
Abstract State Machines and System Theoretic
Process Analysis for Safety-Critical Systems

Farah Al-Shareefi, Alexei Lisitsa, and Clare Dixon

Department of Computer Science, University of Liverpool
Liverpool, L69 3BX, UK

{F.M.A.Al-Shareefi,lisitsa,cldixon}@liverpool.ac.uk

Abstract. The Abstract State Machine (ASM) method is a formal spec-
ification and modeling technique that allows us to specify computational
systems at the required abstraction level and facilitates formal analysis
and verification. System Theoretic Process Analysis (STPA) is a semi-
formal hazard analysis method that aims to identify safety requirements
emerging from the analysis of potential interactions among components
and inadequate control in the system’s design. In this paper, we combine
these two techniques to develop a methodology capturing both the for-
mal representation of ASM with the ability to generate safety properties
from the STPA hazard analysis. This has the advantages of verifying
the STPA requirements in a formal way, and giving insights for the im-
provement of the ASM specification, depending on these requirements.
We illustrate our methodology by applying it to an insulin pump control
system case study, showing what safety issues it highlights.

Keywords: Abstract State Machines, System Theoretic Process Anal-
ysis, Temporal Logic, Validation and Verification

1 Introduction

Due to the increasing adoption of software in safety critical systems, together
with their potential failure, it has become imperative to develop safe and efficient
systems before deployment. We address this issue by combining a particular
formal method with the results of a particular safety analysis technique.

Within the existing variety of formal methods, the Abstract State Machine
(ASM) method can seamlessly direct the development process of computational
systems, from capturing the requirements to practical implementation [11]. Sev-
eral modeling and analysis tools have been developed for ASMs. In this paper, we
have chosen the set of interoperable tools integrated in a meta modelling frame-
work called ASMETA [9], which includes automatic tools for the editing [13],
validation [12], and verification [6] of ASM models. These tools help the modeler
to develop an appropriate model for the functional requirements.

System Theoretic Process Analysis (STPA) is a safety analysis technique
from the safety engineering domain [19]. It was developed to analyse complex
modern systems that involve interactions between their software, hardware, hu-
man and environment components. This technique uses a non-linear accident

causation model for the whole system, where the failure of interaction between
the system’s components or component failures can lead to unsafe states. It has
been demonstrated that this technique is able to identify a wide range of haz-
ard causes and safety requirements in a semi-formal manner [24]. Recently, the
STPA technique has been used, in [1, 3], as an integrated tool with verification
activity by supplying it with the formulated safety requirements. However, the
formalization process of safety requirements is both cumbersome and does not
accurately capture some of the temporal aspects of the requirements.

In this paper, we present a methodology for developing correct and safe
critical systems, that is based on the ASM method, the STPA technique, and
temporal logic. It starts with modelling the system in the AsmetaL (ASMETA
Language) to obtain an accurate mathematical representation. Then, using the
AsmetaV validation tool, the model validation process is applied to ensure that
it meets the functional requirements. Next the STPA technique is utilized to
elicit safety requirements. These requirements are formalized into Linear Tem-
poral Logic (LTL) that can be verified against an AsmetaL model using the
AsmetaSMV verification tool.

The methodology is illustrated through the Insulin Pump Control System
(IPCS) [23]. This system is chosen because its design provides a plausible level
of complexity for research, and its safety aspects are still under scrutiny.

The main contributions of this paper are: a systematic methodology for de-
veloping safety critical systems through combining ASM with STPA, with the
target of developing safe specifications, and adequate and concise temporal for-
malizations of the STPA requirements.

The rest of the paper is organized as follows: Section 2 is an overview of the
tools and techniques of our methodology. Section 3 presents our case study. In
Section 4, we describe our methodology. The application of this methodology
is explained in Section 5. In Section 6, we evaluate our methodology. Section 7
discusses the related work. Section 8, finally, concludes the paper.

2 Background

2.1 Abstract State Machines

Abstract State Machines (ASMs), were originally introduced by Gurevich [15]
as a versatile and extended way of representing Finite State Machines, where
unstructured control states are replaced by multi-sorted first order structure
states. Using ASMs, the modeler can specify the system from a high-level of ab-
straction, called a ground model, to the required detailed one [11]. ASM is based
on abstract states, to model the system’s structure, and on transition rules, to
model the system’s dynamic behavior. An ASM state is denoted by a pair (lo-
cation, location value). The location is represented by an n-ary function name
and its list of first-order terms, while the location value is a value assigned to
that location. The ASM locations or functions can be static, which never change
during any run of the machine, or dynamic, which may be changed by the envi-
ronment or by machine updates. The dynamic functions are also differentiated

between controlled (read and write by the machine), and monitored (read by the
machine and write by the environment).

Changing an ASM state is performed by a control logic rule that has the
following format:“if Condition then Update”.This rule is invoked at the current
state to produce the subsequent state. In addition to if-then, there is a set of rule
constructors, such as par (parallel execution of the grouped rules), choose (non
deterministic selection) and switch case (extension of the control logic rule).

