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Abstract: Pozzolanic materials, glass powder, and silica
fume (SF) have all been used in concrete recently as a
partial cement substitution to increase the strength of
the concrete. The aim of this study is to analyze the impact
of waste glass powder (WGP) and SF combination on
high-strength concrete (HSC) characteristics. The working
methodology of the current research consists of using SF
passed through sieve No. 200, and WGP particles that
passed through sieve No. 400 (particle size less than 38 µm),
maximum size of aggregate (14, 20) mm and W/C + p (0.25,
0.35, and 0.45). The used waste materials were in three dif-
ferent amounts of SF and WGP (5, 10, and 15%) by weight of
cement. HSC was tested for compressive strength, density,
and ultrasonic pulse velocity (UPV) with various glass powder
and SF contents. The obtained results show that after 7 and 28
days, concrete specimens containing 15% glass powder and
SF demonstrated an increase in density, UPV, and compres-
sive strength, depending on the test results. Conversely, con-
crete specimens with 5% SF and WGP had decreased

compressive strength, UPV, and density. It was detected
that WGP gave high mechanical (compressive strength)
and physical properties (density and UPV) than SF with a
ratio of 15% and lower properties with a ratio of 5%. In HSC
manufacturing, glass powder may be used instead of SF.

Keywords: SF, WGP, HSC, UPV, compressive strength, and
density.

1 Introduction

The main environmental concerns brought on by releasing
carbon dioxide (CO2) were climate change and global
warming [1–3]. A considerable portion of CO2 emissions
is caused by the building industry, which negatively influ-
ences the environment [4,5]. Studies from the past suggest
that cement production emits 522 million metric tons of
CO2, or around 0.8 tons of CO2 each ton of cement produced
[6]. With an annual growth rate of 2.5% and a total output of
4.6 billion tons in 2015 [7], cement production is accelerating
rapidly worldwide. The “Getting the Numbers Right” project,
run by the International Council for Sustainable Develop-
ment and its sustainability initiative, offers a CO2 and energy
performance database. Researchers from all around the
globe are always searching for a new material that might
either completely or partly replace cement [8]. Throughout
the past 10 years, attention has been focused on using sup-
plemental cementitious materials, including silica fume (SF),
rice husk ash, metakaolin, ground granulated blast-furnace
slag, and fly ash, as cement replacements [9–11]. Additional
cementitious components react in pore solution by hydrating
cement hydraulically or pozzolanic ally [12]. In the United
States, cementitious elements are typically added during
concrete manufacturing; ready-mixed plants use 60% of sup-
plemental cementitious materials [13]. The reactivity of addi-
tives or pozzolans is often lower than that of cement; hence,
using supplemental cementitious materials has drawbacks
[14,15]. Recent studies revealed that the two most often
used supplemental cementitious materials worldwide – fly
ash, with an annual output of one billion tons, and ground-
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granulated blast-furnace slag, with a yearly production of
360 billion tons – can only partially meet expanding demand.
Finding other materials that might be used instead of cement
has thus become a need on a worldwide scale [13].

Even when used as a fine aggregate in white cement
mortars [16], waste glass powder (WGP) as an active addi-
tive to concrete has been proven in prior works to have
positive environmental and economic effects [17]. Glass was
used as an additional cementitious material in numerous
other studies [18–20], but most of them suggested using
10–20 wt% WGP as a cement substitution with a steady
decline in compressive strength. However, Carsana [21]
found that mortars of ground glass submerged in water
for 7 years had not degraded and had higher compressive
strengths. Glass has a significant alkali content. Still,
according to the study by Schwarz [22], it only discharged
a little sodium into the pore solution, making it a safer
addition.

