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Abstract: This paper is concerned with a new cohesive zone model (CZM) to better describe the 

effects of rate and cyclic loading.  Rate is known to affect the manner in which cracks propagate 

in materials, yet there presently exists no rate-dependent cohesive model for fatigue simulation.  

The frequency of the applied cyclic load is recognised to influence crack growth rates with crack 

growth significantly different at lower frequencies due to microstructural effects or other damage 

mechanisms such as creep or corrosion.  A rate-dependent trapezoidal cohesive model is 

presented that has the ability to capture this behaviour and shows slower rates of crack 

propagation with higher loading frequencies.  This is achieved by allowing the cohesive fracture 

energy to increase with frequency up to a specified limit.  On unloading the cohesive model 

retains material separation, which accumulates with the number of loading cycles, leading to 

final failure.  An experimental fatigue investigation is currently underway to validate the new 

cohesive model, which has been coded in a UMAT subroutine and implemented in ABAQUS. 

Keyworks: Cohesive zone model; Rate effect; Fatigue; Frequency effect; Rate-dependent 

CZM 

1. Introduction 

The process of fatigue failure can be divided into three parts: crack initiation, crack propagation, and 

then fast fracture, which leads ultimately to the final failure [1], [2].  Fatigue can be classified as a 

subcritical failure mechanism, occurring when the applied stress is significantly lower than the yield 

stress of the material. Mechanical, microstructural and environmental factors can significantly influence 

the fatigue behaviour of a part.  Consequently fatigue analysis is primarily an empirical study founded 

on extensive experimental investigations typically needed to evaluate and understand material behaviour 

and estimate the life of mechanical parts.  These can be costly and extremely time-consuming giving 

rise to an urgent requirement for fatigue models possessing an ability to predict crack growth rates and 

fatigue life [2]. 

The limitation of conventional fatigue models has heightened the need for a model that is applicable at 

crack initiation, as well as for crack growth.  Hence, the recent focus on cohesive zone models (CZMs), 

which were initially advanced by Dugdale [3] and Barenblatt [4] in order to overcome the unrealistic 

mathematical-stress singularity at a crack tip [5]. In Dugdale’s model the stress in the small plastic zone 

ahead of the crack tip is finite and equal to the yield strength, while in Barenblatt’s model the stress in 

the region in front of the crack is a function of the ligament length. The CZM became more popular 

following the work of Hillerborg et al. [6], which demonstrated that numerical analysis was possible 

using the finite element method and a bilinear cohesive zone model (BCZM). 

The CZM is founded on a traction-separation law (TSL), where traction is related to material separation 

through a constitutive equation.  On traction reaching a critical value 𝜎𝑐, material damage initiates and 

material softening occurs.  Following damage initiation, traction decreases until it finally reaches zero 

which is the point of material separation.  This point is also identified by the separation between the 

surfaces of the cracked material attaining a critical value 𝛿𝑐; at this point all cohesive energy Γ𝑜 has been 

dissipated and consequently the crack propagates. The advantage of using a cohesive model over other 

http://creativecommons.org/licenses/by/3.0
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models is its ability to predict the initiation and the propagation of cracks along with its applicability to 

monotonic and cyclic loading.  

It is well appreciated that cyclic loading presents added complication arising out of the unloading part 

of the loading cycle and the history dependence of the fatigue process. Most conventional CZMs are 

limited to monotonic crack growth prediction; see for example the models of: Needleman [7], 