A set of tools have been developed around ASMs to support the ASM
method, and to help the developer in performing different analysis activities
within the same development platform. These tools are included in a meta mod-
elling framework called ASMETA (ASM mETAmodelling)1 [9]. The ASMETA
tools that have been utilized in this paper are as follows: (1) The ASMETA
Simulator (AsmetaS) tool [13], which executes ASM models that are written in
ASMETA Language (AsmetaL). (2) The ASMETA Validator (AsmetaV) tool [12]
which validates AsmetaL specifications by scenarios written in ASMETA valida-
tion language, named Avalla. Avalla expresses the execution for a scenario in an
algorithmic manner via a set of constructs: set (determine the values for moni-
tored functions), check (inspect the machine state), step (perform one transition
into another state), and step until (perform several transitions). The AmetaV
tool captures any violation of Avalla scenario by producing only success or fail
validation verdicts. (3) The ASMETA SMV (AsmetaSMV) model checker tool [6]
which is for formal verification of ASMs. The inputs for this tool are the As-
metaL model and temporal properties, which can be written in either LTL or
CTL. The AsmetaSMV translates these inputs into the NuSMV model checker.
In this paper, we will use only LTL properties. The propositional and future–
time connectives that are available for writing LTL properties in AsmetaL are: !
(not), iff (‘if and only if’, Ø), and (^), or (_), implies (Ñ), x (‘next state’, ©),
g (‘globally’, l), and u(p, q) (‘until’, p U q).

2.2 System Theoretic Process Analysis

System Theoretic Process Analysis (STPA) is a hazard analysis technique
that was proposed by Leveson [17] to address safety as a control problem. It
considers the system’s component interaction and dynamic behavior, rather than
considering component failure only.

Typically, in this technique, the system is deemed as a safety control loop
which consists of a controller, actuator, sensor and controlled process. The con-
troller includes a model of the process it is controlling, in order to identify
the requisite control action to be issued. The actuator executes this action on
the controlled process, and the sensor returns the current status data about
the controlled process to the controller. The analysis through STPA focuses on
identifying the context and timing conditions that affect the action to make it a
hazardous action.

1 http://asmeta.sourceforge.net/

Implementation of this technique is outlined in five steps [18], as follows:
(1) Identify system analysis fundamentals by determining expected accidents,
and the potential hazards that can lead to these accidents. (2) Identify unsafe
control actions under different timing conditions (provided at any time, provided
too early/too late, not provided), as well as determining the controller process
model (a set of environmental and system variables) which can contribute to
providing the control action. (3) Ask an expert to determine which control ac-
tion, with which combination of values taken by the environmental and system
variables, and under which timing conditions, is a hazardous action. (4) Trans-
late the hazardous control actions into safety requirements. (5) Determine the
potential causes of each unsafe control action depending on the expert. In our
work, we will focus on the first four steps.

3 Case Study: The Insulin Pump Control System

The Insulin Pump Control System (IPCS) is a therapeutic system used to
improve diabetes treatment. The problem with traditional treatments is the pos-
sibility of taking an insulin overdose or insufficient dose due to focusing only on
the current glucose value and ignoring the last insulin injection time. It has been
chosen as a case study for software analysis of safety-critical systems in [23]. The
IPCS works in three different modes: automatic, manual, and switching off. In the
automatic mode, the software controller can implement one of the following two
activities at a time: running (performed every 10 minutes) or testing (performed
every 30 seconds). In addition, the software controller resets the cumulative dose
to 0 every 24 hours. The running activity starts with sensing the current glucose
value, then it analyses this value by comparing it with two saved values (10 and
20 minutes prior) to calculate the required dose. Before delivering the dose, it
does a safety check, considering the maximum daily dose and maximum single
dose. During the delivery of the dose, the controller sends pulses equivalent to
each unit of the delivered dose. Within the running activity, the warning alarm
must be run when the received glucose value is less than the minimum safe limit,
the available insulin is less than or equal to four maximum single doses, or deliv-
ering the dose will exceed the maximum daily dose. The testing activity involves
detecting any hardware unit failure (sensor, battery, needle, insulin reservoir) to
suspend the IPCS work and to run the failure alarm. In the manual mode, the
system will deliver the dose manually, hence the software controller will not per-
form safety checking, but it will update the quantity of the available insulin and
the cumulative dose. The complete requirements are documented and specified
in the Z language in [22], and part of the specification is provided in [23].

4 The Proposed Methodology

Our proposed methodology is based on: AsmetaL, AsmetaV, AsmetaSMV,
STPA, and temporal logic. Using this methodology, we aim to guide the modeller
to improve the ASM model, depending on the detection of any violations to the

functional and safety requirements via the validation and verification tools, and
to provide the verification tool with the STPA requirements in a formal way.

Figure 1 shows an overview of our methodology which includes the following
steps: (1) Modelling the system using the AsmetaL to capture the system’s
requirements. (2) Validating that the AsmetaL model satisfies the functional
requirements, which relate to the user needs about the system through using
the AsmetaV tool. This tool allows construct particular scenarios describing the
interactions between the system and its environment. The AsmetaV tool reads a
scenario written by the user in Avalla, and invokes the AsmetaS tool to simulate
this scenario and checks if the AsmetaL model satisfies this scenario or not.
In the event that any of these scenarios are not satisfied, the AsmetaL model
must be modified. (3) Eliciting safety requirements for the system via STPA.
(4) Formalizing the elicited STPA safety requirements into LTL specifications
using the formula in Section 5.4 that captures the four STPA timing requirements
of control actions. (5) Verifying that the AsmetaL model satisfies the formulated
STPA safety requirements. If any of these requirements are not satisfied, then a
counter example will guide the modeller to improve the AsmetaL model.

