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Abstract Abstract 
We know that we can use the neural networks for the approximation of functions for many types of 
activation functions. Here, we treat only neural networks with simple and particular activation function 
called rectified linear units (ReLU). The main aim of this paper is to introduce a type of constructive 
universal approximation theorem and estimate the error of the universal approximation. We will obtain 
optimal approximation if we have a basis independent of the target function. We prove a type of Debao 
Chen's theorem for approximation. 
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1. Introduction

There are many studies about the approximation by
neural networks with different types of activation
functions, for example, in Ref. [1] the authors inves-
tigate the error arising from the method of approxi-
mation operators with logarithmic sigmoidal function.
By the constructive method, the authors in Ref. [2]
introduced a direct theorem for simultaneous pointwise
approximation using neural networks with one hidden
layer. In Ref. [3], a new sigmoidal function is intro-
duced with parameter and considering constructive
feedforward approximation on a closed interval. The
Proof for the universal approximation ability of
recurrent neural networks in the state space model
form is introduced in Ref. [4]. Also, versions of direct
and inverse inequalities using neural networks are
proved in Ref. [5,6]. The questions about a quadratic
network approximation are asked in Ref. [7] with
demonstrating the merits of a quadratic network.

In the last decades, the ability of approximation by
single hidden layer feedforward neural networks
(SLFNNs) was studied in numerous works.

Since 1960, many papers proved that for any
continuous function, there exists a multilayer neural
network with one hidden layer as an approximation of
continuous real function on Rn. As the proofs given by
Cybenko [8], White [9], and Hornik [10]. These arti-
cles proved that the above results with few conditions
on activation function are not constructive and are not
elementary. They did not describe the number of new
neurons that should be used in the hidden layer and
they did not estimate the degree of the best approxi-
mation depending on the number of neurons. After
many years, many improvements of universal approx-
imation were introduced and their applications to lay
many types of research (see for example ([11e16]),
with a restriction on the set of weights of the neural
network. In these articles, the authors proved that any
restriction on the weight of SLFNNs does not affect the
universal approximation property. In Ref. [17],
Stinchcombe and White proved that the SLFNNs with
a polygonal, spline polynomial, or analytic activation
function and a bounded set of weights still have the
property of universal approximation. In Ref. [18], Ito
introduced the results of universal approximation using
SLFNNs with monotone sigmoidal functions, which

converge to 0 at �∞ and converge to 1 at ∞; he used
only weights on the unit sphere. In Ref. [12e14], the
authors used SLFNNs with various weights on a set of
directions and gave many conditions to get a good
approximation by such neural networks.

Such results hold for a wide variety of activations,
among these activation functions, a type called recti-
fied linear unit (ReLU) activation function [19]. In
Ref. [20], the authors present an approximation of
ReLU by relating wavelet. Some local approximation
constructions are proposed to represent general func-
tions including piecewise linear trapezoid [21,22], and
piecewise linear spike-shaped unit [23]. There are
some other constructions that first approximate poly-
nomials [24e27] and then used them as media to
approximate more general functions. It has also been
shown that compared with these deep ReLU network
constructions, shallow networks have to be exponen-
tially wider to achieve identical approximation accu-
racy. This comes from the fact that for sufficiently
smooth functions, there exist lower bounds of
approximation errors that are determined by the num-
ber approximating linear pieces, which in turn are
dominated by the depth. Recently [28], establish
L∞; L2 direct theorems of multivariate functions by
ReLU combination [29]. used the approximation by
deep convolution neural networks for functions in the
Sobolev space Hr (U) with r > 2 þ d/2 [30]. studied the
approximation by ReLU neural networks depending on
depth and weights of functions in L2 spaces.

The rectified linear unit is an interesting choice for
the activation functions of neural networks. For their
efficiency and simplicity practically and/or theoreti-
cally, we consider this important type of activation
functions which is given by ReLUðxÞ ¼ maxðx; 0Þ and
we prove our results on LpðIÞ; space for 0< p � ∞.
The main aim of this paper is to introduce an
approximation theoretic structure for single hidden
layer neural networks.

Now, let us introduce some preliminaries that we
need in this work.

