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Abstract

A cohesive zone model has been developed for the simulation of both high and

low cycle fatigue crack growth. The developed model provides an alternative

approach that reflects the computational efficiency of the well‐established

envelop‐load damage model yet can deliver the accuracy of the equally well‐

established loading‐unloading hysteresis damage model.

A feature included in the new cohesive zone model is a damage mechanism

that accumulates as a result of cyclic plastic separation and material deteriora-

tion to capture a finite fatigue life. The accumulation of damage is reflected in

the loading‐unloading hysteresis curve, but additionally, the model incorpo-

rates a fast‐track feature. This is achieved by “freezing in” a particular damage

state for one loading cycle over a predefined number of cycles.

The new model is used to simulate mode I fatigue crack growth in austenitic

stainless steel 304 at significant reduction in the computational cost.

KEYWORDS

cohesive model, fatigue crack growth modelling, UMAT subroutine
1 | INTRODUCTION

Engineering structures such as bridges, power plants, air-
planes, trains, cars, and others have played an important
role in human life since the beginning of the industrial
revolution. However, these structures can suffer from
mechanical failures caused by crack propagation leading
potentially to catastrophic events, loss of human life,
and significant financial cost. Fatigue phenomena have
been the subject of research for more than 150 years.
However, complete solutions for this issue have not yet
been discovered.1 Great effort has been made to
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understand and evaluate the crack growth behaviour
under cyclic loading. However, fatigue remains an area
of active research with the development of new materials
and physical models. All current models used in the
description of fatigue behaviour suffer from limitations,
and none are able to capture the extensive experimental
evidence available in the literature.

It is apparent from the academic literature that the
cohesive zone model (CZM) is presently considered to
be an attractive approach when combined with the finite
element method to simulate fracture and fatigue prob-
lems. Nevertheless, an optimum CZM able to simulate
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any form of crack growth problem remains elusive. It is
well appreciated in the literature that cyclic loading
makes any crack propagation problem more complex,
involving an unloading part of the loading cycle along
with a process that is history dependent. The vast major-
ity of crack propagation studies presented in the literature
involving a CZM are limited to monotonic crack growth
prediction. Therefore, in order to use the CZM for fatigue
crack growth simulation, an irreversible and history‐
dependent cohesive law is required. Any such law must
be able to account for and accommodate the damage
accumulation associated with cyclic loading.2 This can
in principle be achieved by identifying additional criteria
for the development of internal variables in any CZM
thus providing history dependence. In the literature,
there are two available models for identifying this cyclic
history dependence, ie, the envelope‐load damage model
and the loading‐unloading hysteresis damage model.

The maximum load of the loading cycle is the focus of
the envelope‐load damage model rather than a description
of the complete cyclic loading behaviour. All variants
founded on this particular approach formulate a damage
rate dD/dN. Although the damage rate for convenience
is written here in the form of a derivative, it should be
well appreciated that the damage rate is not in fact a
derivative as D is a path‐dependent quantity and as such
is not a function. The damage D is assumed composed of
a quasi‐static damage Ds and a cyclic damage Dc, which
are considered to be additive to provide the total damage
D = Ds + Dc. The damage accumulated D(N + ΔN) is
defined via the integration of damage rate. Thus, after a
specific number of cycles, N + ΔN damage is determined
from the current damage D(N) plus the integration of the
damage rate over the interval [N,N + ΔN] and explicitly
takes the form

D NþΔNð Þ ¼ D Nð Þ þ ∫
NþΔN
N dD=dNð ÞdN ′ (1)

The integral in Equation (1) is typically approximated
using 2‐point Newton‐Cotes quadrature; for example, in
Robinson et al3 and Tumino and Cappello,4 the approxi-
mation takes the form

∫
NþΔN
N dD=dNð ÞdN ′ ≈

1
2

dD=dNð ÞjN þ dD=dNð ÞjNþΔN

� �
ΔN

(2)

or alternatively with a 1‐point Newton‐Cotes quadrature
as in previous studies,5–10 which takes the form

∫
NþΔN
N dD=dNð ÞdN ′ ≈ dDs=dNð ÞjN þ dDc=dNð ÞjN

� �
ΔN ≈ dDc=dNÞjNΔN

� (3)
A source of error in Equation (3) is the loss of the
quasi‐static damage rate, which cannot be estimated by
means of the 1‐point Newton‐Cotes quadrature as
explained in Bak et al.11 Different formulations for the
cyclic damage rate, found in the literature, are reviewed
in Bak et al.11 A fatigue CZM that can be applied for high
cycle fatigue analysis of mode I, mode II, and mixed
mode can be found in previous studies.3,4,12,13 A particu-
lar concern with the damage rate equations adopted in
these models is the number of material parameters
involved, each requiring experimentation for their deter-
mination and for each loading mode. To reduce the cost
required for calibrating parameters, the damage evolution
can be linked to a Paris‐like model as in other studies.5-10