Needleman [8], Scheider [5] and Tvergaard & Hutchinson [9], which are reversible and history-

independent. There exists irreversible models such as those presented in references [10]–[13], but these 

are history-independent and do not include a mechanism to cater for cyclic-damage accumulation. These 

are consequently limited to the simulation of monotonic-crack propagation. A CZM for fatigue requires 

an irreversible and history-dependent cohesive law, which is needed to capture the damage accumulation 

associated with loading-unloading hysteresis.  This is a feature of the model introduced by De-Andrés 

et al. [14], which involves a damage factor D that represents the value of dissipated energy in the fracture 

process divided by the critical fracture energy. Dahlan [2] adopted a similar damage concept involving 

a variable that cumulatively recorded the value of the separation at the end of each loading cycle with 

failure identified by the accumulated value reaching 𝛿𝑐. A different damage accumulation mechanism 

has used in [15], involving a degrading cohesive stiffness with damage accumulation. Two stiffness 

parameters (𝐾+ and 𝐾−) are used for loading and unloading, where the value of 𝐾− is constant for each 

unloading, but 𝐾+ is allowed to evolve with the number of cycles through a decay factor, until the 

complete separation of the cohesive element. An adapted Paris-like equation is used, where fatigue crack 

growth rate da/dN is related to the change in crack tip opening displacement range per cycle ∆𝛿 as in 

the equation  𝑑𝑎 𝑑𝑁⁄ = 𝐶(∆𝛿)𝑛. However, the use of ∆𝛿 as a material property is questionable as it 

depends to some extent on the degree of mechanical constraint [16]. A similar but slightly different 

approach was adopted by Yang et al. [17], with a model also involving loading and the unloading 

stiffness parameters but in this case both are functions of a damage parameter that evolves during loading 

and unloading cycles. A recent study by Roe & Siegmund [16] investigated a CZM with a degrading 

cohesive strength as a function of the damage; the model involves two additional parameters, i.e. σ𝑓, 

which is the endurance limit and 𝛿Σ, which is the accumulated cohesive length. In this model, if the 

stress on the element ahead of the crack tip is less than the endurance limit, then the model will present 

infinite life (i.e. no crack propagation).  If the stress is larger than the endurance limit, then material 

separation accumulates until it reaches the cohesive length  𝛿o, which represents separation at the critical 

cohesive stress σ𝑐. Subsequently on reaching  𝛿o, damage accumulates and the critical cohesive stress 

reduces as a function of the damage; the crack extends and the cohesive element fails when the maximum 

value of the stress in the loading cycle reaches the current critical cohesive stress. Other studies [18], 

[19] have considered relatively similar approaches, in which the damage will not accumulate if the stress 

is less than a predefined value (i.e. an endurance limit). All the methods mentioned above are rate-

independent models and do not capture the frequency effect. In this study a trapezoidal rate-dependent 

CZM introduced by Salih et al. [13] is further developed to be used for the simulation of the fatigue 

crack growth. 

2. Cohesive zone model for fatigue 

Different types of TSL are presented in the literature, which include the: polynomial, exponential, 

bilinear, and trapezoidal as shown in Figure 1. The CZM is recognised not to be a physical material 

model but a phenomenological law that is designed to capture the essence of the fracture process. 

Therefore, there is no underpinning physical evidence to support a particular shape of the curve that 

describes the relationship between traction and separation. In this study the Trapezoidal TSL has been 

used because of its ability to capture plasticity locally. 

The behaviour of the existing model introduced by Salih et al. [13] is best understood and described by 

an arrangement of 1-D spring, slider, dashpots, and linear cohesive elements as depicted in Figure 2.  

Rate dependency is recognised to arise from the behaviour of the dashpots. In this work a frequency- 
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dependent cohesive zone model for fatigue is produced in a similar manner, but in this model the critical 

stress increases as a function of the loading frequency and the increase in the frequency-dependent 

critical cohesive stress is automatically limited by the rate equation. The traction-separation curve for 

this model is shown in Figure 3. 

