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Abstract:

The semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the
theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing
the potential energy stability of the mean bonds. Seven transition states were suggested and studied to
estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations
indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition
states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and
imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy,
Gibbs free energy and change in entropy of the overall reaction are equal to -548268.223 kcal/mol,
30831.951 kcal/mol and 48.552 cal/mol.deg, respectively. The activation energy is 46176.405 kcal/mol. The
reaction rate is equal to 22.867 x 1011 s~ 1,
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Introduction:

One of the main environmental problems in
the world is wastewater. The contamination of
water sources such as rivers and lakes occurs when

Indigo is a natural dye prepared from
Indigofera tinctoria and Isatis tintoria plants. Due to
a scarcity of natural blue dyes, indigo has played a

untreated wastewater is released into these sources.
Plants and species living in or around the aquatic
system can be harmed by polluted water. It can also
cause harm to those who consume it, including
humans, plants, and animals *. Pathogens, inorganic
substances, organic material, and macroscopic
pollutants are the four basic types of water
pollution. Dye is one of the most significant of these
pollutants, and it is becoming a major
environmental and public health hazard. Dyes in
water cause issues for instance lowering the levels
of oxygen in the water, interfering with sunlight
diffusion through waters, slowing photosynthesis as
well as interfering with the solubility of gases in
water bodies 2.

key part in the economics of many countries since
its inception, mostly for textile dyeing and printing,
and it is still utilized in the fabric business today 2.
Chemical oxidation?, adsorption®,
biodegradation ¢, and photolysis 7 are some of the
current technologies utilized to treat wastewater.
Chemical oxidation technology employs a sequence
of oxidants and catalysts to remove organic
molecules from wastewater. Oxidants are used in
chemical  oxidation  processes to  destroy
contaminants and transform them into less
hazardous by-products or end products (e.g., carbon

dioxide, water). Ozone, oxygen, peroxide,
permanganate, and other oxidants are widely
applied 8.
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Researchers have been applying computation
methods to descript the molecular structure and
reactivity of compounds in recent years. Chemical
reaction simulations require optimal geometry of
chemical compounds and transition states. When
computing the potential energy surface, they are
found the key to chemical reactivity °. For minimum
transitions, the first-order saddle point must be
carefully considered to order to land on the most
possible states. The reaction mechanisms begin with
the first cleavage step, which is usually the slowest
deciding step compared to the faster later steps 1% 1,

In this paper, the mechanisms of the first
cleavage step for the degradation of indigo dye with
superoxide anion radical have been studied using
guantum chemical calculations.

Material and methods:
In this article, depending on molecular orbital
theory different theoretical calculations were

performed using the semiemperial PM3 method in
the Hyperchem package 8.02 2. All reactants,
suggested transition states and products have been
optimized by DFT, 6-31G / B3LYP by Gaussian 09
program. The bond stability of main bonds in indigo
dye molecule was studied using the PM3 method.
Vibrational frequencies of suggested transition state
structures were calculated. The parameters of
thermodynamics (AG, AH and AS) have been
estimated at DFT, 6-31G / B3LYP by Gaussian 09
program 3.

Results and Discussion:
Optimizing the structure of Indigo dye
Electronic properties of Indigo dye were
studied at the PM3 level shown in Fig. 1. The
atomic charge orientation and electrostatic potential
of the Indigo dye molecule were used to estimate
the possible active site that reacts toward Oy
radicals .
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Figure 1. The optimizing properties of indigo dye calculated in 2 D.

Because of the high value of
electronegativity, the negative charge densities are
highlighted by the red color and dispersed on the
oxygen and nitrogen atoms. The green color
represents positive charge concentrations, which are

dispersed across the carbon atoms. The total
potential energy surface of free Indigo dye is -
875.225 kcal /mol.

The bond length of indigo dye bonds
C10=Cl11, C7=09 and N8—H24 are 1.351, 1.212
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and 0.992 A° respectively. Due to these results, the
C10=C11 bond is more active to react *°.

Bond strength was measured for the main
important bonds as shown in Table 1. Fig. 2

illustrates the stability of bonds C10=C11, C7— 09
and N8—H24 calculated by the PM3 method. The
results indicate that the C10=C11 is the best active
site due to the lowest bond dissociation energy 6.

