be formed by calculating the eigenvalues and eigenvectors of A
T
A, in the same manner. 

 U and V
T
 columns are produced by dividing each eigenvector by its magnitude.  

 The square root of eigenvalues results in the singular values which are arranged in descending order in the 

diagonal matrix. 
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Determination of the Effective Rank 

 SVD can be employed to detect the actual and the numerical rank of a matrix, by counting the number of 

singular values that are above a certain tolerance ( t). The tolerance  =0 is used for the actual rank and some small 

number determined by the user according to the application at hand for the numerical rank (i.e., >0 for numerical 

rank) (e.g.,    ||A||2   where  is machine precision). The numerical rank of a matrix is defined as the number 

of singular values   , r(A )  = { k: k (A)  , k+1 (A )   } [5]. 

EMPLOYING SVD in BINARY MATRICES 

 Employing Singular Value Decomposition to Binary matrices can work efficiently, as data are exactly either 0 or 

1. Which eliminates dealing with a matrix of massive size. Binary data can be managed using SVD with rank k<r in 

which r is the actual rank for a given matrix. 

 In special cases where the matrix of data should contain at most only one value of 1 in a column (under special 

circumstances like election events) such that each time the matrix is retrieved, the SVD is applied on a few columns 

incrementally, the rank can be as low as possible.  

 We illustrate SVD in a special case on data for an e-voting system, and generally for matrices of binary form that 

can be used in all types of surveys, voting systems, symptoms of disease…etc. 

Special Case of SVD with Matrices of Binary Data 

 An e-voting system that merges the concept of a distributed ledger with the Singular value decomposition can 

treat the matrix (ledger) of zeros and ones as an incremental ledger in which a structure of blocks is used to contain 

transaction of votes where m (the columns) represents the number of candidates, and n (the voters) represents the 

number of voters [19].  

SVD is applied on blocks of transactions (votes) where each block contain a fixed number of transactions. Under 

this circumstance, SVD manages data for each block to result in a ledger incrementally. In other words, SVD is 

initially applied on a matrix of zero values every time a block of few transactions arrives. Compared with the overall 

size of the matrix, SVD needs a low rank to work on each block incrementally.  

For example, if a matrix A is of size m*n, where m<n, under the following conditions: 

 

 Each column (refers to the voter) should have at most only one value of 1 (referring to a vote corresponding 

to a candidate, where rows are candidates). 

 The data for several columns are treated as a block of transactions (votes), in which a few columns in the 

matrix are changed to achieve condition (1). 

 

SVD in such case work on fewer data incrementally, then SVD can be applied efficiently by r= k, where r is the 

actual rank in which r<m and k is the lowest rank based on the number of transactions in a block where k≤ r.  

The size of the matrix that is retrieved after applying SVD is m*k + k*k + n*k which is lower than the m*n. We 

say a special case because SVD is applied gradually on a few columns instead of all columns, as these few columns 

represent voters who voted for candidates to perform a transaction in a block. In such a case the rank can be lower 

than the actual rank of the overall matrix which is a good choice for SVD of binary matrices to be employed with 

blockchain technology or any other distributed ledger technology. 

For example, A ledger of 8*10 as shown in Table 1 is a simple example where of values for ones and zeros, each 

column has only one value of 1, which refers to a vote for the desired candidate. The following ledger, is a copy of 

the SQL database for results, (V) refers to the voter, (C) refers to the candidate, voter1 (V1) voted for candidate8 

(C8), V2 voted for C2, and so on.  

SVD works on this ledger to transform the values into another form and distribute the outputs in three storage 

nodes that are cast to different servers in the world. 
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TABLE 1. Original Matrix (ledger) of size 8*10.

 
First, the ledger is checked to insure validation by having one value of the form (1) in each column which is a 

vote for the preferred candidate. The outputs of SVD are three matrices (U, S, and VT matrices). The result of 

applying SVD for this example is shown in Table 2, Table 3, and Table 4. 
 

TABLE 2. The left matrix U results from applying SVD on an 8*10 matrix (ledger).  