2. Preliminaries

Let LpðІÞ; 0< p � ∞ denotes the space of all
measurable functions f on І, where І ¼ ½a; b� or R
such that:
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k fkLpðIÞ : ¼
(0@Z

I

jf ðxÞjpdx
1
A

1=p

; 0<p<∞;

ess sup
x2I

j f ðxÞj; p¼∞:

Is finite, we also denote k fkp ¼ k fkLpðIÞ , and let
LkpðIÞ be the space of functions, which are k� fold
integrable of LpðIÞ or LpðRÞ functions where R is the
set of real numbers. Also, we need to use the modulus
of smoothness given by:

u4
r;mð f ðmÞ; tÞp : ¼ sup

0�h�t

��Wm
rhð$ÞDr

h4ð$Þðf ðmÞ; :Þ
��
p
; [31]

where f2Bm
p ;

Bm
p : ¼�f : kf ðmÞ4ðmÞkp < þ∞

�
;

WdðxÞ : ¼ðð1� x� d4ðxÞ=2Þð1þ x� d4ðxÞ=2ÞÞ1=2;

4ðxÞ : ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
:

and

We can construct the best approximation by
choosing the parameters of the approximation
ð0� [� nÞ:

Let y[ ¼ [�1
n ; and W [ ¼ Zðf ; [Þ� P[�1

j¼1W j ;
where

and

ðAnf ÞðyÞ¼
Xn
[¼1

W [sðy� y[Þ:

Besides, let us use the B-splines that are piecewise
functions coming from extending the following
functions:

B1ðxÞ¼
8<
:1 if

�1

2
� x<

1

2

0 otherwise

Similarly, for any n2N; we write

Bn¼B1*B1*…B1 ðn� timesÞ:

We point out that m is equal to zero, and.

lim
n/∞

an ¼ 0 then lim
n/∞

u4
r;mðf ðmÞ; anÞp ¼ 0 also ce> 0

u4
r;mðI; eÞp ¼ e ; where I is the identity function

ðIðxÞ ¼ xÞ. Recall that the best approximation of
f2LpðIÞ by a polynomial h2Pn given by

EnðgÞp ¼ inf
h2Pn

g� hp: [32]

where Pn denotes the set of all algebraic polynomials
of degree � n.

3. Main results

Here, let us introduce the following results:

Theorem 3.1(approximation with ReLU)
Let sð:Þ be the ReLU function, then

for every g2LkpðRÞ; e> 0;
there exists n2N;W [; b[;2R; [2f0;…;ng, and

Zðf ; [Þ¼ sup
y2½y[;y[þ1Þ

(
2f ðy� r =2Þ þ

Xr
[¼1

�
r
[

�
ð�1Þr�[

f ðyþð[� r =2ÞhÞ
)

þ inf
y2½y[;y[þ1Þ

�
2f ðy� r =2Þ þ

Xr
[¼1

�
r
[

�
ð�1Þr�[

f ðyþð[� r =2ÞhÞ
	
;

Dr
hðg; y; IÞ :¼

(Xr
[¼0

�
r

[

�
ð�1Þr�[gðyþ ðl� r=2ÞhÞ if yHrh=22I;

0 otherwise:

[31]
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ðAngÞðyÞ¼
Xn
[¼1

W [sðyþb[ Þ;

as an approximation of f ð:Þ; which satisfies��ðAnf ÞðyÞ� f ðyÞp
��< e:

Proof
Since g2LkpðRÞ, there exists K2Zþ such that

jgðyÞj<Dr
h4ð:ÞgðyÞ. When jyj>K, we divide the inter-

val ½ �K;K� into 2K2 equal points with length 1=K.
Let � K ¼ y0 < y1$$$< y2K2 ¼ K, and let b[ ¼

y[�1þy[
2 ð1� [� 2K2Þ . Since s is a bounded activation

function, so we assume that there exists a positive
integer N s.t. jsðxÞj< 1 =

2K; for jxj � N, choose a
positive integer M such that M

2Z >N.
Now, we construct the neural network as:

ðAngÞðyÞ¼
X2r2
[¼1

Dr
h4ð$ÞgðyÞsðMðy�b[ ÞÞ;

Then, jMðy�b[ Þj � N and hence jsðMðy�b[ Þj<
1=2K ; for [ ¼ 1; 2;…; 2K2

Choose b[ such that
P2r2

[¼1sðMðy � b[ÞÞ ¼ c, where
c is constant. So

kðAngÞðyÞ � gðyÞkp

�
�����
X2r2
[¼1

Dr
h4ðÞgðyÞsðMðy� b[ÞÞp

�����
� cðp;kÞu4

r;mðg; tÞp;

c(p,k) is a constant that depends on p and k and it is
different from a step to others.

since Dr
h4ð:Þg converges to zero for g2 LkpðRÞ so

that:

kðAngÞðyÞ � gðyÞkp < 2:

We can prove the above result by another method
but we need the following Remark.

Remark 3.2: It is well known that if f is a contin-
uous function, then f can be approximated by a linear
combination of its translation and dilation.