The outcomes of three concrete mixtures, namely, SF,
fly ash, and ordinary Portland cement (OPC), were reported
by Ibrahim [23]. WGPwas substituted for 0, 5, 10, 15, and 20%
of the cement in the three mixtures. The findings of tests
demonstrated that WGP might partly substitute OPC in con-
crete with tensile and compressive strengths higher than
fly-ash- and silica-fume-based concrete when used up to
5 wt%. The compressive and tensile strengths might also
be reduced by 13–14%, respectively, with a greater substitu-
tion of up to 20wt% WGP. Notwithstanding the aforemen-
tioned results, there are certain drawbacks to using glass in
concrete, including low early strength that might be proble-
matic, particularly when early formwork stripping is neces-
sary for building practice [24].

SF is a waste material produced due to ferrosilicon
alloy and silicon manufacturing. Environmental solid waste
that includes approximately 75% silica [25,26] has contrib-
uted to the strength and minimized the bleeding and perme-
ability of concrete owing to its pozzolanic impacts [27–29]. It,
nonetheless, has certain drawbacks, including reducing the
setting time and workability [30,31] of the concrete mix [32],
once the necessary amount is not used. The amount of SF for
an efficient performance is stated to be in the range of
10–15wt% [33]. WGP may be contributed to the concrete
mix consistency [34], owing to its glassy surface with minimal
water absorption. SF and glass waste up to 10–25wt% were
separately stated to contribute to compressive strength over a
time beyond 90 days [20]. Rakhimova and Rakhimov [35]
examined glass compositions with a noticeable improvement
in workability (flowability) and a reduction in setting time. A
similar discovery was observed by Rahma et al. [36], while
Sadati and Khayat [37] found a drop in structural networks
build-up from (0.118333–0.0133333 Pa/s) 7.1 to 0.8 Pa/min with

a rise in viscosity from 0.118 to 0.013 Pa/s. A further advantage
of using glass waste was also gained when using cullet glass
waste as a replacement for natural sand throughout the
synthesis of an alkaline binder by using fly ash and ground
granulated blast furnace slag as precursors. Good findings of
durability performance have also been obtained for substi-
tute for sand by glass waste at the level of 25–100wt% within
the temperature range of 200–800°C [38,39].

To enhance the compressive strength of concrete, the
incorporation of supplementary cementitious materials
such as SF has been widely adopted. SF can be used as a
filler or as a partial substitute for cement in concrete. The
addition of SF has been found to enhance the strength
characteristics of concrete; however, a marginal reduction
in its workability was noted in a research investigation.
The study found that the substitution of SF at levels ran-
ging from 0 to 15% in m25 concrete did not significantly
affect the elastic modulus. The observed enhancement in
concrete strength can be attributed to a reduction in voids,
while the decrease in slump value can be explained by an
increase in surface area, which results in greater water
absorption during the mixing process [40]. In a comparable
manner, the use of WGP in concrete was partially substi-
tuted with cement, ranging from 0 to 25% replacement,
while maintaining an identical water/cement ratio. At the
90-day mark, there was an observed increase in compres-
sive strength when 10% of cement was replaced with glass
powder. The study reported an upward trend in the
observed values up to a 20% substitution, followed by a
decline thereafter, as indicated [41]. Grinys et al. conducted
a study on rubberized concrete that was modified with
WGP. Their findings indicated a notable enhancement in
the properties of the concrete. The pozzolanic properties
of the glass powder exhibited superior performance during
the latter phase as compared to the 28th day. According to
Grinys [41], the cement is activated by the glass powder,
which facilitates the continuation of the hydration process
into subsequent stages and ultimately contributes to the
attainment of greater strength. Due to its high silica dioxide
content, glass powder exhibits pozzolanic properties. The
compressive strength of concrete containing glass powder
exhibits a decrease during the early stages of curing, fol-
lowed by an increase in strength during later stages. This
phenomenon can be attributed to the pozzolanic activity of
glass powder, which becomes more pronounced over time.
A decrease in unit weight is observed because of a lower
specific gravity in comparison with cement, as reported in
Khan et al. [42]. An experimental investigation was carried
out by Manikandan and Vasugi [43] to examine the effects
of incorporating 25–40% WGP into ground granulated blast
furnace slag, in combination with metakaolin, on the
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mechanical and fresh properties of the resultant concrete.
The study found that the ideal substitution rate for WGP
was 35%. Nevertheless, the augmentation in the concentra-
tion of WGP results in a reduction of the mechanical
characteristics.