 

 

 

 

 

 

 

 

The area under the traction separation curve represents the fracture energy  Gc, which is defined 

mathematically to be 

Gc = ∫ σ(δ)
δc
0

dδ                    (1) 

 

 

 

 

 

 

 

In the case of trapezoidal CZM the fracture energy can be considered to be formed in two parts, i.e. 

plastic Gp and cohesive Γo components to give 

Gc = Gp + Γo                           (2)  

The area under the curve(s) in Figure 3 is equal to 

Gc =
1

2
σ(𝑓)
𝑐𝑟𝑎𝑡𝑒((δ2 − δ1) + δc)                                (3) 

σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 = σc

{
 
 

 
 
1                                                                         if 𝑓 ≤  0.05

 

(0.52 +
1

𝑎+𝑏∗𝑒𝑥𝑝(−((
𝑑∗(𝑓−𝑓𝑚𝑖𝑛)

𝑓𝑚𝑖𝑛
)
𝑛

))

)             if 𝑓 > 0.05                              (4) 

The meanings the symbols relay are: Gc is the total dissipated energy per unit area, G𝑝 is the local plastic 

dissipated energy, Γ𝑜 is the energy dissipated in the formation of new surfaces, σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 is the frequency-

dependent critical cohesive traction, 𝜎𝑐 is the rate-independent critical cohesive traction, 𝛿1 is the 

displacement when the traction first reach its critical value, δ2 is the displacement at which the element 

deterioration is assumed to start, and δc is the rate-independent critical cohesive separation. a, b, d and 

n are fixed and are determined with experimental data; a first estimation of these constants is: 1.2, 0.85, 

3 and 0.25. The lowest frequency 𝑓𝑚𝑖𝑛 is equal to 0.05Hz, 𝑓 is the applied frequency and 

Figure 1. Common traction-separation 
laws 

 

Figure 2. Mode I Cohesive Zone model 

 

Figure 3. Mode I Cohesive Zone model 
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δ2 ≤ 0.75 × δc             (5) 

The monotonic trapezoidal TSL depicted in Figure 3 is represented mathematically as 

σ(δ) = σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 {

δ

δ1
                                            if 0 < δ < δ1

 1                                           if δ1 ≤ δ ≤ δ2
(1 − D)                                if δ2 < δ < δc

                            (6) 

In the cohesive model the mechanism of crack propagation is void nucleation, growth and coalescence. 

The damage variable (D) can be understood to be the ratio between damaged area (𝐴𝑑) (the accumulated 

areas of the voids) to undamaged reference area (𝐴𝑒) [20].  In the present configuration damage can be 

represented by the relationship 

𝐷 =
𝐴𝑑

𝐴𝑒
=

𝛿−δ2

δc−δ2 
                                               (7) 

Unloading and subsequent reloading occurs at a constant stiffness 𝐾 = 𝜎𝑚𝑎𝑥 𝛿𝑚𝑎𝑥⁄ , where 𝜎𝑚𝑎𝑥 and 

𝛿𝑚𝑎𝑥 are the stress and the separation at the point where unloading starts, respectively.  In this case 

traction is evaluated by 

𝜎(𝛿) = 𝐾×δ                  (8) 

The cohesive model described thus far, will result in an infinite life when cyclic load is applied. So in 

order to capture finite life, it is necessary to use an irreversible and history dependent cohesive zone 

model. This can be done by identifying a damage variable that accumulates with the number of cycles. 

The damage mechanism in this model consists of two parts: first is the remnant plastic separation (δp), 

which accumulates as a result of cyclic plasticity, and second the damage variable 𝐷 that represents the 

material deterioration in the CZM.  The proposed damage accumulation mechanism is designed to 

provide the trapezoidal model with an ability to capture fatigue crack growth. A full mathematical 

description of the proposed new model is: 

𝜎(𝛿) = 𝜎𝑚𝑎𝑥

{
 
 
 

 
 
 (

𝛿𝑒𝑓𝑓

𝛿𝑚𝑎𝑥−𝛿
𝑝)                                                                           if 𝛿𝑒𝑓𝑓 <  0 

(
𝛿𝑒𝑓𝑓

𝛿𝑚𝑎𝑥−𝛿
𝑝)𝐻(𝛿𝑒𝑓𝑓−𝛿𝑝)                                        if 0 ≤ 𝛿𝑒𝑓𝑓 ≤ 𝛿𝑚𝑎𝑥  

1                                                                           if 𝛿𝑚𝑎𝑥 < 𝛿𝑒𝑓𝑓 ≤ δ2