Linking damage evolution to a Paris‐law means that no
additional parameters require calibration other than the
standard Paris‐law parameter. Unfortunately, with this
approach, predictive accuracy is affected since growth is
confined by the particular growth law assumed to apply.
Accuracy is also influenced by the integration scheme
employed to integrate the damage rate equation. An
additional contributory factor can be the absence of the
component describing the quasi‐static damage rate.
Damage evolution can be directly related to the
cohesive zone length (or at least to the fatigue part of
the cohesive zone length). In literature,5-10 for instance,
the cohesive zone length is evaluated using

acz ¼ 9πE3G
c

32 τοð Þ2 (4)

or a modified version of this equation, where acz is the
cohesive zone length (the length of the process zone
ahead of the crack tip where active cohesive elements
are present), Gc is the critical energy release rate, E3 is
Young modulus of the bulk material in the direction per-
pendicular to the crack plane, and το is the cohesive
strength. The link to cohesive zone length in this way is
essentially non‐physical and consequentially cannot be
measured or quantified experimentally.

Unlike the envelope‐load approach, the entire load-
ing‐unloading cycle is considered and represented in
loading‐unloading hysteresis damage models. This permits
the modelling of advanced behaviour at the cohesive
interface and surroundings taking into consideration
such things as friction and plasticity.11 Loading‐
unloading hysteresis models are based on the reduction
of the interfacial stiffness captured by a cyclic damage
variable that evolves or an internal variable that grows;
a review of CZMs for fatigue can be found in references
herein.14-17 The first successful attempt to use a CZM
for the simulation of fatigue crack growth is presented
in De‐Andrés et al,18 which introduces a cyclic damage



FIGURE 1 Mode I cohesive zone model28 [Colour figure can be
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variable D, whose purpose is to quantify the amount of
dissipated energy in the fracture process divided by the
critical fracture energy. Variable interfacial stiffness
models soon followed this work (see Nguyen and
Repetto19 and Yang et al,20 for example), where traction

rate _T is assumed to be a function of incremental stiff-
nesses K− and K+ according to the relationship,

_T ¼ K− _δ; if _δ < 0

Kþ _δ; if _δ > 0

(
(5)

where K+ and K− are loading and unloading stiffness,

respectively, and _δ is the rate of change of separation.
A particular deficiency with these models is that crack

defects are assumed to grow no matter how small they
might be, which can be an unrealistic behaviour. To cor-
rect for this, introduced in Roe and Siegmund21 are two
additional parameters σf and δΣ that represent the endur-
ance limit and the accumulated cohesive length, respec-
tively. If the component of stress normal to the crack at
the element ahead of the crack tip is less than the endur-
ance limit, then the model presents an infinite life (no
crack will propagate). Although this model contains the
basic features necessary for describing fatigue crack
growth, like all previous models, it remains phenomeno-
logical requiring validation with experimental results to
check accuracy and to standardise the cohesive zone
parameters. Other studies17,22-24 have considered similar
approaches. Although the loading‐unloading hysteresis
damage model replicates to an extent, fatigue behaviour
over each and every time increment, it is rather costly
in terms of computational time, and from a practical
viewpoint, it is unfeasible for high cycle fatigue simula-
tion, where analysis can typically involve extremely large
numbers of loading cycles.

To overcome the cost associated with hysteresis dam-
age models, De‐Andrés18 introduced an extrapolation
scheme to estimate the damage state after a specific num-
ber of cycles by a two‐term Taylor expansion of the form

Dnþ1 ≈ Dn þ dD=dNð Þjn Nnþ1 − Nnð Þ (6)

The rate of change of D per cycle dD/dN at Nn,
required for the extrapolation, is computed by a detailed
step‐by‐step computation of a few loading cycles. A limi-
tation of this method is the assumption that the damage
rate is constant throughout the crack propagation period.
In addition, for good accuracy, the cycle increment
Nn + 1 − Nn is constrained by the requirement that the
damage increment Dn + 1 − Dn is relatively small. Similar
methods are considered in Towashiraporn et al25 and
Koutsourelakis et al.26
In general, fatigue modelling using the CZM looks
very promising but is still in its infancy with no mature
CZMs yet available for use in industrial applications.11

However, in an attempt to advance the approach, this
paper introduces a loading‐unloading hysteresis damage
model containing a fast‐track feature.