Proof of Theorem 3.1
We can build the 1st order B-spline mother function

j

�
x;1;

1

2

�
¼s

�
xþ1

2

�
�s

�
x�1

2

�
¼B1ðxÞ;

by using the previous remark, the proof is complete.
Theorem 3.3 (estimating the error)
for any n2N; and f2LpðIÞ; we have:

��f �Anfkp � u4
r ðf ; tÞp:

Proof:
First, we must prove for all [2f1;…; ng and for

every x2½x[; x[þ1Þ;
ðAnf ÞðxÞ¼Zðf ; [Þ:

Fix [2f1; …; ng and let x2½x[; x[þ1Þ, from the
construction of the activation function

sðx� x[Þ¼
�
x� x[ j� l
0 j> l:

we have:

ðAnf ÞðxÞ¼
Xn
j¼1

W js


x� xj

�

¼
X[
j¼1

W j



x� xj

�

¼W [ðx� x[Þ þ
X[�1

j¼1

W j



x� xj

�

¼Zðf ; [Þ�
X[�1

j¼1

W j



x� xj

�þX[�1

j¼1

W j



x� xj

�

¼Zðf ; [Þ:

Consequently:

kf �Anfkp � cðpÞkf � Zðf ; [Þkp
� u4

r ðf ; tÞp:

Theorem 3.4 (optimality)
for every n2N; Anf

is optimal; in the sense that if the basis is indepen-
dent of f ; then there is [2f1;
…ng : x[s[�1

n or there is [2f1;…; ng :

W [sZðf ; [Þ �
X[�1

i¼1

W i ;

then, there exists f2LpðIÞ such that:

kf �Anfkp>u4
r

�
f ;
1

n

�
p

:

Proof:
Since u1 >ur; for r � 2;
therefore, we prove our result for case r ¼ 1 and

hence it is true for any. r:
Case 1: suppose. [2f1;…; ng : x[s[�1

n :
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In that case, there exists i2f0;…; ng, such that:

xiþ1 � xi >
1

n
; ðx0¼0; xnþ1¼1Þ:

Let d ¼ xiþ1 � xi. It is clear that Anf is constant on.
½xi; xiþ1Þ:

Let f ¼ I ; then. f � Anfp � d> 1
n ¼ u4

r

�
I; 1n

�
p

:
Case 2: suppose that

for all [2f1;…; ng : x[ ¼ [�1
n otherwise, we already

proved in case 1.
Assume that there exists [2f1;…;ng : W [s Zðf ;

[Þ� P[�1

i¼1

W i ; let f ¼ I;

in this case, there exists i2f0;…; ng; for all x2½xi;
xiþ1Þ; such that:

ðAnf ÞðxÞ¼ csZðI; [Þ¼ xi þ 1

n
:

If c>Zðf ; [Þ; then. jf ðxiÞ � ðAnf ÞðxiÞj ¼ c� xi >
xi þ 1

n� xi ¼ 1
n :

If c< Zðf ; [Þ; then lim
x[xiþ1

jf ðxÞ � ðAnf ÞðxÞj ¼ xiþ1 �
c> xiþ1 þ 1

n� xiþ1 ¼ 1
n.

4. Debao Chen's theorem

In this section, we prove a type of Debao Chen's
theorem for estimating the degree of approximation by
multilayer feedforward artificial neural network with
some hidden units.

Definition 4.1
If we fix the activation function s and the integer

number n, we will get the class of function to have the
following form:

hðxÞ¼
Xn
i¼1

aisðmxþ riÞ; ðx2RÞ:

For various types of parameters ai2R; m2
N and ri 2Z, we get a type of class which will be
denoted by Fðs; nÞ: Now, what about the degree of
approximation of f2Lp½0; 1� by elements of Fðs; nÞ?
To answer this question, we must define Distðf ; Fðs;
nÞ ¼ inf f��f � hp

�� : h2Fðs; nÞg, and prove the

following theorem. First, we have to introduce the
following remark.

Remark 4.2: 4 is called an activation function if
and only if it satisfies lim

x/∞
4ðxÞ ¼ a ; lim

x/�∞
4ðxÞ ¼

b ; asb; addition to its boundedness.

Theorem 4.3(Debao Chen)
For each f in Lp½0; 1�

Dist

�
f ; Fðs;nÞ�kskpu4

r;m

�
f ;
1

n

�
p

:

Here;kskp¼
�Z1

0

jsðxÞjpdx
�1=p

; x2R

And Distðf ; Fðs; nÞ is the distance between f and
Fðs; nÞ.

Proof:
Define:

i¼ i=n; fi¼ f ðxiÞ; ð0� i�nÞ;

and

ðLmf ÞðxÞ¼ f1sðmxþmÞ
Xn�1

i¼1

Xr
[¼1

�
r
[

�

ð�1Þr�[
f ðx[þð[� r =2ÞhÞsðmx�mxiÞ:ð4:3:1Þ

Assume that if m is a multiple of, then Lmf2Fðs;
nÞ; so the operators Lmf are linear.

