Some Topological properties of Julia sets of maps Of the form $(\lambda z - \lambda z^2)$

Naoum-Adil, Talb-Iftichar, M. And Al.salami-H.Q.

Abstract

In this work, we study the topological properties of Julia sets of the quadratic polynomial maps of the form $(\lambda z - \lambda_z^2)$ where λ is a non-zero complex constant.

Introduction

Complex dynamics is the study of iteration of maps which map the complex plane into itself . In general , their dynamics are quite complicated and hard to explain , but for some classes of maps , many interesting results can be proved . For example , one often studies the Julia sets of polynomial maps . The Julia set of the quadratic map of the form $(z^2 + c)$ was studied extensively . From a dynamical systems point of view , all of the interesting behavior of a complex analytic map occurs on its Julia set , it is this set that contains the interesting topology [4] .The idea behind the Julia sets is to study whether the absolute value of a point in the complex plane converges towards infinity or not , when it is iterated under a map . All the points that do not go toward infinity , when iterated , are in the Julia set .

1 - Preliminary Definition

Let C be the complex set or complex plane, The complex plane together with the point at infinity, denoted by ∞ , is called the extended complex plane , it is topologically equivalent to the Riemann sphere. We put $C_{\infty} = C \cup$ $\{\infty\}$. The metric space of the complex plane is the usual metric, while the metric space of the Riemann sphere is the chordal metric. we use the symbol f^n to denote *n*-th iteration for $n \in N \cdot f : C \rightarrow C$ is smooth, if *f* is a C^r - diffeomorphism if *f* is a C^r - homeomorphism such that f^{-1} is also C^r . A point $x \in X$ is called a fixed point if f(x) = x. It is a periodic with period n if $f^{n}(x) = x$, but $f^{m}(x) \neq x$ for m < n. Let x be a periodic point of period n for f. The point x is hyperbolic if $|(f^{n})'(x)| \neq 1$, x is attracting periodic point if $|(f^{n})'(x)| < 1$ and x is repelling periodic point if $|(f^{n})'(x)| > 1$.

Remark (1-1)

The fixed points of $Q_{\lambda}(z) = \lambda z - \lambda z^2$ are z = 0 or $z = \frac{\lambda - 1}{\lambda}$. If

if z = 0 then $|Q'_{\lambda}(0)| = |\lambda|$. If $|\lambda| < 1$, then z = 0 is attracting fixed point. If $|\lambda| > 1$, then z = 0 is repelling fixed point. If $z = \frac{\lambda - 1}{\lambda}$ then $|Q'_{\lambda}\left(\frac{\lambda - 1}{\lambda}\right)| = |2 - \lambda|$. If $3 < |\lambda|$ or $|\lambda| < 1$, then $z = \frac{|\lambda| - 1}{|\lambda|}$ is repelling fixed point. If $1 < |\lambda| < 3$, then $z = \frac{|\lambda| - 1}{|\lambda|}$ is attracting fixed point. The critical point

for Q_λ is 0.5 .

A is said to be completely invariant under f if $f(A) = A = f^{-1}(A)$. In [4] proved that J(f) is completely invariant

There are many definition of Julia sets:

Definition (1-2) [2]

Suppose $f: C \to C$ is an analytic map . The Julia set is the closure of all repelling periodic points of f. That is

J(f) = closure { all repelling periodic points of f }.

Definition (1-3) [1]

The family $\{f_n\}$ is said to be normal on U if every sequence of the f_n 's has a subsequence which either

1.converges uniformly on compact subsets of U ,or

2. converges uniformly to ∞ on U

Now, we will give the definition of the Fatou set and Julia set :

Definition (1-4) [2]

Let $f: C \to C$ be a map . The Fatou set (stable set) F(f) is the set of points $z \in C$ such that the family of iterates $\{f^n\}$ is normal family in some neighborhood of z. The Julia set J(f) is the complement of the Fatou set , that is $J(f) = \{z \in C : \text{the family } \{f^n\}_{n \ge 0}$ is not normal at $z \}$. That is $J(f) \equiv C \setminus F(f)$.

Also the previous definition can satisfy on the space $\, C_{\infty} \,$.

Definition (1-5) [2]

Let $f : C_{\infty} \to C_{\infty}$ be a polynomial of degree $n \ge 2$. Let K(f) denote the set of points in C whose orbits do not converge to the point at infinity. That is $K(f) = \{ z \in C : \{ |f^n(z)| \}_{n=0}^{\infty} \text{ is bounded } \}$. This set is called filled Julia set.