 

 
 

TABLE 3. The diagonal singular value matrix S results from applying SVD on an 8*10 matrix (ledger).  
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TABLE 4. The right matrix V S results from applying SVD on an 8*10 matrix (ledger).  

 

 
 

These matrices U, S, and V
T
 (V transpose) transformed the general ledger into coefficients of another form, 

resulting in an adaptive SVD ledger that can be distributed and stored in three separate countries using cloud storage 

services and servers. 

 Each matrix is separated from the other and can be dealt with as a decomposed matrix, which the main aim of 

SVD is to reduce the dimensionality of the original matrix without losing information. 

This is done by choosing a rank for the matrix depending on the singular values in matrix S (the diagonal 

matrix), in which we can use a low rank to deal with the three matrices more efficiently. Since our data is of binary 

type, which is suitable for elections, the rank can be as low as possible as long as it returns the exact matrix.  

The rank of r or fewer results in an acceptable decomposition for large data sets, the following equation (7) is 

used to show how we deal with the size of large data sets of the binary form : 

 

 
TrVrrSrU ):1(:,*):1,:1(*):1(:,  (7) 

 

Where U(:,  1:r) means keeping all the rows denoted by ( : ) and only from 1 to r denoted by (1:r) columns of U,  

S(1:r, 1:r ) refers to all the rows and columns from 1 to r  (1:r) of S, and  V(:,1:r)
T  

referring to all the rows ( : ) and 

only columns from 1 to r  (1: r) of V
T
. 

This calculation leads to the fact that we can deal with decomposed matrices of less size instead of a ledger size 

80 (8*10). For example, if the rank of 3 is used, then we can deal with a matrix of size 63 (8*3 + 3*3 + 10*3) 

resulting from equation (8): 

 

 rVrrrU T ***   (8) 

 

Which makes a massive difference compared with the original matrix. We can retrieve the original matrix by 

applying U*S*V
T 

resulting in the same ledger with no loss of information as shown in Table 5 which is similar to the 

original general ledger shown in Table 6. 

 
TABLE 5. Retrieving the original matrix.  
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TABLE 6. The original matrix. 

 

General Case of SVD with Matrices of Binary Data 

 In a scenario where SVD is applied on all m and n at once for a matrix A, r is the actual rank, as shown in 

equation 9. 

 

   {
                     

 
                    

 (9) 

 

Whether r is the actual rank or less, in both ways, it is acceptable to deal with the decomposed matrices instead 

of dealing with a binary matrix of massive size.  

The experimental results are illustrated in Table 7 at the end of this section, comparing matrices of binary data 

once when m<n, another when n<m, and when m=n. Also, exhibiting the time needed for generating a matrix under 

the condition of having one value of 1 randomly in each column all at once, the time needed for applying SVD, the 

suitable rank, and the time needed for extracting back the matrix by multiplying U*S*V
T
. 

EXPERIMENTAL RESULTS 

The experimental results show several tests of SVD with Binary matrices once when m<n, other tests when 

m>n, and when m=n. The results show the following:  

 

 The time needed to generate the matrix using the randomization function that sets only one value of 1 

randomly in each column before applying SVD.  

 The time needed for SVD to be applied on the original matrix.  

 The suitable rank r for retrieving the exact matrix.  

 The time needed after applying SVD and extracting the original matrix back. The significance lies in the 

time it takes for SVD to be applied, constructed, and extract the matrix to match the original matrix. Table 

7 shows the results respectively according to the size of the binary matrix[ see the end of this section]. 

 

The Algorithm below shown in Fig.3 illustrates the SVD technique with Binary data of a matrix in three cases 

based on the entered number of columns and rows, a case when the number of rows (m) is less than the number of 

columns (n), a case when the number of rows (m) is larger than the number of columns (n), and another case we 

enter the same number for column and rows m=n. 

The program shows us the input matrix after we entered the number of columns and rows, then the SVD 

algorithm is applied to result in three decomposed matrices, U which is m*r (r refers to the rank which is the number 

of non-zero singular values in the decomposed matrix S), S is an r*r matrix and V which is  r*n transposed matrix. 