Table 1. Potential energy stability and dissociation of main bonds in indigo compound calculate at

semiempirical PM3 method.

bond bond bond Potential energy stability Potential energy stability Bond dissociation energy
order length A (kcal/mol) (kcal/mol) (kcal/mol)
Cllof c 1.351 -3583.077 -3484.009 99.068
C79: ° 1.212 -3591.152 -3364.9836 226.168
If_fzz 1 0.992 -3591.976 -3458.704 133.271
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Figure 2. Potential energy stability of bonds in indigo molecule calculated at semiempirical PM3.

The bond angles of the 09=C7—CI10,
C7—C10=Cl11, N8—C10=C11 and
C10—N8—H24 are equal to 127.142¢ 128.069
124.062° and 117.8869 respectively. These bond
angles are higher than the other angles. That is, the

09=C7—C10 and C7—C10=C11 bonds are more
likely to be attacked by the superoxide anion radical
than the other bonds Y’. Fig. 3 shows the potential
energy stability of bonds in indigo.
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Figure 3. Potential energy stability of bonds angle in indigo molecule calculated at semiempirical PM3.

Different seven transition states have been
suggested for indigo dye degradation. As indicated
in Fig. 4, all transition states were investigated to
determine the most likely transition state to give the
product. Table 2 shows the Energetic values for

suggested transition states. The first transition state
is the most likely to give up reaction products than
other states since it has the highest value of zero-
point energy and the lowest heat of formation 28,

Table 2. Energetic values of suggested transition states for indigo degradation by superoxide anion

free radical using semiempirical PM3.

TS Total energy (kcal/mol) Heat of formation (kcal/mol) ZPE (kcal/mol) Imaginary frequency
TS1 -81771.082 -44.044 147.061 -
TS2 -81779.010 -36.084 146.744 +
TS3 -81778.983 -43.986 146.815 +
TS4 -81766.256 -31.259 145.393 +
TS5 -81700.412 34.584 144.804 -
TS6 -81724.547 10.450 143.774 -
TS7 -81666.798 68.199 143.399 -
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Figure 4. Proposed transition states for indigo degradation by superoxide anion free radical using

semiempirical PM3.

The initial broken step of the Indigo dye by
the reaction with superoxide anion radical was
proposed from the first transition state to produce
Isatin. The proposed reaction mechanism for the
initiating step of the reaction is shown in Scheme 1.
The energy barrier value of the forwarding reaction
is -548436.731 kcal mol?, while the backward
reaction is -89.039 kcal mol™. These results indicate
the reaction goes to the product Isatin . The
energetic properties of reactant and transition state
and product are listed in table 3.
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Scheml. The suggested mechanism for the first
broken step of indigo dye with O3 .
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Table 3. Energetic properties for indigo, superoxide anion free radical, TS1, and lIsatin using

B3LYP/6-31G.

superoxide anion

Indigo . TS1 Isatin
free radical
Total energy (kcal/mol) -875.225 -94294.523 -643526.479 -321719.281
Heat of formation -875.224 -94293.931 -643156.698 -321718.689
(kcal/mol)
AS® (cal/mol.deg) 118.753 48.867 129.991 108.086
AG® (kcal/mol) -875.280 -94308.501 -643564.643 -321750.915
Zero-point energy -875.239 -94296.23 -643536.741 -321541.628
(kcal/mol)

The change in enthalpy, Gibbs free energy
and change in entropy of the overall reaction are
equal to -548268.223 kcal/mol, 30831.951 kcal/mol
and 48.552 cal/mol.deg, respectively. These results
indicate that the reaction is exothermic® and
nonspontaneous® at 298.15 K. The activation
energy is 46176.405 kcal/mol. The reaction rate is
equal t0 22.867 x 101t s71,

Conclusion:

The chemical reactivity of indigo dye
optimized structure has been examined utilizing
computational methods towards superoxide anion
radical. The active site in the dye molecule was
determined using the bond strength and bond angles
calculations. The first transition state is the most
probable and the reaction mechanism is the first
cleavage step at the C10—C11 bond due to the
lowest energy value.
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