The new CZM is introduced in Section 2 along with
the fast‐track feature and a mechanism for capturing irre-
versibility. The implementation of the new CZM model in
the commercial software package ABAQUS (via a
bespoke UMAT subroutine) is discussed in Section 3. In
addition, the analysis model properties (geometry, mate-
rial properties, and boundary conditions) along with a
mesh‐sensitivity analysis are considered. Section 4
focuses on the validation of the new model by presenting,
discussing, and comparing results with experimental
fatigue data. Conclusions are presented in Section 5.
2 | COHESIVE ZONE MODEL FOR
FATIGUE

The fracture process can be simplified to the form shown
in Figure 1, where the behaviour of the material element
at the crack tip is assumed to follow a predefined traction
separation law (TSL). Different forms of TSLs used in the
literature include polynomial, exponential, bilinear, and
trapezoidal shapes as shown in Figure 2. A cohesive
model is not physical but phenomenological and attempts
to represent the physics of the fracture process by means
of a single separating interface. Therefore, there is no
physical evidence for the shape of the function that
relates traction to separation. The effect of the traction‐
separation law shape is discussed in Tvergaard and
Hutchinson,27 where it is concluded that the shape of

http://wileyonlinelibrary.com


FIGURE 2 The widely used traction

separation laws: (A) polynomial, (B)

exponential, (C) bilinear, and (D)

trapezoidal29
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the law does not significantly affect the analysis results.
However, it is shown in previous studies28,30-32 that the
TSL has an effect on fracture behaviour but the signifi-
cance of this effect depends on geometry and material
properties.

For a pre‐defined TSL, two of the cohesive parameters
(Γo, σc, and δc) are usually sufficient for simulating the
fracture process, where Γo is the energy dissipated in
the formation of new surfaces, σc is the critical cohesive
traction, and δc is the critical cohesive separation at
which the cohesive element fails. The trapezoidal cohe-
sive zone model (TCZM) on the other hand involves an
additional shape parameter (δ2), which is required to be
specified to simulate the complete fracture process. The
addition of this parameter is to account for local plasticity
at the crack tip, so avoiding the need for a global elastic‐
plastic analysis in a situation where only localised plastic-
ity is involved. This feature is advantageous computation-
ally as it permits an elastic‐bulk material to be assumed.
The area under the traction curve represents the total dis-
sipated energy (Gc) (ie, the plastic energy dissipated in the
local plastic zone and the energy required to form new
surface), which is represented mathematically as

Gc ¼ ∫
δc

0 σ δð Þdδ (7)

which for a trapezoidal cohesive model depicted in
Figure 1, gives
Gc ¼ ∫
δ1
0 σ δð Þdδ þ ∫

δc

δ2σ δð Þdδ
� �

þ ∫
δ2
δ1σ δð Þdδ

¼ A1 þ A3ð Þ þ A2 ¼ Γo þ Gp

¼ σc

2
δ1 þ σc

2
δc − δ2ð Þ

� �
þ σc δ2 − δ1ð Þ

¼ σc

2
δ2 − δ1 þ δcð Þ

(8)

where Gc is the total dissipated energy per unit area, Gp is
the local plastic dissipated energy, δ1 is the separation at
which the deformation become permanent, and δ2 is the
separation at which the element deterioration is assumed
to start.

The standard TCZM is represented mathematically as

σ δð Þ ¼

Kcohδ if δ < 0

Kδ if 0 ≤ δ ≤ δmax

σc if δmax < δ < δ2
1 − D δð Þ
� �

σc if δ2 < δmax < δ < δc

0 if δ ≥ δc

8>>>>>><
>>>>>>:

(9)

where σ(δ) is the cohesive traction and Kcoh = σc/δ1,
which represents the cohesive stiffness of an undamaged
cohesive element. Similarly, K is the cohesive stiffness of
a damaged cohesive element (which initially equals Kcoh)
and is defined by

K ¼ σmax

δmax (10)
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where δmax and σmax are the separation and stress at the
onset of unloading; these initially take the values δ1 and
σc, respectively, to ensure K = Kcoh if no damage is pres-
ent in the cohesive element.

Note that for the standard TCZM at unloading, the
crack is fully closed and the cohesive traction is
returned to zero following the relationship σ(δ) = Kδ
(the model does not account for crack closure). The
subsequent reloading follows the same path as illus-
trated in Figure 1. As advised by Scheider et al,33 the
value of δ1 should be very small and the value of δ2
should be close to δc. Therefore, in this study, these
values are set to

δ1 ¼ σc

Kcoh (11)

δ2 ¼ 0:75 × δc (12)

The damage process is assumed to be void initiation,
growth, and coalescence, which is represented by the
parameter D(δ) in the cohesive model. For the TCZM, the
damage variable can be represented by the relationship

D δð Þ ¼ 1 −
δc − δð Þ
δc − δ2ð Þ if δ2 ≤ δ ≤ δc (13)

which has the rate form _D δð Þ ¼ F δð Þ _δ, where F (δ) is a posi-

tive function of the form
FIGURE 3 New loading‐unloading

hysteresis model [Colour figure can be

viewed at wileyonlinelibrary.com]
F δð Þ ¼ 1
δc − δ2ð Þ (14)

and as above, rate is conveniently represented symbolically

here, in the form of a derivative, ie, _D δð Þ ¼ dD δð Þ=dN and
_δ ¼ dδ=dN .