Definition (1-6) [2]

Let $f : C_{\infty} \to C_{\infty}$ be a map. The escape set $A(\infty)$ of f is all those points that escape to infinity, that is $A(\infty) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}.$

We can say that $A(\infty)$ is the basin of attraction of ∞ . Now we can state another definition for Julia set .

Definition (1-7) [2]

The Julia set is the boundary of the filled Julia set , that is $J(f) = \partial K(f)$. The complement of the basin of attraction of ∞ is the filled Julia set of f. That is $C_{\infty} \setminus A(\infty) = K(f)$.

Theorem (1-8)

Let $f\colon C\to C$ be a polynomial of degree $d\ge 2$. Then the following statements are equivalent .

1. J(f) is the closure of repelling periodic points .

2. J(f) is the complement of the Fatou set

3. J(f) is the boundary of the filled Julia set .

Proof :

1 ⇔ 2 see [1]
2 ⇔ 3 From [2],
$$J(f) = \partial A(\infty)$$
 .Since $J(f) = \partial K(f)$.

2.Julia Sets Properties

In this section , we will study the topological properties of Julia sets Theorem (2-1) [3] (Bottcher theorem)

Let $f: C_{\infty} \to C_{\infty}$ be a rational map. If z_0 is super attracting fixed point, $f(z) = z_0 + a(z-z_0)^n + \dots$, $n \ge 2$ and $a \ne 0$, then f is conjugate to $\varphi \circ f \circ \varphi^{-1}: w \to w^n$ in some neighborhood of z_0 .

The proof can be found in [3].

Definition (2-2) [3]

Let $f: C_{\infty} \to C_{\infty}$ be a rational map has a super attracting fixed point at 0. Let Ω be the basin of attraction of this fixed point. Define $G: \Omega - \{0\} \to R$ by $G(z) = \log |\varphi(z)|$. If G(z) < 0. Then the map is called the Green's maps of f.

Let $f: C_{\infty} \to C_{\infty}$ be a rational map. Define a critical value to be the image of a critical point. And, let a branch of the inverse map $f^{-1}(w)$ be the bijection between a neighborhood of w and a neighborhood of z where f(z) = w, w not a critical value of f.

Theorem (2-3)

The Julia set $J(Q_{\lambda})$, where $Q_{\lambda}(z) = \lambda z - \lambda z^2$, is connected if and only if there is no finite critical point of Q_{λ} in the basin of attraction $A_{\lambda}(\infty)$. Proof :

Let r(z)=1/z, then $F_{\lambda}(z) = r$ o Q_{λ} o r(z) = r o $Q_{\lambda}\left(\frac{1}{z}\right) = r\left(\frac{\lambda}{z} - \frac{\lambda}{z^2}\right) = \frac{z^2}{\lambda z - \lambda}$. Thus $F_{\lambda}(0) = 0$. Therefore ∞ is super attracting fixed point of Q_{λ} and $Q_{\lambda}(\infty) = \infty$, also $Q'_{\lambda}(\infty) = 0$. Now in a neighborhood of ∞ and by theorem (2-1) there exists a conformal map φ such that $\varphi(Q_{\lambda}(z)) = \varphi(z)^{2} \dots$ (*), where $\varphi(z) = z + O$ (1)that is the following diagram commutes :

Such that $\varphi Q_{\lambda} \varphi^{-1} = g$ and $g(z) = z^2$. Next since $\log |\varphi(z)|$ has a logarithmic pole at ∞ , $\log |\varphi(z)| = \log |z + O(1)| \cong \log |z| = \log \sqrt{x^2 + y^2}$,

 $\frac{\partial^2 \log |\varphi(z)|}{\partial x^2} + \frac{\partial^2 \log |\varphi(z)|}{\partial y^2} = 0.$ Thus $\log |\varphi(z)|$ is positive and harmonic .Since $J(Q_{\lambda}) = \partial A_{\lambda}(\infty)$ and if |z| = 1, then $\log |\varphi(z)| \to 0$ as $z \to \partial A_{\lambda}(\infty)$.By definition (2-2), thus $\log |\varphi(z)| = G(z)$ for $A_{\lambda}(\infty)$. Thus taking the logarithm of the modulus of (*) for

$$G(z)$$
, $\log |\varphi(Q_{\lambda}(z))| = 2\log |\varphi(z)|$, we have
 $G(Q_{\lambda}(z)) = 2G(z) \dots (**)$.