Informal System Description

Eliciting Safety Requirements via STPA

Determine control actions

Identify the process model

Create context table that documents the

hazardous action with certain combinations

Get safety requirements from hazardous

actions

Formalising the STPA Safety Requirements

Formalise the safety requirements

Rewrite the formulated requirements into

accepted ones by AsmetaSMV

Modelling

the System

Behavior via

AsmetaL

Validating the AsmetaL

Model

Verifying the STPA Safety Requirements

Extend the AsmetaL model with the resultant formulated

safety requirements and verify them via AsmetaSMV

AsmetaL model

meet safety

requirements

Informal Requirements Interactions between System and Environment Accidents and Hazards

Identify Avalla scenarios

and run them via AsmetaV

AsmetaL

satisfy

scenario

4

5

31

2

No Yes

No

Property is satisfied

couter

example

A
S

M
E

T
A

 F
r
a

m
e
w

o
r
k

S
T

P
A

 S
a

fe
ty

 A
n

a
ly

s
is

 a
n

d
 F

o
r
m

a
liz

a
tio

n

Yes

Fig. 1: The Proposed Methodology

5 Methodology Applied to IPCS Case Study

In this section, we apply our methodology to the IPCS case study.

5.1 Modeling the System Behavior via AsmetaL

In this stage, we present an abstract model or what is called a ground model,
for the IPCS, written in AsmetaL2. The ground model is shown in Code 1.
Through this model, we want to show how AsmetaL specifies the issues that
have not been addressed by [22], such as switching between the system operation
mode (automatic, manual, or switching off) at any state by the user, and timing
details of the software controller activities: setting the cumulative dose to 0,
running, and testing, which occurring at different times: 24 hours, 10 minutes,
30 seconds, respectively. We do not discuss the following in detail: the switching
off and manual operating modes, and the running activity stages, which include
sensing the glucose value, analysing it, calculating the insulin dose, checking the
calculated dose and delivering it, since they are explained in [22,23].

In the AsmetaL model, we first define several data types, followed by a num-
ber of functions, as discussed below. Finally a number of rules are defined to show
how the IPCS works. We declared the btn monitored function that represents
the operation mode of the system, which can be on (automatic mode), man-
ual (manual mode), or off (switching off mode). The transition from any state
into another one in the model is derived by the btn function in the r main rule.
We also declared the function cS whose value represents the state of the soft-
ware controller, which can be sns (sensing the current glucose value), anlscal
(analysing the current glucose value and calculating the dose), sftck (safety
checking for the computed dose before delivering it), dlvr (delivering the dose),
or tst (testing). The value of cS function, when the system works automatically
(btn=on), determines what the software controller can perform during the run-
ning activity or can exclusively perform the testing activity. Running activity,
which is modelled by the r run rule, starts when the controller state is sns. If it is
so, then the controller gets the value from the sensor via the valS function, and
the state of the controller is set to anlscal. After calculating the dose, the value
of cS function becomes sftck. Following safety checking for the computed dose,
the cS value changes into dlvr. After delivering the dose, the running activity
is finished and the cS function turns into tst to perform the testing activity.

Performing the testing activity will be through inspecting the values for the
iA, ndl, rsv, fl functions in the r test rule. The iA function is the available insulin
value, which must not be less than the maximum single dose (mSD=4). The rsv
function records whether the reservoir has presented (prs) or not (not), and
the same role for the ndl function of the needle. The fl function shows if there
is a failure in any hardware unit, such as the sensor, pump, needle, or battery.
Showing hardware units failure in one rather than several monitored functions

2 All the rules for the refined model are available online at
http://cgi.csc.liv.ac.uk/„hsfalsha/Insulin Pump Control System.html

helps to keep the model size small. If any of the monitored functions indicate a
failure, then the system must be put in a suspension state by updating the value
of the controlled function spn to true, and at the same time a command must
be given to the alarm through the alarmCommand function.

asm insulinpump
signature :

domain Seconds subsetof In t ege r
domain Dose subsetof In t ege r
domain ThirtyC subsetof In t ege r
domain TenC subsetof In t ege r
domain Insul inRange subsetof In t ege r
enum domain Cont ro l l e rS ta t e={SNS ,

ANLSCAL, SFTCK, DLVR, TST}
enum domain Button={ON, OFF, MANUAL}
enum domain Present={NOT, PRS}
monitored pas : Seconds >́Boolean
monitored valS : Dose
monitored mD: Dose
monitored f l : Boolean
monitored ndl : Present
monitored rsv : Present
monitored btn : Button
controlled cR : Dose
controlled cS : Cont ro l l e rS ta t e
controlled spn : Boolean
controlled alarmCommand : Boolean
controlled manualD : Dose
controlled iA : Insul inRange
controlled sC30 : ThirtyC
controlled mC10 :TenC
domain Seconds={30}
domain ThirtyC={1..20}
domain TenC={1..144}
domain Dose={0..35}
domain Insul inRnge ={0..100}
function mSD=4
function mDD=25

rule r manua lde l i v e r ing=
i f updateiACommand=f a l s e then
i f iA<=100 then //This must be modi f ied

i f e x i s t $md in Dose with ($md=mD and
($md>=1 and $md<=5)) then
par

manualD:=mD
updateiACommand:=true

endpar
endif

endif
e lse

par
iA:=iA´manualD
updateiACommand:= f a l s e

endpar
endif

rule r s a f e t y ch e ck=
par
cS:=DLVR
i f comD=0 then

dD:= 0
else

i f (comD+cD)>mDD then
dD:=mDD́ cD

else
i f (comD+cD)<mDD then//No equa l i t y

i f (comD<=mSD) then
dD:=comD

else
dD:=mSD

endif
endif
.