By Remark (4.2), an activation function s is a
bounded function. The following function values
converge to 0 when t goes to þ ∞ :

wðtÞ¼maxfmax
x�t

jsðxÞ�1j;max
x��t

jsðxÞjg:

Now, to prove our theorem, let us prove the
following estimate, in which u4

r;m is the modulus of
smoothness of f ; and 0< d< 1=2n.

kLmf � fkp�kskpu4
r;m

�
f ;
1

n

�
p

þu4
r;mðf ;dÞp

þwðmdÞ
�
kfkpþnu4

r;m

�
f ;
1

n

�
p



; ð4:3:2Þ

set ¼ 1=
ffiffiffiffi
m

p
, then m/∞ through the multiples of

n. Since Distðf ; Fðs; nÞÞ � kLmf � fkp; and the bound
in (4.3.2), this distance converges to. kskpu4

r;m

�
f ; 1n

�
p

:

Now to prove (4.3.2), we write:
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Fix m and x: Let 0< d< 1=2n; we have two cases
Case 1 jx � xkj< d for some k in

f1;2;…;ng:

We will write equation (4.3.3), as follows:

For 1 � i � k� 1, we have

x� xi � x� xk�1 � xk � d� xk�1 ¼ 1

n
� d� 1

n
� 1

2n

¼ 1

2n
>d:

Hence.ðx � xiÞ � md and jsðmx � mxiÞ � 1j �
wðmdÞ:

Similarly, if kþ 1 � i � n� 1; then

x� xi � x� xkþ1 � xk þ d� xkþ1 ¼�1

n
þ d��d:

In this case mðx � xiÞ � � md and jsðmx �
mxiÞj � wðmdÞ:

Also, þm � m , so that jsðmx þ mÞ � 1j � wðmÞ.
From (4.3.4), it follows that:

Case 2
Suppose jx�xij � d for all i in

f1;2;…;ng:

Choose k; such that xk�1 � x � xk:

As in the previous steps and by using (4.3.3), we
obtain:

jðLmf � f ÞðxÞj�u4
r;m

�
f ;
1

n

�
p

þkfkpwðmdÞ

þnu4
r;m

�
f ;
1

n

�
p

wðmdÞ�u4
r;m

�
f ;
1

n

�
p

kskp

þwðmdÞ
�
kfkpþnu4

m;r

�
f ;
1

n

�
p



þu4

r;mðf ;dÞp:

Thus, from cases 1 and 2, the same upper bound has
been obtained and the estimate (4.3.2) is proved. This
leads to the proof of Theorem 4.3.

ðLmf � f ÞðxÞ¼ fk� f ðxÞþ f1½sðmxþmÞ�1�þ
Xk�1

i¼1

Xr
[¼1

�
r
[

�
�1

!
ð � 1Þr�[

fx[þð[� r =2Þh
!
½smx�mxiÞ�1�

þ
Xn�1

i¼k

Xr
[¼1

�
r
[

�
ð � 1Þr�[

f

 
x[þð[� r =2Þh

!
s

 
mx �mxi

!
4:3:3

ðLmf � f ÞðxÞ¼ fk� f ðxÞþ f1½sðmxþmÞ�1�þ
Xk�1

i¼1

Xr
[¼1

�
r
[

�
ð � 1Þr�[

f ðx[þð[� r =2ÞhÞ½sðmx�mxiÞ�1�

þ ðfkþ1� fkÞsðmx�mxkÞ þ
Xn�1

i¼kþ1

Xr
[¼1

�
r
[

�
ð�1Þr�[

f ðx[þð[� r =2ÞhÞsðmx�mxiÞ: 4:3:4

jðLmf � f ÞðxÞj�u4
r;mðf ;dÞpþkfkpwðmÞþðk�1Þu4

r;m

�
f ;
1

n

�
p

wðmdÞþu4
r;m

�
f ;
1

n

�
p

kskp

þðn� k�1Þu4
r;m

�
f ;
1

n

�
p

wðmdÞ�u4
r;m

�
f ;
1

n

�
p

kskpþwðmdÞ
�
kfkpþnu4

r;m

�
f ;
1

n

�
p



þu4

r;mðf ;dÞp:
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5. Conclusions

We know that we can use neural networks with an
appropriate activation function for approximating
continuous functions. In our work, we present function
approximation on Lp space by using the ReLU acti-
vation function. We conclude that Lp universal
approximation using neural networks with the ReLU
activation function can be estimated. This approxima-
tion is optimal in terms of basis independent of the
original function, then Debao Chen's theorem type for
this approximation can be proved.
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