If cyclic loading is applied, the standard TCZM will
result in an infinite life. Therefore, it is necessary to use
an irreversible and history‐dependent CZM in order to
capture finite life. This can be done by identifying a cyclic
damage mechanism.
2.1 | Fatigue cohesive model

The damage mechanism used for the new TCZM consists
of two parts. First is the cyclic damage Dc, which itself is
associated with two distinct effects: (1) an increase in
local plastic separation δp when δ ≤ δ2 and (2) for
δ > δ2, a further increase in δp as consequence of void
growth and coalescence. Second is monotonic damage
Ds that results from material deterioration not attributed
to cyclic loading in the CZM. These two features are
shown to be sufficient for the TCZM to capture fatigue
crack growth.

A schematic outline of the behaviour of the proposed
model is presented in Figure 3, with traction represented
mathematically by

http://wileyonlinelibrary.com
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σ δð Þ ¼

Kcohδ if δ < 0
σmax

δmax − δp

� �
δ − δpð ÞH δ − δpð Þ if 0 ≤ δ ≤ δmax

σc if δmax < δ < δ2
1 − D δð Þ
� �

σc if δ2 < δmax < δ < δc

0 if δ ≥ δc

8>>>>>>>><
>>>>>>>>:

(15)

where in this model, the critical cohesive stress σc

doubles up as the endurance limit, which is the stress
level required for activating the damage accumulation
mechanism; loads resulting in stresses below σc in the
cohesive zone will result in an infinite life. The Heaviside
function H is defined to zero when δ is smaller than δp

and one in other cases. Finally, D(δ) is the damage vari-
able of Equation (13). The separation δ has two parts, ie,

δ ¼ δp þ δcyc (16)

where δcyc is the cyclic separation as a result of the
applied load at any time increment, with plastic separa-
tion δp updated by means of integration of a rate relation-
ship, ie,

δpNþ1ð Þ ¼ δpNð Þ þ ∫
Nþ1

N dδp
N ′ð Þ=dN

� �
dN ′ (17)

where δpNð Þ is the stored plastic separation from the previ-

ous loading cycle and dδpNð Þ=dN is the rate of change in
plastic separation (represented here in the form of a
derivative for convenience), ie, the increase in the plastic
separation δp per cycle.

The integral in Equation (17) can be approxi-
mated using the mean value theorem for integration. If
dδpNð Þ=dN is assumed to be defined and smooth on the

interval (N, N + 1), then

∫
Nþ1

N dδp
N ′ð Þ=dN

� �
dN ′ ¼ N þ 1 − Nð Þ × dδpNð Þ=dN

� �
αð Þ

¼ dδpNð Þ=dN
� �

αð Þ
(18)

where α belongs to the interval [N, N + 1] and

dδpNð Þ=dN
� �

αð Þ
is an intermediate value of the rate

dδpNð Þ=dN , which in this work is assumed to be propor-
tional to the maximum separation δcyc

max
, reached at the

end of a loading cycle. This assumption provides a conve-
nient approximation of the form,

dδpNð Þ=dN
� �

αð Þ
≈
δcyc

max

C
(19)
whereC is a positive dimensionless constant of proportion-
ality and takes a value greater than unity to reflect the fact

that only a proportion of δcyc
max

contributes to plastic
separation.

Note that the origin of Equation (19) is a rate equation

of the form _δp ¼ h δcycð Þ, where h is a positive function.
The exact form the function h takes is not important here
since the approximation adopted in Equation (19) is suffi-
cient and expedient since δcyc

max
is dependent on the load-

ing conditions (to account for the loading history) with
any material cyclic damage being readily captured by
the material parameter C, which can be tuned to accom-
modate particular material behaviour on comparing anal-
ysis results with experimental data. The dimensionless
parameter C provides an indication of the rate at which
plastic separation is taking place in a material and conse-
quently is material dependent. It is however independent
of the specimen shape and loading conditions and once
determined for a particular material can in principle be
applied to any loading case. Substitution of Equation (19)
into Equation (17) yields an extraordinarily simple incre-
ment rule for cyclic damage, ie,

δpNþ1ð Þ ≈ δpNð Þ þ
δcyc

max

C
(20)

Shown in Figure 4A is the behaviour of the cohesive
model under cyclic loading, and the accumulated dissi-
pated energy ΔG is readily shown to be