rule r t e s t=
i f (f l=true) or (rsv=NOT) or (ndl=NOT)

or (iA<mSD) then
par

spn :=true
alarmCommand:=true

endpar
endif

rule r s e n s e=
i f e x i s t $x in Dose with $x=valS then

par
cR:=valS
cS:=ANLSCAL

endpar
endif

rule r run=
switch cS
case SNS : r s e n s e []
case ANLSCAL: cS:=SFTCK
case SFTCK: r s a f e t y ch e ck []
case DLVR: cS:=TST

endswitch
rule r au tope ra t ing=
i f spn=f a l s e then
par
i f sC30=1 and cS!=TST then

r run []
endif
i f sC30>=1 and sC30<=19
and cS=TST then
i f pas (30)=true then

par
r t e s t []
sC30:=sC30+1

endpar
endif

endif
i f sC30=20 then
i f pas (30)=true then

par
cS:=SNS
sC30:=1
i f mC10=144 then

par
mC10:=1
cD:=0

endpar
else

mC10:=mC10+1
endif

. . .
endpar

rule r c e a s i n g=
main rule r Main =
switch btn
case ON: r autope ra t ing []
case MANUAL: r manua lde l i v e r ing []
case OFF: r c e a s i n g []

endswitch
default in i t s0 :
function sC30=1
function mC10=1
function cS=SNS
function spn=f a l s e
function iA=100
function cD=0
function updateiACommand=f a l s e

Code 1: The AsmetaL ground model for IPCS

Executing the testing and running activities are also restricted by time (30
seconds and 10 minutes). This is carried out by guards in the r autoperating

rule. As there is no tool to deal with time within the ASMETA framework,
we treat time in an abstract manner. To achieve this, we use the controlled
function sC30 to represent the number of 30 second cycles in 10 minutes. The
maximum value for this function is 20. As the controller performs the running
activity every 10 minutes and the testing activity every 30 seconds (but running
and testing can not take place at the same time), one of these 20 cycles is for
running and the other cycles are for testing. During the running activity, the
controller sets the cumulative dose cD to 0 every 24 hours. We use the controlled
function mC10 to represent the number of 10 minute cycles in 24 hours (its
maximum value is 144). When this function reaches 144 and the sC30 function
reaches 20, then the controller will set the cumulative dose to 0. Furthermore,
we deal with increasing these functions in an abstract manner via the boolean
monitored function pas(30). This means, when the pas(30)“true, some function
should be increased, and at the same time, some activity should be performed.
For example, if sC30=20 and 30 seconds has passed since the last update of sC30
to 20, then the running activity must be started by changing cS into sns, sC30
becomes 1, and at the same time mC10 is checked. If it has reached 144, it is set
to 1, otherwise it is increased to the next value. If 30 seconds has passed since
the last update of sC30 to a value within 1-19, then the testing activity must be
performed and sC30 is increased to the next value.

5.2 Validating the AsmetaL Model

This stage attempts to validate the AsmetaL model by running particular
Avalla scenarios, and obtaining a fail/success outcome. The scenario describes
the identifiable interactions between the system and its environment to represent
informal functional requirements. In the IPCS, the interactions are represented
by the current glucose value and the delivered dose. We identify 14 scenarios that
correspond to the delivered dose quantity requirements. From these scenarios,
we only discuss the scenario that has a fail verdict (see Code 2). Code 2 is the
scenario that is written in Avalla as input to the AsmetaV tool. This scenario
corresponds to the following requirements: if the cumulative dose does not exceed
the maximum daily dose, and the computed dose itself is less than or equal to
the maximum single dose, then the delivered dose is equal to the computed dose.

// s e t t i n g the i n i t i a l 250 s t a t e s
set btn :=ON;
set valS :=22;
step
check cR=22 and cS=ANLSCAL;
step unti l cS=TST;
check cD=22;
set btn :=ON;
set pas (30) :=true ;
set f l := f a l s e ;
set rsv :=PRS;
set ndl :=PRS;
step unti l sC30=20;

check spn=f a l s e ;
set btn :=ON;
step
check cS=SNS ;
set btn :=ON;
set valS :=34;
step
check cR=34 and cS=ANLSCAL;
step
check comD=3 and comD+cD<=25
and comD<=mSD;
step
check dD=comD;

Code 2: The scenario that has a fail verdict

The scenario in Code 2 can be described as follows: the system is operating
in automatic mode, the current glucose value is 34, the previous glucose value
from 10 minutes earlier is 22, the cumulative dose is equal to 22, there is no
suspension situation, the computed dose is 3 units, and the requirement that
must be checked is: the delivered dose should be equal to the computed dose.

The simulation of the scenario in Code 2 is illustrated in Figure 2. In this
figure, we use the following abbreviations: vdct (verdict), succ (succeed). The
comD and dD functions represent the computed dose and the delivered dose,
respectively. The simulation shows that we obtain the succ verdict for: the first
received glucose value (22), the cumulative dose, no suspension, the second re-
ceived glucose value (34), the sum of the computed dose and the cumulative
dose equals the maximum daily dose (25), and the computed dose is less than
the maximum single dose (4), while a fail verdict is obtained at state 283, due to
missing the equality operator in the safety condition on the computed dose before
delivering it (see r safetycheck rule in Code 1). This condition checks whether
the summation of the computed dose plus the cumulative dose is greater or
less than the maximum daily dose, but it does not checks the equality situation
((comD(3)+cD(22))=mDD(25)). Therefore, the delivered dose is not calculated
and we obtained a fail verdict. Thus, we have shown that ignoring the equality
testing in the [22] specification may lead to a serious issue in the IPCS.