040011-7

 16 February 2024 19:00:33



After multiplying the three decomposed matrices ( U*S*V
T
) we find that even when the size is reduced and 

separated into smaller dimensions, the result is the same original matrix. That leads to one of the useful benefits of 

SVD as it aims to save important data in another form in three decomposed matrices. 

 

 

 

 
FIGURE 3. SVD applied on a matrix of binary data 

Experimental Results of SVD for Binary Matrices when m<n 

 An input matrix of binary data in which the number of columns m=10, and rows n=100 is shown in Fig. 4,  

which is a simple program written in a visual studio 2019 environment. It shows the binary matrix on the left, a 

notification bar below showing the time it takes for each step, and the extracted matrix after applying SVD to 

retrieve the original matrix on the right. It is seen that the time needed to generate the matrix using the 

randomization function that sets only one value of 1 randomly in each column before applying SVD is 1.62 ns, the 

time needed for SVD to be applied on the original matrix is 222.3 ns, the suitable rank r for retrieving the exact 

matrix is 8, and the time needed after applying SVD and extracting the original matrix back is 11.7 ns. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

FIGURE 4. Binary matrix of size 10*100 with rank 8. 

 

The same procedure is repeated on binary matrices in which m<n and tested randomly each time in different ranks, 

details are shown in Table 7 at the end of the experimental results. 

Algorithm 2 SVD with binary data 
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Experimental Results of SVD for Binary Matrices when M>N. 

An input matrix of binary data in which m=100, and n=10 is shown in Fig. 5, showing the needed results. After 

repeating the tests randomly on the same matrix, in which the values of 1s are spread randomly in the binary matrix, 

it is seen that the different number of ranks for each test is always r≤n and can return the exact original matrix based 

on how the 1s are spread randomly due to the randomization function that is used for this task with a rank of 10. 

 
 

 

 

 

 

 

 

 

 
FIGURE 5. Binary matrix of size 100*10 with rank 10. 

 

The same procedure is repeated on binary matrices in which m>n and tested randomly each time in different 

ranks, details are shown in Table 7 at the end of the experimental results. 

Experimental Results of SVD for Binary Matrices when M=N. 

In an input matrix of binary data when m and n =100, it is shown in Fig. 6  that the time needed to generate the 

matrix using the randomization function to replace one zero by 1 randomly in each column is 0.98ns. The time 

needed for SVD to be applied on the original matrix is 937.57ns. A suitable first rank r for retrieving the exact 

matrix is 67. Other ranks were 62, 64, 65, 60, and 63 are shown in Table 7 at the end of the experimental results.  

The time needed after applying SVD and extracting the matrix is 746.34ns. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

FIGURE 6. Binary matrix of size 100*100 with rank 67. 
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Table 7 exhibits the experimental results that retrieve the exact original matrix, some matrices were rested 

several times, and each time the rank differs according to the values of 1 that are randomly located in each column 

using the random equation.  
TABLE 7. Exhibiting the experimental results. 

 

 Binary matrix 

(M<N) 

The time 

needed to 

generate the 

matrix 

The time needed 

for SVD 

suitable ranks The time needed to 

retrieve original 

matrix U*S*VT 

1 10*100 1.62ns 222.38ns* 8 11.73ns 
 

2 
 

50*100 

Test1 

Test2 

Test3 

Test4 

Test5 

Test6 

 

 

0.99ns 

0.6ns 

0.76ns 

0.59ns 

0.45ns 

0.63ns 

 

 

203.28ns 

196.38ns 

352.3ns 

303.17ns 

140.52ns 

201.45ns 

 

 

39 

44 

42 

43 

46 

40 

 

 

224.33ns 

136.85ns 

232.05ns 

97.74ns 

299.8ns 

205.62ns 
 

3 
 

5*1000 

 

3.54ns 

 

64.91ns 

 

3 

 

22.03ns 
 
4 

 

100*1000 

 

8.86ns 

 

6.464µs* 

 

98 

 

4.736 µs 
 

5 
 

100*100000 

 

758.59ns 

 

1.9174ms* 

 

98 

 

0.656ms 
6 100*10 

Test1 

Test2 

Test3 

Test4 

 