ΔG ¼
1
2
σc δmax þ δp − δ1ð Þ½ � if δmax ≤ δ2

1
2
σc δmax þ δ2 − δ1ð Þ − σmax δ2 − δpð Þ½ � if δmax > δ2

8><
>:

(21)

represented by the area under the traction‐separation
curve in Figure 4.
2.2 | Fast‐track feature

The model described in Section 2.1 can be shown to rep-
resent fatigue behaviour but suffers from a particular lim-
itation. In its present form (similar to the loading‐
unloading hysteresis damage model), it is practically
unfeasible and computationally costly requiring exces-
sively long computational time as a consequence of the
large numbers of cycles typically involved in any realistic
industrial application. In order to overcome this particu-
lar limitation, it is necessary to find an approach that
limits the extent of the computational requirements. An
observation of the behaviour of the existing model how-
ever is that deviation in the cyclic behaviour tends to
evolve extremely slowly. Cyclic damage is considered



FIGURE 4 Cyclic stress‐separation curves [Colour figure can be
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here to be a combination of cyclic plastic separation and
material deterioration, and it is the cyclic plastic separa-
tion that is observed to suffer low cyclic deviation. This
suggests that a reasonable approximation is a linear
growth rule for cyclic plastic separation with constant
plastic increment over a specific load envelope containing
ΔN cycles. This simple observation provides the founding
idea for the new fast‐track procedure.

Consider then the possibility that the rate of change
in cyclic plastic separation evaluated in a loading cycle
remains constant for a specific load envelope containing
ΔN number of cycles; the value of ΔN should not be set
at a value too high to allow damage to be updated to
maintain accuracy. The cyclic plastic separation after
(N + ΔN) is evaluated in the usual way as

δpNþΔNð Þ ¼ δpNð Þ þ ∫
NþΔN
N dδp

N ′ð Þ=dN
� �

dN ′ (22)

Similar to Equation (17), the integral in Equation (22) is
approximated using the mean value theorem for
integration and on applying the approximation in
Equation (19), the cyclic plastic separation after
(N + ΔN) cycles is approximated as

δpNþΔNð Þ ≈ δpNð Þ þ
δcyc

max

C

 !
ΔN (23)

where Equation (20) is returned on setting ΔN = 1.
The increment ΔN for computational expediency can

be any integer value significantly greater than one, but
accuracy is a limiting consideration. It is important there-
fore to have some understanding about the effect ΔN has
on the accuracy of the fast‐track procedure. A simple pro-
cedure (not connected to fatigue analysis per se) is
adopted for the sole purpose to provide a reasonable esti-
mate for the value of ΔN, which involves first the analysis
of one cycle. From this cycle, information is recovered at
the integration point (IP) at the crack tip, with ΔN being
set by the relationship,

ΔN ¼ int
δc − δcyc

max

Nu × δp1ð Þ

 !
(24)

where int is a function that returns the nearest integer to
the argument, Nu is a parameter that represents the num-
ber of required updates of the cyclic damage, δp1ð Þ is the

cyclic plastic separation after the first loading cycle, and
δcyc

max
and δc are the maximum cyclic separation reached

at the loading cycle and the critical cohesive separation,
respectively. The numerator δc − δcyc

max
in Equation (24)

is a relatively crude approximation of the cyclic plastic
separation to the point of failure. The ratio of

δc − δcyc
max

and δp1ð Þ gives an indication of the number of

cycles that leads to the failure of the IP at the crack tip.
The value for ΔN employed as a cyclic load envelope is
obtained on dividing δc − δcyc

max� �
=δp1ð Þ with the integer

Nu (representing the number of cyclic updates deemed
necessary for accuracy) and returning the nearest integer.
The greater the value of Nu, the lower the value of ΔN
(with ΔN ≥ 1) but consequently the greater the computa-
tional cost.

The predicted value of ΔN by Equation (24) is esti-
mated in a one cycle analysis, and the final value is
applied as a fixed input to all the cohesive elements in
the fatigue analysis along with (σc, δc, and C) for all cohe-
sive elements. The value of ΔN (with Nu fixed) will auto-
matically be higher if the problem under consideration
involves high cycle fatigue since both the maximum
cyclic separation and the cyclic plastic increment will be
smaller. A detailed investigation on the effect of ΔN on
the simulation results is provided in Section 3.3.

http://wileyonlinelibrary.com
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The separation δmax and the stress σmax at the end of
the N + ΔN cycles are determined with

δmax ¼ δpNþΔNð Þ þ δcyc
max

(25)

σmax ¼ σc if δ1 < δmax ≤ δ2
1 − D δmaxð Þ
� �

× σc if δ2 < δmax ≤ δc

(

(26)

Thus, after N + ΔN cycles, Equation (26) returns the
maximum stress, which is equal to the cohesive critical
stress if δmax (from Equation (25)) is less than δ2. If, how-
ever, δmax is larger than δ2, then the maximum stress σmax

is evaluated in a similar fashion to Equation (15), by
using the monotonic damage variable D δmaxð Þ of Equa-

tion (13), with δ replaced by δmax. The evaluated values
from Equations (25) and (26) are provided to the next
loading cycle along with the new value of δ at N + ΔN,
with δ determined using Equation (16) and applied in
Equation (15).