(1 − 𝐷)×
σ(𝑓)
𝑐𝑟𝑎𝑡𝑒

𝜎𝑚𝑎𝑥
                                      if δ2 < 𝛿𝑚𝑎𝑥 < 𝛿𝑒𝑓𝑓 < δc

0                                                                                         if 𝛿𝑒𝑓𝑓 ≥ δc

     (9) 

where 𝜎𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 are the stress and the separation at the end of the loading cycle respectively, but 

at the beginning when there is no unloading these values set to be equal to σ(𝑓)
𝑐𝑟𝑎𝑡𝑒 and  𝛿1, respectively. 

The parameter 𝛿𝑝 records the value of the remnant separation at the end of the loading cycle.  This is 

required because at unloading, separation does not return to zero.  The Heaviside function 𝐻(𝛿𝑒𝑓𝑓−δp) 

equals zero if 𝛿𝑒𝑓𝑓 is smaller than 𝛿𝑝 and one in other cases and finally D is a damage variable of 

equation (9) with 𝛿𝑒𝑓𝑓 replacing δ.  In addition 

𝛿𝑒𝑓𝑓 = 𝛿
𝑐𝑦𝑐 + 𝛿𝑝                (10) 

𝛿(𝑖+1)
𝑝

= 𝛿(𝑖)
𝑝
+
𝛿𝑚𝑎𝑥
𝑐𝑦𝑐

𝐶
               (11) 

where 𝛿𝑐𝑦𝑐 and 𝛿𝑝 are the cyclic applied displacement and the stored plastic displacement respectively.  

The material parameter 𝐶 dictates the level of cyclic plasticity and its value is determined on tuning the 

analysis results to fit with the experimental data.  
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In this model, the value of the stored separation (δp) accumulates with increasing number of loading 

cycles until it reaches δ2  at which point material softening begins and the cohesive element fails when 

the effective separation (the accumulated plus the cyclic) reaches the critical cohesive separation δc. 
Figure 4 shows the behaviour of the cohesive model under monotonic and cyclic loads. 

 

 

 

 

 

 

 

 

 

The accumulated dissipated energy (∆𝐺) as shown in Figure 4b can be calculated by: 

∆𝐺 = {

1

2
[σ(𝑓)
𝑐𝑟𝑎𝑡𝑒(𝛿𝑚𝑎𝑥 + δ

p − 𝛿1)]                                                         if 𝛿𝑚𝑎𝑥 ≤ δ2 

1

2
[σ(𝑓)
𝑐𝑟𝑎𝑡𝑒(𝛿𝑚𝑎𝑥 + δ2 − 𝛿1) + 𝜎𝑚𝑎𝑥(δ

p − δ2)]                        if 𝛿𝑚𝑎𝑥 > δ2 
                 (12) 

From the analysis is found that a minimum number of 20 elements in the cohesive zone should be used 

to obtain satisfactory results, although in this study higher numbers were used in order to have superior 

control of the crack growth. The length (𝑙𝑐𝑜ℎ) can be estimated through a similar formula used for the 

plastic zone evaluated by von Mises yield criterion, i.e. 

𝑙𝑐𝑜ℎ =
𝐸

2𝜋

𝐺𝐼𝑐

𝜎𝑐
2                 (13) 

3. Implementation of the cohesive zone model in abaqus 

Numerical analysis is performed using the commercial finite element solver ABAQUS. Although a 

cohesive element exists in ABAQUS, the traction separation laws associated with this element are 

history independent and cannot be used for the simulation of the fatigue problem. The CZM described 

in Section 2 has been incorporated into ABAQUS though a user defined material subroutine UMAT. 

This subroutine provides the user with a facility to identify a specific constitutive behaviour and link 

this behaviour to any element.  