state 251

btn=ON

cS=SNS

valS=22

state 252

btn=ON

cS=ANLSCAL

cR=22

.... state 258

btn=ON

cS=TST

cD=22

state 259

btn=ON

pas(30)=true

fl=false

ndl=PRS

rsv=PRS

.... state 279

btn=ON

spn=false

sC30=20

state 280

btn=ON

cS=SNS

sC30=1

state 281

btn=ON

cS=ANLSCAL

cR=34

state 282

btn=ON

comD=3

state 283

btn=ON

cD=22

dD=0

fail vdct: dD=comDsucc vdct: comD=3 and

comD+cD<=25 and comD<=mSD
succ vdct: cR=34

succ vdct: spn=falsesucc vdct: cD=22succ vdct: cR=22

Fig. 2: Simulation of the scenario shown in Code 2

5.3 Eliciting Safety Requirements via STPA

Next we employ the STPA technique for eliciting the safety requirements of
the IPCS, and it consists of the following steps:

– Indicating the main expected accidents, e.g. damage to the patient’s eyes or
kidneys if the required insulin dose is not taken.

– Identifying the possible hazards that can lead to the previous accidents, such
as the user’s unawareness of warning or failure conditions.

– Determining the actions issued by the controller that can lead to hazards
in the previous step, such as: run the alarm, update the available insulin,
deliver the dose.

– Identifying the process model for the controller. We define this as a set of
monitored and controlled functions of the AsmetaL model. Each member of
this set consists of a function name and its values, e.g., the process model
that affects the run warning alarm action is: {btn=(on, off, manual),
spn=(true, false), cR=(ěsMin, ăsMin), cS=(sns, anlscal, sftck, dlvr),
nP=(0, 1, 2, 3, 4), iA=(ą4ˆmSD,ď4ˆmSD), sCC=(ąmDD,ďmDD)}. Where
the meaning of cR is the current reading of glucose, sMin is the minimum
safe limit (6), mDD is the maximum daily dose, sCC is the summation of the
computed and cumulative doses, and nP is the number of pulses issued by
the controller to deliver the insulin.

– Evaluating the combination of function values for each control action under
four contexts: ‘provided’, ‘provided too early’, ‘provided too late’ and ‘not
provided’. The evaluation process is performed through asking a question to
an expert of the following form: if the controller receives a certain combina-
tion of function values, will (provide, provide too early/too late, not provide)
the action in the next state by the controller lead to a hazard?. The results
of the evaluation are documented in Table 1. This Table is only for the run
warning alarm. The no/fun answer represents no actual hazard will happen,
but there is a flaw with the system function, e.g. it is not hazardous if the
alarm action is provided earlier than realizing that the current glucose is less
than the minimum safe limit.

– Translate each combination that has a yes answer in the table into informal
safety requirements using the phrases “must” (for ‘not provided’) and “must
not” (for ‘provided’, ‘provided too early’, ‘provided too late’. According to
Table 1, we have 6 safety requirements corresponding to the 6 yes answers.

Table 1: The context table for the run alarm action with warning conditions
Process Model Hazardous Action?

btn spn cR cS nP iA sCC Provided
Provided
too early

Provided
too late

Not
provided

on false any dlvr =0 ď4mSD any no no/fun yes yes
on false any dlvr ą0 and ď4 ď4mSD any no/fun no/fun no/fun no
on false any dlvr =0 ą4mSD any no/fun no/fun no/fun no
on false any sns any any any no/fun no/fun no/fun no
on false any sftck any any ďmDD no/fun no/fun no/fun no
on false any sftck any any ąmDD no no/fun yes yes
on false ăsMin anlscal any any any no no/fun yes yes
on false ěsMin anlscal any any any no/fun no/fun no/fun no
on true any any any any any no/fun no/fun no/fun no

manual any any any any any any no/fun no/fun no/fun no
off any any any any any any no/fun no/fun no/fun no

5.4 Formalizing the STPA Safety Requirements

Here we formalize the elicited requirements. The formalization steps are:

– Determine the combination of the function values that have yes answers in
the ‘not provided’ condition only. The purposes for this are: to ensure that

the action is provided with these combinations, and to avoid repetition, e.g.
the combination that has a yes answer when the action is ‘not provided’
is the same as that which has a yes answer when the action is ‘provided
too late’. Regarding Table 1, the combinations that have been identified
are: (1) btn=on, spn=false, cS=dlvr, nP=0, and iAď4mSD. (2) btn=on,
spn=false, cS=sftck, and sCCąmDD. (3) btn=on, spn=false, cS=anlscal,
and cRăsMin.

– Formulate these combinations, using the following formula:

lppcomi1 _ comi2 _ ...cominq Ø lpCAiqq (1)

Where: CAi is the ith control action, comin is the nth combination that re-
lates to the ith action, and the formula informally means that the control ac-
tion is always provided in the next state, if and only if one of the determined
combination occurs. The Ø operator puts a strong condition on providing
the action, i.e. the action will not be provided with another combination or
later/earlier than satisfying the determined combination. Furthermore, em-
ploying the Ø and _ operators helps to reduce the number of properties to
be verified (6 safety requirements are reduced to only 1) .

– Rewriting the formulated requirements into ones accepted by the AsmetaSMV
tool via its propositional and future-time connectives.