To keep things reasonably simple, ΔN is assumed to
remain invariant for the total process. To record the exact
number of cycles when the cohesive element fails and
bearing in mind that at the end of a loading cycle, the
number of cycles satisfies the relationshipNi + 1 =Ni+ΔN,
it is necessary to compare the value of δmax (evaluated by
using Equation (25)) with δc, and if larger, then the num-
ber of cycles at which the element failed satisfies the rela-
tionship

N f ¼ Niþ1 − int
δmax − δc

δcyc
max

=C
� �

 !
(27)

The second term on the right‐hand side of
Equation (27), represents the unwanted number of cycles
that do not contribute to failure. The numerator δmax − δc

represents the cyclic damage as a result of this unwanted
number of cycles, with the denominator δcyc
max

=C being
cyclic damage increment. The ratio of δmax − δc and

δcyc
max

=C therefore provides an estimation of the over-
shoot in the prediction of the number of cycles to failure
and hence must be removed as shown in Equation (27).
3 | IMPLEMENTATION OF THE
NEW CZM IN ABAQUS

The commercial finite element solver ABAQUS is used as
a vehicle for the numerical analysis in this study. In
ABAQUS, the fracture process using the cohesive model
can be identified either by a cohesive surface or by cohe-
sive elements that are situated along the crack path. In
this study, cohesive elements are used although existing
elements in ABAQUS are somewhat constrained by TSLs
that are history independent and not applicable for the
simulation of fatigue crack growth. However, the TSL
can be defined through their material behaviour, and
ABAQUS provides a facility to specify new material
behaviour (as the new cohesive model introduced in this
study) through a user‐defined material subroutine.
3.1 | UMAT implementation and testing

To test the UMAT subroutine, a three‐element model
(two continuum elements and one cohesive element
connecting them) is used as shown in Figure 5. The mate-
rial properties in the bulk material and the cohesive ele-
ment are shown in Table 1. The parameter C is set to
have a small value (ie, 40) to artificially reduce the num-
ber of cycles required for failure of the cohesive element.
The load is applied as a cyclic displacement with fixed
maximum amplitude of 11.6 × 10−5 m and R = 0. The
analysis is performed initially on a cycle‐by‐cycle basis
(ie, ΔN = 1) and then with the new fast‐track technique
on setting ΔN = 4. The cyclic stress of the new fatigue
FIGURE 5 Implementation of the

cohesive element in the finite element

model [Colour figure can be viewed at

wileyonlinelibrary.com]
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TABLE 1 Material properties

Bulk Material σY, MPa E, GPa ϑ
340 193 0.29

Cohesive elements Γo, N/m Kcoh, GPa/m σc, MPa δc, mm δ1, mm δ2, mm C
68 500 19 700 511 0.168 0.025 94 0.126 40
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model (in a cycle‐by‐cycle manner first and by using the
new technique with ΔN = 4) is shown with respect to
the separation and time in Figures 4 and 6, respectively.
The graphs shown in Figure 4 reveal how the model
can readily cater for an initially high load resulting in a
correspondingly high level of energy dissipation and
monotonic damage apparent in the first cycle. This is
then followed by cyclic damage at significantly lower
levels of dissipation per cycle. Also shown in Figure 4 is
the growth of the plastic separation with the number of
cycles until the separation δ reaches δ2; at which point,
the cohesive stiffness decreases with increasing number
of cycles because of material deterioration leading to fail-
ure of the cohesive element. The required analysis time
for a typical element to fail using the cycle‐by‐cycle model
(dashed curve) and the fast‐track model (solid curve) is
shown in Figure 6. It reveals that the fast‐track procedure
FIGURE 6 Cyclic stress as a function of

time [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Boundary conditions and loading for finite element mode
provides a reduced number of cycles and hence computa-
tional effort, which of the order of ΔN−1 of that required
without its implementation. The figure shows that for an
analysis involving 26 loading cycles, the fast‐track proce-
dure takes some 140 seconds while the cycle‐by‐cycle
analysis takes 560 seconds.
3.2 | Analysis model: Geometry and
boundary conditions

The finite element model depicted in Figure 7 conforms
to the shape of the specimens used in the fatigue experi-
mental trials. The numerical model consists of 23 618
plane‐stress elements of which 22 988 (type CPS4), 390
(type CPS3), and 240 cohesive elements (type
COH2D4).34 The material properties for the bulk material
element and the cohesive element are found in Table 2.
l [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Material properties full model

Bulk material σY, MPa E, GPa ϑ
340 193 0.29

Cohesive elements Γo, N/m Kcoh, GPa/m σc, MPa δc, mm δ1, mm δ2, mm C
47 039 19 700 340 0.168 0.017 26 0.126 775
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The initial values of the cohesive parameters were set as
follows: δc equals the crack tip opening displacement
(CTOD) as measured experimentally in a CT specimen
and equals 0.000 168 m; the value of the critical cohesive
stress was set to equal the material yield stress, and its
value is 340 MPa.