Regarding the advantages and disadvantages of using
SF and glass waste separately, there is little information in
the literature on how combining the two substances might
affect how the binder is created with regular Portland
cement in ternary mixed concrete. To better understand
their synergy in concrete manufacturing, this research
tries to close this gap. The aim of this research is to open
the possibility of using inorganic solid wastes in mortar and
concrete manufacturing more often. The current investiga-
tion compares how WGP and SF affect high-strength con-
crete (HSC). Also, this investigation analyze the impact of
WGP on the mechanical and physical characteristics of HSC.

2 Experimental work

2.1 Materials

2.1.1 Cement

Commercially available OPC, confirming to ISO 9001:2015,
was used in the mixes. The chemical and physical charac-
teristics of OPC are displayed in Table 1.

2.1.2 Fine aggregate

Locally available natural sand is applied as fine aggregate
conforming to the requirements of No [44]. The fine mod-
ulus of 2.42 sulfate content is 0.1% with a density of fine
aggregate of 1,600 kg/m3. The grading of fine aggregate is
demonstrated in Table 2.

2.1.3 Coarse aggregate

The coarse aggregate used was crushed gravel with max-
imum sizes (14, 20 mm), and with a sulfate content of
0.08%, with a density of coarse aggregate of 1,600 kg/m3.
It conforms to the requirements of ASTM 33 [45]. The
grading of coarse aggregate is demonstrated in Table 3
(Figures 1 and 2).

2.1.4 SF

The SF was German production in powder form, with a
SiO2 content of 90%, a loss density of 1.1 g/cm3, a compacted
density of 1.6 g/cm3, and a specific gravity of 2.28. It passed
sieve No. 200 and the rest of sieve No. 400. It is a light to
dark gray, as demonstrated in Figure 3, and Figure 4(a)
shows the scanning electron microscope (SEM) images
for SF that is used in this study.

2.1.5 WGP

Waste glass is available locally, and it was collected, washed,
crushed, and milled with small milling for 10min, resulting
in particle size less than 38 µm, and the passed sieved No.
400 was used. The loss density of WGP is 0.91 g/cm3, a com-
pacted density is 1.33 g/cm3, and specific gravity is 2.22.
The chemical composition of WGP and the small mill is

Table 1: Physical and chemical characteristics of cement

Test name Contents (by wt%)

Specific surface (m2/kg) 310
Specific gravity 3.15
SiO2 20.39
CaO 62.20
MgO 2.36
L.O.I 2.41
Fe2O3 3.81
SO3 1.97
Al2O3 4.55

Table 2: Fine aggregate grading

Sieve size (mm) Percent passing (%)

10 100
4.75 93.5
2.36 84
1.18 75.5
0.6 50
0.3 20
0.15 4

Table 3: Grading of coarse aggregate for a different size

Sieve size (mm) Particle size (20mm) Particle size (14 mm)

25 100 —

19 95 100
12.5 60 95
9.5 37.5 55
4.75 5 7.5
2.36 2.5 2.5
1.18 0 0
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demonstrated in Table 4, and Figure 3(a) and (b) and Figure
4(b) show the SEM images for WGP that are used in this study.

Superplasticizer: Euniflow 612i was used in mixes. It was
produced in a light brown color in Germany; the properties of
the superplasticizer are demonstrated in Table 5 and Figure 4.

2.1.6 Water

It was distilled water used through this work for both
mixing and curing.