5.5 Verifying the STPA Safety Requirements

This stage is intended to verify the resultant formulated requirements against
the AsmetaL model, to improve it. As we here use the ASmetaSMV tool, we
rewrite the resultant formulated requirements into other ones accepted by this
tool. We will present only the verification results from the AsmetaSMV tool, for
the properties that are not met, as follows:

– LTLSPEC g(((btn=on and spn=false and cS=dlvr and nP=0 and
iAă=4mSD) or (btn=on and spn=false and cS=sftck and sCCąmDD) or
(btn=on and spn=false and cS=anlscal and cRăsMin)) iff x(alarmCommand
=true)). This property informally means that the warning run alarm action
is always provided in the next state if and only if one of the warning combina-
tions occurs. The bold font for the first combination in this property indicates
that this combination is the reason for the unsatisfied property. In Figure 3
we show the failing trace for providing the run alarm action when the avail-
able insulin quantity is equal or less than 4 maximum single doses. The new
abbreviation that we use in this figure is: pR (previous glucose reading). From
state 1.1, onwards the system is operating under the automatic mode shown
by the value on. At state 1.1, there is no alarm action (alarmcommand=false)
and the insulin quantity is 18 (iA=18). At state 1.2 the controller receives the
current glucose value (cR=22) from the sensor (valS=22), and it computes
the dose at state 1.3 (comD=(22(cR)-14(pR))/4(mSD)). Delivering the dose
starts at state 1.4, and at state 1.5 it finishes and the available insulin be-
comes 16 which is equal to (4ˆ(maxSingleDose=4)). The loop starts at state

1.6 showing that the run alarm action is not provided (alarmCommand=false),
when iA=16. This happens because the initial version of the AsmetaL model
relies on the specification in [22], which does not consider running the alarm
at cautionary situations for the available insulin quantity.

alarmCommand

State

btn

cS

valS

iA

cD

cR

pR

SNS

false

ANLSCAL

false

SFTCK

false

DLVR

false

DLVR

false

TST

false false

1.1 1.2 1.3 1.4 1.5 1.6

22

18

3

14

14

ON ON ON ON ON ON ON

TST

22 22 22 22 22 22

18 18 16 16

3 3 3 5 5 5

22 22 22 22 22 22

14 141414 22 22

0

00

0

16

dD

comD

0

0

0

0

0

2

2

2

2

2

0nP 0 2 1 0 0 0

17

1.7

Fig. 3: Failing trace for the running alarm action when the available insulin is
equal to the 4 maximum single doses

– LTLSPEC g((btn=manual and iAă=100 and mD!=0) iff x (updateiACom-
mand =true)). Where the mD is the manual dose, and the property informally
means that the action of updating the available insulin according to the man-
ual dose is always provided in the next state, if and only if the system works
under the manual mode, the available insulin is less than or equal the capac-
ity (100 units), and there is a manual dose. In Figure 4 we provide a failing
trace for providing the update available insulin action when the system is in
manual mode. From state 1.1 onwards, the system is in the manual mode
via the value manual. At state 1.1, the insulin quantity is 10 (iA=10), the
manual dose is 6, and updating the available insulin action is not provided
(updateiACommand=false). At state 1.2, the action is provided and has been
executed at state 1.3 through changing the value of iA to 4. The loop starts at
state 1.3 showing that insulin quantity is not updated, when the iA=4 and the
mD=5. The loop arises from a lack of a constraint, in the [22] specification, on
the available insulin before delivering the manual dose (see r manualdelivering
rule in Code 1). This constraint must check if the available insulin is equal or
greater than the maximum manual dose (5) before delivering it3.

State

false falseupdateiACommand

mD

MANUAL MANUALMANUAL MANUAL MANUAL

false

10

6

10

6

4

5

4 4

5 5

1.1 1.2 1.51.41.3

true true

iA

btn

Fig. 4: Failing trace for updating the available insulin action when the manual
dose is greater than the available insulin

3 All the modified specifications are available online at
http://cgi.csc.liv.ac.uk/„hsfalsha/Insulin Pump Correct Version.txt

6 Evaluation

In this section, we present two comparisons. The first is comparing results
of the development procedure for the IPCS, in [23] with ours. The second is
between the formalization process for the STPA requirements of [3] and ours.

With regard to the development methodology for IPCS, we can compare
our methodology’s results with the results in [23]. Our methodology starts with
specifying the system via AsmetaL, while [23] employs the Z language for spec-
ification. Our specification tries to represent the timing aspects for the system
via using an abstract time representation, while the [23] specification uses the
input variable clock? to obtain the current time, but it does not specify how
the implementation of RUN and TEST schemas responds to this variable. In our
methodology, we use the validation and verification tools to develop a safe sys-
tem, whereas [23] utilizes the safety arguments method for performing manual
verification. This method starts with an unsafe state, then all paths in the sys-
tem code must be proven to be contradictory to this state. This method does not
address the unsafe conditions determined by our methodology, which includes:
(1) The patient does not take the automatic dose when the sum of the computed
dose and the cumulative dose equals the maximum daily dose. (2) The system
can deliver a manual dose even if it exceeds the available insulin. (3) The system
does not give an alarm if the insulin reservoir is less than the sum of 4 maximum
single doses. We believe that these unsafe conditions are not highlighted by other
methods.