The new fatigue algorithm is initiated with a cycle‐
by‐cycle analysis with these initial values for a few hundred
cycles to determine the correct value of the parameter C,
which is obtained by means of curve fitting analysis results
and contrasting with experimentally obtained fatigue data.
The final value of C is subsequently used in a one cycle
analysis to obtain an optimum value of ΔN, which is cho-
sen to provide good accuracy for a substantially reduced
computational effort. In the present model, the selected
value of ΔN is applied over the full fatigue analysis; the
parameter set in Table 2 was found to give the best fit.

The boundary conditions applied to the analysis
model are shown in Figure 7. Loading is in the form of
a uniform cyclic displacement in the y‐direction applied
at the top surface and fixed in all directions at the bottom
surface. The load is applied in 20 steps: first, a ramp load
that increases from zero to 3.65 × 10−5 m followed by 19
steps with sinusoidal load at R = 0 and maximum dis-
placement of (7.3, 7.6, 7.8, 8, 8.2, 8.4, 8.5, 8.6, 8.7, 9, 9.2,
9.6, 10, 10.2, 10.4, 11.2, 12, 15.2, 20.6)×10−5 m, respec-
tively, as shown in Figure 8. The number of cycles in each
step is 6400, 3200, 2400, 1600, 1600, 1600, 1600, 1600,
1600, 800, 800, 800, 800, 800, 800, 800, 800, 800 (the last
step is run until failure), respectively. The number of
cycles at each step is set to ensure that the loading condi-
tions match to those of the fatigue experiment.
FIGURE 8 Load as a function of time [Colour figure can be

viewed at wileyonlinelibrary.com]
3.3 | Fast‐track effect on accuracy of the
result

The effect of the updates parameter Nu found in
Equation (24) (and consequently ΔN) on the damage
variable and the dissipated energy as tested on the
three‐element model is shown in Table 3 and Figures 9
and 10, and its effect on the crack growth on full model
is shown in Figures 11 and 12. In general, a decrease in
the value of Nu (increasing the value of ΔN) gives rise to
a predicted slower crack growth. From Table 3, the error
in the estimated number of cycles at failure and the
value of the damage variable D is found to be dependent
on the value of Nu, since for ΔN = 2 (ie,Nu = 12), the
error is 0% while for ΔN = 3 (ie, Nu = 8), the error in
the predicted result is 4%. The error in the simulation
results becomes significant when Nu is set to a small
value, for example, the error in the case when
ΔN = 10 (ie, Nu = 2) is 24%. The results indicate the
expected behaviour where greater values of Nu (and
hence lower values of ΔN) lead to a reduction in observ-
able differences. From Table 3 and Figures 9 and 10, it is
observable that there is little dependence of the results
on the value of ΔN in the virtual‐plastic region (ie, when
δmax ≤ δ2). However, differences become more noticeable
in the region of material deterioration (ie, δmax > 2).
However, revealed in Figure 10 is that acceptable results
are achievable if ΔN is such that the damage is updated
reasonably regularly (ie, Nu is not too low). From the
results shown in Figures 11 and 12, it can be concluded
that any value higher than 6 for the updates parameter
Nu provides satisfactory results with a significant reduc-
tion in computational cost. It is clear from Figure 11 that
the predicted results are reasonably close to each other
for values of Nu set to (56, 28, 14, 7), which correspond
to ΔN ≈ (100, 200, 400, 800), respectively. Differences
are more noticeable however for values of Nu lower than
6, where Nu = 3 corresponds to ΔN≈2000 and Nu = 1
corresponding to ΔN≈5600, as shown in Figure 12. In
this study, a value of Nu = 7 corresponding to ΔN ≈ 800
was found to be sufficient for good accuracy and a signif-
icant reduction in numerical analysis time. The analysis
of the problem under consideration took just few hours
on a PC platform with Nu = 7 (ΔN = 800). The ratio
of CPU time with the fast‐track procedure over the

http://wileyonlinelibrary.com
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FIGURE 9 Dissipated energy with the number of cycles as a

function of ΔN applied on the three‐element model [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 10 Change in δmax with the number of cycles for three

values of ΔN applied on the three‐element model [Colour figure can

be viewed at wileyonlinelibrary.com]