Now a component of the Fatou set map onto another component of the Fatou set since otherwise a boundary point (in element of the julia set) map to a point in the interior of a component of the Fatou set . This is a contradiction because by[4], $J(Q_{\lambda})$ is completely invariant . Next if a bounded component of $A_{\lambda}(\infty)$ exists , some iterates of Q_{λ} maps onto the component of $A_{\lambda}(\infty)$ which contains ∞ . This means that for some z in the bounded component and integer n, $Q_{\lambda}^{n}(z) = \infty$. This is contradiction because the iterates of a polynomial are polynomials do not have poles . Thus $A_{\lambda}(\infty)$ is connected . Define a level curve of G(z) as $\Lambda_{a} = \{z : G(z) = a\}$, where $a \in R$, since for $z \in \Lambda_{a}$, $G(Q_{\lambda}(z)) = 2G(z) = 2a$, then $Q_{\lambda}(z)$ takes the

level curve Λ_a to the level curve Λ_{2a} . So $Q_{\lambda}(z) \in \Lambda_{2a}$. Define the exterior of level curve Λ_a to be the set $E_a = \{ z: G(z) > a \} = \{ z: |\varphi(z)| > e^a \}$.

Then $Q_{\lambda}(z)$ maps E_a two -to-one to E_{2a} which is a subset of E_a . To extend $\varphi(z)$, first consider a neighborhood $U = E_r$ of ∞ on which the theorem (2-1) holds. Then on $E_{\frac{r}{2}}^r$ we can define $\varphi(z) = \sqrt{\varphi(Q_{\lambda}(z))}$ (since $z \in E_{\frac{r}{2}}^r$, $Q_{\lambda}(z) \in E_r$) so the right hand side of the equation is defined. Continue in this way defining $\varphi(z)$ on $E_{\frac{r}{2}^n} = \{z : |\varphi(z)| >$

exp $(\frac{r}{2^n})$ as long as there are no critical point in the extended region. At a critical point a single –valued analytic map can not be defined. So as $n \to \infty$

,
$$\varphi$$
 is defined on $\bigcup_{n=1}^{\infty} E\frac{r}{2^n} = \{ z : |\varphi(z)| > \exp(\overline{2^n}) \}$, that is
$$\bigcup_{n=1}^{\infty} E\frac{r}{2^n} = \{ z : |\varphi(z)| > 1 \} = \{ z : G(z) > 0 \} = A_{\lambda}(\infty) .$$

(\Leftarrow) Recall that $A_{\lambda}(\infty)$ is connected. Now φ is homeomorphism which maps $A_{\lambda}(\infty)$ conformally to the exterior of the unit disk. Since simple connectivity is preserved by homeomorphism and exterior of the unit disk on the Riemann sphere is simply connected, $A_{\lambda}(\infty)$ must be simply connected. Thus it follows that $\partial A_{\lambda}(\infty) = J(Q_{\lambda})$ is connected.

(\Rightarrow) Assume that there exist $z_0 \in \partial A_\lambda(\infty)$, z_0 is a finite critical of $Q_\lambda(z)$. Let $G(z_0) = r_0$ and consider Λ_{r_0} . Differentiating (**) at z_0 yields $\left(\frac{\partial}{\partial z}G(Q_\lambda(z_0))\right) Q'_\lambda(z_0) = 2\frac{\partial}{\partial z}G(z_0)$, since z_0 is a critical point of Q_λ ,

$$Q'_{\lambda}(z_0) = 0$$
, thus $\left(\frac{\partial}{\partial z}G(Q_{\lambda}(z_0))\right) Q'_{\lambda}(z_0) = 2\frac{\partial}{\partial z}G(z_0) = 0 = 2\frac{\partial}{\partial z}G(z_0)$,

thus $\frac{\partial}{\partial z}G(z_0) = 0$. So z_0 is a critical point of G(z). Thus the level curve Λ_{r_0} consists of at least two simple closed curves that meet at the critical point z_0 . Within each of these simple curves there exist points in the Julia set. If not, G(z) is harmonic and positive on a non-empty region V within one of

the simple curves and the maximum principle applied to G(z) and $-G(z_0)$ gives $G(z) \leq r_0$ and $-G(z_0) \leq -r_0$ for all $z \in V$. So $G(z) \equiv r_0$ on V. Let f be the analytic map with real part equal to G(z). Then by the uniqueness theorem, $G(z) \equiv r_0$ on $A_{\lambda}(\infty)$. This contradicts that $A_{\lambda}(\infty) \rightarrow \infty$. Thus $J(Q_{\lambda})$ is disconnected. Therefore there is no finite critical point of Q_{λ} in $A_{\lambda}(\infty)$.