Regarding the formalization process for the STPA requirements, in [3] four
types of safety requirements have been elicited and formalized, which are:

– The control action must always be provided at the next state (without being
too early or too late) when a combination occurs. It has been formalized as:

l pComij Ñ l pCAiqq (2)

Where: CAi is the ith control action, and Comij is the jth combination that
relates to the ith action. Such formula is formulated for each combination pre-
sented in a line of context table with a yes answer in the ‘not provided’ column.
– The control action must always be provided no later than a certain combina-
tion occurrence. This requirement is elicited according to the combination line
with a yes answer in the ‘provided too late’ column of the context table. The
corresponding safety property is formulated as:

l ppComij Ñ CAiq ^ pComij U CAiqq (3)

The authors of [3] claim that this formalization of the requirement “the software
controller should always (...) not provide a control action CAi too late while
the occurrences of the critical set of combinations has become previously true
in the execution path.”. However, a simple semantic analysis does not support
their claim. Indeed, the right hand side of conjunction ensures that either (1) no
action occurred, or (2) an action should be occurred, such that at some point

before that a combination should not hold, which is different from the statement
of the claim.
– The control action must always be provided not earlier than the occurrence
of a combination. This requirement is elicited according to the combination
line with a yes answer in the ‘provided too early’ column of the context table.
Regarding safety requirement is formulated as:

l ppCAi Ñ Comijq ^ pCAi U Comijqq (4)

The authors of [3] claim that this formalization of the requirement “a software
controller should always (...) not provide control action CAi before the occur-
rence of critical combinations set (...) still not become true in the execution path
and that it well provides the CAi when the combination of (...) holds. ”. Now
again, a simple semantic analysis does not support their claim. Furthermore, the
left hand side of conjunction can not be ensured when the control action emerges
from more than one combination.
– The control action must always not be provided when a combination occurs.
It has been formalized in the following form:

l pComij Ñ CAiq (5)

This formalization is formulated for each combination line with a yes answer in
the ‘provided’ column of the context table.

In our approach all these requirements are captured by a single formula (1):
lppcomi1 _ comi2 _ ...cominq Ø lpCAiqq. In this formula, the if and only if,
always, and or operators strict providing the control action only with the deter-
mined combination of the function values, not with another one. Furthermore,
the biconditional (if and only if) operator ensures that when one of the deter-
mined combinations is satisfied then the control action is provided in the next
state (not too late), and when the control action is provided, then one of the
determined combinations must be satisfied at the previous state (the action is
not provided earlier than satisfying the combination).

7 Related Work

Here, we discuss related work that uses hazard analysis techniques, formal
methods, or both for analysing safety-critical systems. In [25], an integrated
approach for combining the results of Fault Tree Analysis (FTA) and Failure
Mode and Effects Analysis (FMEA) techniques into the requirements specifi-
cation. The FTA results are the identification of combinations of component
failures, while the FMEA identifies the failure modes and the minor errors that
lead to component failure. That paper uses statecharts to bridge the semantics
gap between the results of safety analysis and software requirements. In [21],
a method for formalizing and verifying the safety requirements elicited by the
FTA technique, is presented.

The safety analysis techniques that have been used for eliciting safety require-
ments in these papers rely mainly on component failure, and only partially on

unintended interactions between system’s components. Leveson [19] presents the
STPA technique to identify the safety requirements for inadequate control ac-
tions that affect whole system functions and its components’ behavior. According
to STPA, the accidents do not simply arise from sequences of component failures,
rather, they arise when the safety constraints related to the functional interac-
tions among system components are not enforced. In [1,3] the authors propose a
software safety verification methodology based on the STPA technique to elicit
the safety requirements and verify them to identify software risks. First, they
elicit and formalize the STPA requirements (with respect to providing and not
providing actions) into LTL properties and they verify them based on an SMV
manual constructed model. Next they formalize the STPA requirements (with
respect to providing actions too early and too late), and they build a safe behav-
ior model of a software controller constrained by the STPA results with UML
statechart, as well as they provide an algorithm to transform the safe model
into an input model of the NuSMV model checker. However, the formalization
process does not reflect the requirements for too early/late actions. In our work,
we reformulate the four STPA requirements (‘provide’, ‘provide too early’, ‘pro-
vide too late’, and ‘not provide’) into one formula capturing these requirements,
and we exploit ASMs to model the functional behavior of the system and we do
not constrained the ASM model by STPA results. We choose ASM method as
it supports several characteristics, including: flexibility in modelling any algo-
rithm at an appropriate level of abstraction, and feasibility of being used in an
automatic and tool supported manner during the system development process.
Furthermore, ASMs have simple and well-defined formal semantics [11].

The advantages of using formal methods for developing safety-critical systems
have been shown in [14]. In [26] a Structured Object-Oriented Formal Language
(SOFL) is adopted to build a formal specification for the IPCS. That paper
shows that the SOFL provides an effective means to allow the developer to take
a gradual process to build a formal specification for the system, but it does not
show how to verify or validate the resulted specifications. In [16], timed automata
is chosen to model the railyard interlocking system, and UPPAAL model checker
is used to verify the safety properties of that system. On one hand, UPPAAL,
unlike ASM, lacks structuring mechanism to achieve abstraction [20], and on the
other hand, UPPAAL does not fully support CTL model checking [10]. In [5,8],
it is shown how the ASM method serves in supporting the design, validation,
and verification activities within the ASMETA framework. However, in this work
the verification of safety requirements is guided only by the modeller experience,
not by a safety analysis technique. Our approach utilizes the same framework
(ASMETA) for developing systems, but we employ the STPA procedure for
deriving the safety requirements.