FIGURE 11 Crack length prediction for reasonable values of Nu

at R = 0 and a frequency of 0.05 Hz [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Crack length prediction for relatively small values of

Nu at R = 0 and a frequency of 0.05 Hz [Colour figure can be viewed

at wileyonlinelibrary.com]
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CPU‐time with the cycle‐by‐cycle analysis is of the
order of ΔN−1.
3.4 | Mesh sensitivity analysis

Converged results have been confirmed by running a
mesh sensitivity analysis. Increasing the overall number
of bulk‐material elements or the cohesive zone elements
has been found to have little impact on the results pre-
sented. However, it might be well anticipated that the
number of elements in the cohesive zone will be critical
to a good outcome. The length of the cohesive zone repre-
sents the distance between the actual crack tip and the
analytical crack tip. This zone includes the active cohe-
sive elements, and it directly linked to the crack‐tip plas-
tic zone, so its length can be estimated through a similar
formulation to the plastic zone estimated by von Mises
yield criterion as

lcoh ¼ E
2π

Gc

σcð Þ2: (28)

For the problem under consideration, the length of
the cohesive zone is 8.4 mm, whereas the length of the
ligament is 20 mm. It is possible to deduce from the plots
shown in Figure 13 that the number of cohesive elements
in the cohesive zone only has a minor influence on the
crack growth and fatigue life. However, if the focus is to
accurately represent the stress field at the crack tip, a
higher number of elements is required (see Figure 14).
In this work, 101 cohesive elements in the cohesive zone
are employed to ensure that numerical errors are
insignificant.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 13 Importance of the number of cohesive elements in

the cohesive zone [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 15 Numerical prediction (at σc = 340 MPa, C = 775,

Nu = 7, R = 0, and f = 0.05 Hz) versus experiment (at R = 0

and f = 0.05 Hz) [Colour figure can be viewed at

wileyonlinelibrary.com]
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4 | RESULTS AND DISCUSSION

To overcome the inherent limitations of the loading‐
unloading hysteresis damage model, a new CZM with
fast‐track facility has been introduced. This model is
founded on the basis of loading‐unloading hysteresis but
with the facility to “freeze in” damage for a loading cycle
over a predefined number of cycles. The damage is
updated in the next loading cycle to comply with the con-
ditions at the new state at N + ΔN cycles. The approach
has been proven to be efficient in terms of time and com-
putational cost reduction. Analyses that can require
months or possibly years to be solved (depending of the
computational platform) using a cycle‐by‐cycle approach
can be resolved in just a few hours or few days to a good
accuracy. Shown in Figure 15 is experimental and
FIGURE 14 Stress field (measured in Pascal) with 140 cohesive ele

wileyonlinelibrary.com]
predicted crack length versus the number of cycles;
although the crack growth curve predicted with the new
approach (with ΔN ≈ 800) shows a delay in crack initia-
tion and a temporary crack arrest at the early stages of
crack growth, the overall predicted crack propagation is
in good agreement with the experimental data. The devi-
ant behaviour at crack initiation is as a consequence of
the time required to fully develop a stable cohesive zone
as shown in Figure 15. The cohesive model in this sense
differentiates between a virgin crack and a crack devel-
oped through fatigue.

One advantage of the new model over the previous
models proposed in literature18,25,26,35 is its simplicity.
The model does not require the establishment of a rela-
tionship that links the damage to the number of cycles
as in previous work. The damage in this case is calculated
ments used in the cohesive zone [Colour figure can be viewed at

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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for one cycle and applied over ΔN cycles and then
updated automatically for the next loading cycle. Another
advantage of the model is that ΔN is automatically set
according to the problem (low or high cycle fatigue) and
incorporates a technique to evaluate the accurate number
of cycles at failure rather than simply assuming it is a
multiple of ΔN.
5 | CONCLUSIONS AND FUTURE
WORKS

• A new trapezoidal CZM for fatigue that can be applied
for high and low cycle fatigue simulations has been
introduced.

• Decreasing the value of Nu is observed to lower crack
growth. If, however, Nu is set so that the damage vari-
able is sufficiently updated (after 800 cycles proved suf-
ficient in the tests), then the results can be expected to
be in good agreement with the experimental data with
significant reduction in computational costs.

• The new CZM model has been shown to provide
acceptable results with a significant reduction in the
cost in terms of the computational time of the order
of ΔN−1.

• It is observed that the model tends to overestimate the
crack length at crack initiation for crack lengths less
than 1.2 mm, but subsequently, the predicted crack
length is in line with experimental data.

• Additional experimental testing is needed to provide
additional evidence on the uniqueness of the dimen-
sionless material parameter C.

• The new procedure has only been tested under mode I
loading conditions, but good outcomes are anticipated
for mixed‐mode analysis.
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