1.17ns 

0.15ns 

0.11ns 

0.15ns 

 

18.57ns 

18.55ns 

20.75ns 

18.83ns 

 

7 

10 

9 

8 

 

10.31ns 

12.43ns 

11.34ns 

10.35ns 
 
7 

 

100*50 

Test1 

Test2 

Test3 

Test4 

Test5 

Test6 

 

 

1.51ns 

0.49ns 

0.51ns 

0.47ns 

0.49ns 

0.48ns 

 

 

712.97ns 

299.53ns 

309.82ns 

315.33ns 

271.78ns 

231.24ns 

 

 

39 

36 

40 

37 

34 

38 

 

 

216.28ns 

212.69ns 

232.4ns 

190.27ns 

112.74ns 

211.83ns 
 
8 

 

1000*5 

 

0.2ns 

 

60.83ns 

 

5 

 

31.14ns 
 

9 
 

1000*100 

Test1 

Test2 

Test3 

Test4 

Test5 

Test6 

 

 

3.9ns 

2.63ns 

2.9ns 

1.85ns 

2.96ns 

2.78ns 

 

 

5.5146µs 

5.1909µs 

5.3805µs 

5.5251µs 

5.5490µs 

5.4024µs 

 

 

96 

92 

95 

93 

97 

91 

 

 

4.1326 µs 

4.2357 µs 

4.4833 µs 

4.1490 µs 

4.3561 µs 

4.10464 µs 
10 100*100 

    Test1 

    Test2 

    Test3 

    Test4 

    Test5 

    Test6 

 

0.98ns 

0.93ns 

0.95ns 

0.85ns 

0.92ns 

0.91ns 

 

937.57ns 

951.27ns 

579.82ns 

613.66ns 

835.36ns 

652.66ns 

 

67 

62 

64 

65 

60 

63 

 

746.34ns 

514.8ns 

631.9ns 

475.99ns 

633.98ns 

711.19ns 
 

11 
 

500*500 

    Test1 

    Test2 

    Test3 

    Test4 

    Test5 

 

 

11.5ns 

15.83ns 

21.72ns 

12.9ns 

11.79ns 

 

 

55.565µs 

55.241µs 

55.011µs 

5.543µs 

57.305µs 

 

 

312 

307 

328 

314 

329 

 

 

38.174 µs 

37.788 µs 

41.464 µs 

39.766 µs 

42.773 µs 
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CONCLUSION 

In this paper, we illustrated different binary matrices with values {0,1} of large size that can be dealt with within 

less dimensionality based on a low rank that returns the exact matrix. Singular value decomposition with rectangular 

binary matrices where m<.n can have rank r<m in which r is less than m to extract the exact or approximate matrix. 

In special cases where SVD is employed within distributed ledger in which the ledger of rectangular binary data 

is constructed incrementally, the rank can be less than m because it deals progressively with a low amount of data 

compared with the whole massive size of A incrementally depending on the number of transactions in each block. 

When m>n the rank is r≤n in which r can be at most equal or no more than n to extract the exact or approximate 

matrix. 

In Binary matrices, whether the matrix is of rectangular or square data, the rank is automatically chosen based on 

the smallest number of rows n or columns m.  

According to the experimental results, applying SVD on binary matrices with massive sizes does not exceed 

even one second, which makes it useful in applications for such types of data.  

Whenever the matrix is large and of binary form it can be decomposed according to the rank that can be less or 

equal to n or m to retrieve or cast matrices in a decomposed manner instead of matrices with size n*m. The 

experimental results show that whenever n or m is much smaller than each other, the chances of having several ranks 

to extract the exact matrix are very low. Also, it is shown that SVD with rectangular binary matrices takes less time 

than square binary matrices to be applied and extracted. 

FUTURE WORK 

Employing SVD as a data and dimensionality reduction tool is suitable for massive data that are formed as 

matrices, in which data can be retrieved, stored, or cast within less time and space. SVD is an acceptable choice for 

all types of data as matrices. Especially if dealing with large data of binary form in healthcare applications indicating 

symptoms of disease, Education systems, Government applications such as e-voting systems, surveys, etc 
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