8 Conclusion and Future Work

In this paper, we combine the ASM method and STPA technique in a de-
velopment methodology. Our methodology shows how functional requirements

validation and STPA requirements verification help us to modify the ASM spec-
ification. We have demonstrated how to capture the four STPA requirements
adequately via using disjunction and if and only if operators in our formaliza-
tion for the requirements. The next step will be formalizing and generalizing the
STPA requirements in terms of Allen’s interval algebra [4].

We have shown how the timing aspects for the IPCS have been modelled
in an abstract manner. We modelled the start point of the controller activities
via using two controlled functions mC10 and sC30, and we modelled the time
passing since last activity by a boolean monitored function pas. This abstract
handling specifies when the activity starts but it ignores dealing with durative
action, while a certain activity is performed, e.g. run alarm for 10 seconds during
running activity. In the future, we hope to use improved abstractions to deal with
timing aspects.

In the specification analysis presented here, we did not consider the static
analysis for the completeness and consistency properties. In the future work, we
are going to address this by applying the AsmetaMA tool [7] to the specification.

To further our methodology we intend to design an algorithm to automate
the part of eliciting STPA requirements. Although an automatic tool has been
proposed to achieve this [2], it seems only to work for up to 6 variables in a
process model for the software controller. Hence, we plan to make the integration
between ASM and STPA automatic, without the need for user input.

Acknowledgments

We gratefully acknowledge Dr. Paolo Arcaini for his advice on ASMETA
framework.

References

1. Abdulkhaleq, A., Wagner, S.: Integrated safety analysis using systems-theoretic
process analysis and software model checking. In: International Conference on
Computer Safety, Reliability, and Security. pp. 121–134. Springer (2015)

2. Abdulkhaleq, A., Wagner, S.: XSTAMPP: An extensible STAMP platform as tool
support for safety engineering. In: 2015 STAMP Workshop, MIT, Boston, USA.
Stuttgart University (2015)

3. Abdulkhaleq, A., Wagner, S.: A Systematic and Semi-Automatic Safety-Based Test
Case Generation Approach Based on Systems-Theoretic Process Analysis. arXiv
preprint arXiv:1612.03103 (2016)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

5. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal
validation and verification of a medical software critical component. In: Formal
Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on. pp. 80–89. IEEE (2015)

6. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: International Conference on
Abstract State Machines, Alloy, B and Z. pp. 61–74. Springer (2010)

7. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic Review of Abstract State
Machines by Meta-Property Verification. In: NASA Formal Methods Symposium.
pp. 4–13. NASA (2010)

8. Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and analyzing using ASMs:
The landing gear system case study. In: International Conference on Abstract State
Machines, Alloy, B, TLA, VDM, and Z. pp. 36–51. Springer (2014)

9. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Software: Practice and Experience
41(2), 155–166 (2011)

10. Behrmann, G., David, A., Larsen, K.: A tutorial on UPPAAL. Formal methods for
the design of real-time systems pp. 33–35 (2004)

11. Börger, E., Stärk, R.: Abstract state machines: a method for high-level system
design and analysis. Springer Science & Business Media (2012)

12. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based valida-
tion language for ASMs. In: International Conference on Abstract State Machines,
B and Z. pp. 71–84. Springer (2008)

13. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

14. Gerhart, S., Craigen, D., Ralston, T.: Experience with formal methods in critical
systems. IEEE Software 11(1), 21–28 (1994)

15. Gurevich, Y., et al.: Evolving algebras 1993: Lipari guide. Specification and vali-
dation methods pp. 9–36 (1995)

16. Khan, U., Ahmad, J., Saeed, T., Mirza, S.H.: On the real time modeling of in-
terlocking system of passenger lines of Rawalpindi Cantt train station. Complex
Adaptive Systems Modeling 4(1), 17 (2016)

17. Leveson, N.: A new accident model for engineering safer systems. Safety science
42(4), 237–270 (2004)

18. Leveson, N., Thomas, J.: An STPA primer. Cambridge, MA (2013)
19. Leveson, N.G.: A new approach to hazard analysis for complex systems. In: Inter-

national Conference of the System Safety Society (2003)
20. Ouimet, M., Berteau, G., Lundqvist, K.: Modeling an Electronic Throttle Con-

troller Using the Timed Abstract State Machine Language and Toolset. In: MoD-
ELS Workshops. vol. 4364, pp. 32–41. Springer (2006)

21. Santiago, I.B., Faure, J.M.: From Fault Tree Analysis to Model Checking of Logic
Controllers. IFAC Proceedings Volumes 38(1), 86–91 (2005)

22. Sommerville, I.: Insulin Pump – Z schemas, http://
iansommerville.com/software-engineering-book/files/2014/
07/Insulin-Pump-Z-schemas.pdf

23. Sommerville, I.: Software Engineering. Addison Wesley, 9th edn. (2010)
24. Thomas, J.: Extending and Automating a Systems-Theoretic Hazard Analysis for

Requirements Generation and Analysis. Ph.D. thesis, Massachusetts Institute of
Technology (2013)

25. Troubitsyna, E.: Elicitation and Specification of Safety Requirements. In: Systems,
2008. ICONS 08. Third International Conference on. pp. 202–207. IEEE (2008)

26. Wang, J., Liu, S., Qi, Y., Hou, D.: Developing an insulin pump system using the
SOFL method. In: Software Engineering Conference, 2007. APSEC 2007. 14th
Asia-Pacific. pp. 334–341. IEEE (2007)

http://iansommerville.com/software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf
http://iansommerville.com/software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf
http://iansommerville.com/software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf

	Abstract State Machines and System Theoretic Process Analysis for Safety-Critical Systems