Proposition (2-4)

If Q_λ has a critical point in $A_\lambda(\infty)$, then $J(Q_\lambda)$ has uncountably many components.

Proof :

Let z_0 be a critical point for Q_λ . Let w be an element of the backward orbit of z_0 , that is $Q_\lambda^n(w) = z_0$ for some n. Then by theorem (2-3), that G defined on this theorem, $G(Q_\lambda^n(w)) = 2^n G(w)$, or $G(w) = 2^{-n} G(Q_\lambda^n(w))$. Thus $G(w) = 2^n G(z_0)$. Differentiate both sides to get $\frac{\partial}{\partial z}G(w) = 2^n \frac{\partial}{\partial z}G(z_0) = 0$, so that w is a critical point of G(z). Thus any level curve consists of at least two simple closed curves that meet at the critical point w. Since the choice of w was arbitrary, the level curves split in each of the w, so follow the splitting by assigning 0 to the left branch and 1 to the right branch. Since there are uncountably many sequences of 0's and 1's there are uncountably many components of $J(Q_\lambda)$.

Definition (2-5) [1]

A set is totally disconnected If it contains no intervals .

Theorem (2-6)

Let $Q_{\lambda}(z) = \lambda z - \lambda z^2$. If $Q_{\lambda}^n(0.5) \to \infty$, then $J(Q_{\lambda})$ is totally disconnected.

Proof :

Since $\infty \in F(Q_{\lambda})$ and $F(Q_{\lambda})$ is open, there exists a neighborhood D_{∞} of ∞ such that $\overline{D}_{\infty} \subset F(Q_{\lambda})$. And since ∞ is an attracting fixed point of Q_{λ} , $Q_{\lambda}(\overline{D}_{\infty}) \subset D_{\infty}$. Let $D=C_{\infty}\setminus\overline{D}_{\infty}$. Then D is an open set and $J(Q_{\lambda})\!\subset D$.