3.1.   Implementing and testing the UMAT 

To test the UMAT, a model that consists of two material elements and one cohesive element 

connecting them was used as shown in Figure 5. The material properties were set to be elastic in the 

bulk material elements with 192 GPa for the elastic modulus and 0.29 Poisson’s ratio, while the cohesive 

element set to have a critical stress of 360 MPa,  critical separation of 0.189 mm and 17000 GPa elastic 

stiffness. The value of the parameter 𝐶 is set to a small value (20) in order to artificially reduce the 

number of cycles required for the cohesive element to fail. The cyclic stress is shown in Figure 4a with 

respect to the separation and in Figure 6 with respect to the time. The figures show how the plastic 

separation is accumulating with the number of cycles until the accumulated plus the applied separation 

reaches 𝛿2. Subsequently the cohesive stiffness decreases with the number of cycles as a consequence 

of material deterioration and the cohesive element fails when the stress reaches zero.  

 

Figure 4. Behaviour of the cohesive model: (a) cyclic loads, (b) cyclic-dissipated energy 
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3.2.   Analysis model: geometry and boundary conditions 

The finite element model used in this work is shown in Figure 7. The model consists of 23621 plane-

stress elements of which 22991 (type CPS4) and 390 (type CPS3), and 240 cohesive elements (type 

COH2D4) [21]. In the commercial finite element solver ABAQUS, the cohesive behaviour can be 

identified either as a cohesive surface or by implementing cohesive elements along the crack path; these 

cohesive elements adjoin with the bulk material elements. In this study, the second method has been 

used, since in this method the cohesive behaviour is defined through the material behaviour attributed 

to those elements. A mesh sensitivity analysis has been performed which confirms that converged results 

are attained.  Increasing the number of elements in the bulk material or the cohesive zone, has little 

impact on the simulation results. The material properties for the bulk material elements and the cohesive 

element are shown in Table 1. 

Table 1. Material properties 

 

 

The boundary conditions applied to the model are shown in Figure 7, with nodes at the lower edge fixed 

in all directions. The top edge is subjected to a uniform displacement in the y-direction.  The load is 

applied in seven steps: first a ramp load that increases from zero to 5.8E-5m and then the following steps 

are set to have a sinusoidal load with 5.8E-5m mean displacement and amplitude of (5.8E-5, 6.2E-5, 

6.5E-5, 8.6E-5, 11.2E-5, 12.6E-5, 20.6E-5m), respectively. An example of load incremental steps is 

shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pre-cracked tension specimen is loaded in ABAQUS at four different applied frequencies (0.05, 

0.1, 0.5 and 30Hz). The curves for crack length vs number of cycles for the four frequencies are shown 

in Figure 9.  The predicted results match expectations since the model correctly predicts slower crack 
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Figure 7. Boundary conditions and loading for FE model 

Figure 5. Implementation of the CE in 
the FE model 

 

Figure 6. Stress levels in the cohesive element 
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propagation at higher frequency. Figure 10a and Figure 10b shows contour graphs of the finite element 

simulation at 0.05Hz and 30Hz respectively after 80 loading cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions and future work 

Based on the finding of this study the following can be concluded: 

• A new CZM that combines cyclic damage with the monotonic damage has been established and 

applied to simulate fatigue crack propagation. 

• The new CZM is founded on a rate-dependent methodology previously established by the authors, 

and has been shown to capture frequency effects on fatigue crack propagation in stainless steel 304. 

• The new rate-dependent CZM has been implemented in the finite element solver ABAQUS (via a 

bespoke UMAT routine) and has been tested at different applied frequencies (0.05, 0.1, 0.5 and 

30Hz). 

• An experimental fatigue investigation is currently underway to validate the new cohesive model. 
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Figure 10. (a)Crack length after 80 cycles at 0.05Hz, (b) Crack length after 80 cycles at 30Hz 

(a) (b) 

Figure 9. a-N curves at different frequencies 
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