Now, since $Q^{\scriptscriptstyle n}_{\scriptscriptstyle \lambda}(0.5) \!
ightarrow \infty$ by assumption , choose k large enough so that Q^k_λ maps 0.5 to D_∞ . Thus for $n\ge k$, there is no critical value of Q^n_λ in \overline{D} , and all the branches of the inverse map $\, Q_{\scriptscriptstyle \lambda}^{\scriptscriptstyle -n} \,$ are defined and map $\, \overline{D} \,$ in $\, D \,$. (Else there exists $z \in \overline{D}$ such that $w = Q_{\lambda}^{-n}(z) \in (C_{\infty} \setminus D) = D_{\infty}$. Now $Q^n_\lambda(w) = z \in \overline{D}$, but $Q^n_\lambda : \overline{D}_\infty \to D_\infty$ implies that $z \in D_\infty$. This contradicts the choice of $z\in\overline{D}$) .Let $z_0\in J(Q_\lambda)$, then $Q_\lambda^n(z_0)\in J(Q_\lambda)$ since the Julia set is completely invariant under Q_λ from [4] . Define $\,f_{\,n}\,$ to be the branch of the inverse map Q_{λ}^{-n} which maps $Q_{\lambda}^{n}(z_{0})$ to z_{0} . That is , $f_{n}(Q_{\lambda}^{n}(z_{0})) = z_{0}$. Since f_n maps \overline{D} into D, $\{f_n\}$ are uniformly bounded on \overline{D} .Note that by modifying the integer k above , $\{f_n\}$ is uniformly bounded on a neighborhood of \overline{D} . Thus $\{f_n\}$ is normal on \overline{D} . Now for all $z \in D \bigcap A_{\lambda}(\infty)$, $f_n(z)$ accumulates on $J(Q_\lambda)$ since $f_n(z) \to \partial A_\lambda(\infty)$ (except for $z = \infty$). Then let f be the limit of some subsequence $\{f^{n_m}\}$ of $\{f_n\}$. Now f maps $D \cap A_{\lambda}(\infty)$ into $J(Q_{\lambda})$ since $f^{n}(z) \to w \in J(Q_{\lambda})$ and $f^{n_{m}} \to f(z)$ implies $f(z) = w \in J(Q_{\lambda})$ by the uniqueness of limits . Then by open map see[1] f is constant since $J(Q_{\lambda}) = \partial A_{\lambda}(\infty)$ the boundary of an open set has empty interior . (If z in the interior of the boundary of an open set U then there exist a neighborhood of z contained entirely in ∂U . But for any $\varepsilon > 0$, there exists $z_1 \in D(z, \varepsilon) \cap U$, by the definition of the boundary set . This contradicts that U is open) . Now , diam $\{\boldsymbol{f}_{\scriptscriptstyle n}(D)\}\!\rightarrow\!0$. (Suppose not . Then there exists $\varepsilon > 0$ and $\{f_{n_m}\}$ such that diam $\{f_{n_m}(D)\} \ge \varepsilon$. $\{f_{n_m}\}$ is normal so there exists $\{f_{n_{m_j}}\}$, a subsequence , and f a limit map , such that $f_{n_{m_j}} \rightarrow f$ uniformly . By the argument in the previous paragraph , $f\equiv w_0$, a constant . Thus for a fixed branch , $f_{n_{m_j}}$, with $j\geq j_0$, $|f_{n_{m_j}}(z) - w_0| < \frac{\varepsilon}{3}$ for all $z \in \overline{D}$, Then diam $\{f_{n_{m_j}}(D)\} < \frac{2\varepsilon}{3}$, contradiction). Then since f_n is continuous, $f_n(\overline{D}) \subseteq \overline{f_n(D)}$, and $f_n(\overline{D})$ has diameter tending to zero . Next , by invariance of Fatou set , $\partial D \subset F(Q_\lambda)$ implies that ${f}_{_n}(\partial D)\!\subset F(Q_{_\lambda})$ and it is disjoint from $J(Q_{_\lambda})$. Now recall that for $z \in J(Q_{\lambda})$, f_n was chosen so that $f_n(Q_{\lambda}^n(z_0)) = z_0$ and $f_n(Q^n_\lambda(z_0)) \subset f_n(D)$ since $Q^n_\lambda(z_0) \in J(Q_\lambda) \subset D$. Also, $f_n(D) \subset f_n(\overline{D})$, so $z_0 \in f_n(\overline{D})$ for all n. Now diam $\{f_n(\overline{D})\} \rightarrow 0$ implies that $\{z_0\}$ must be a connected component of . To see this recall that D consists of elements of $J(Q_{\scriptscriptstyle\lambda})$ and the boundary which is in $F(Q_{\scriptscriptstyle\lambda})$. For any ε >0 ,choose k such that diam $\left\{ {f_{_k}}{\left({\overline D} \right)} \right\} { < } \varepsilon$. Within this disc ${f_{_k}}{\left({\overline D} \right)}$, the boundary is mapped to a curve that winds around elements of the Julia set in the interior. Thus only points in the Julia set are within 2ε of each other will be elements of a connected component of $J(Q_{\scriptscriptstyle\lambda})$. But since arepsilon can be chosen arbitrarily small, eventually all points of the Julia set will be separated by the Fatou set , $\partial f_k(D)$ for large enough k .By definition (2-6) , $J(Q_\lambda)$ is totally disconnected . ■

Corollary (2-7)

Let z be the critical point of $Q_{\lambda}(z) = \lambda z - \lambda z^2$. If $Q_{\lambda}^n(z) \to \infty$, then $J(Q_{\lambda})$ is totally disconnected. Otherwise, $\{Q_{\lambda}^n(z)\}$ is bounded, and $J(Q_{\lambda})$ is connected.

Proof :

Since z = 0.5 is the critical point of $Q_{\lambda}(z)$. If $Q_{\lambda}^{n}(0.5)$ is bounded then $0.5 \in A_{\lambda}(\infty)$ and $J(Q_{\lambda})$ is connected from theorem (2-3) .Next, if $Q_{\lambda}^{n}(0.5) \rightarrow \infty$ then by theorem (2-6) $J(Q_{\lambda})$ is totally disconnected.

References

[1] Devaney, R.L, An Introduction to Chaotic Dynamical Systems, second edition, Addison-Weseley, 1989.

[2] Falconer , K.J. , Fractal Geometry , John Wiley & Sons Ltd. , England , 1990 . [3] Milnor , J. , Dynamics in one complex variable :Introductory Lectures , IMS 90-5 ,SUNY stony Brook ,1990 .

[4] Devaney ,R. L., Cantor and Sierpinski , Julia and Fatou :Complex Topology Meets Complex Dynamics,(2003) ,(to appear).