2.2 Mixing procedure

Two blends were designed to produce HSC using SF and
WGP, according to research by Samir A. Al Mashhad and

Dalya Hekmat Hameed [46]. In one blend, concrete pre-
pared with mixed cement was replaced with SF (A, B,
and C); in the other, concrete was prepared with WGP
instead of SF (A1, B1, and C1). It used three ratios of 5, 10,
and 15% by weight of cement with W\C + P for two blends
(0.45, 0.35, and 0.25), respectively. The slump was in the
range of 5, 10, and 15 mm for SF mix and 1, 5, and 10 mm
for waste glass mix. The laboratory mixing procedure was
the cement mixed with SF by hand until a homogeneous
mixture was obtained. The dry materials (fine and coarse
aggregate) were mixed using a portable cement mixer with
a drum capacity of 140 L. Then, water and plasticizer were
added for 4 min. Cubes with size 100mm × 100mm ×

100mm were used for the compressive strength test. The
molds were cleaned and lubricated for test specimens
before being used to create test specimens. Two layers
of concrete were formed in molds, and each layer was

Figure 3: (a) Small mill and (b) WGP and SF.
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1.18, 01.18, 00

20

40

60

80

100

120

0 5 10 15 20 25

Pe
rc

en
t P

as
sin

g 
%

Sieve size (mm)

par�cle size 14mm par�cle size 20mm.

Figure 2: Coarse aggregate grading.

4  Samir Saify et al.



crushed with a tamping rod to release any trapped air. The
samples were covered with nylon sheets to stop water
evaporation for 1 day after the concrete surface had been
troweled into a smooth finish. On the second day, the sam-
ples were opened and placed in a water tank for curing to
the day of testing after 7 and 28 days. In total, 18 cubes were
examined for compressive strength and density at 7 and 28
days, while ultrasonic pulse velocity (UPV) was tested at 28
days. The information on the concrete mix types and des-
ignations is presented in Table 6 and Figure 5.

3 Testing of concrete specimens

3.1 Compressive strength test

The compressive strength test has been performed depending
on B.S: 1881 [47]. It used a machine of 2,000 kN maximum
capacity, as demonstrated in Figure 6.

3.2 UPV

The UPV was measured using Pundit Lab+ according to
BS:12504 [36] requirements for HSC. It had a bandwidth

Figure 4: SEM images for (a) SF and (b) glass powder waste.

Table 4: Chemical composition of WGP

Composition Glass powder (%)

SiO2 73.6
CaO 8.04
SO3 0.23
Na2O 12.6
MgO 2.78
K2O 0.3
Fe2O3 0.7
Cr2O3 0.04
TiO2 0.025
AL2O3 1.4

Table 5: Typical properties of EU NIFLOW 612i

Properties* Value

Addition rate range 1 – 3 L per 100 kg cement (1.0–3%) v/w by
weight of cement

Appearance Light brown
Specific gravity 1.09 ± 0.02 at 20®C

*From the catalog of manufacture.

Table 6: Proportion of mixtures

Mix
symbol

Cement
(kg/m3)

SF
(kg/m3)

WGP
(kg/m3)

Sand
(kg/m3)

Gravel
(kg/m3)

Water
(kg/m3)

HRWR
(L/m3)

HRWR (wt% of
cementitious)

W/C
+ p

A 442 78 (15%) 665.6 1,144 130.0 10.30 1.5 0.25
B 468 52 (10%) 665.6 1,144 182.8 2.29 0.4 0.35
C 494 26 (5%) 665.6 1,144 234.0 0.57 0.1 0.45
A1 442 78 (15%) 665.6 1,144 130.0 10.30 1.8 0.25
B1 468 52 (10%) 665.6 1,144 182.8 2.29 0.4 0.35
C1 494 26 (5%) 665.6 1,144 234.0 0.57 0.1 0.45

Where (A, B, and C) concrete is prepared by mix cement replaced with SF (A1, B1, and C1). Concrete is prepared by WGP.
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between 24 and 500 Hz [48]. The UPV (Pundit Lab+) is
demonstrated in Figure 7.

4 Results and discussion

The influence of SF and WGP on features of concrete,
including compressive strength, UPV, and density, are
demonstrated in Figures 8–11.

Figure 8 shows that compressive strength increased
with different cement replacements by SF and WGP of 5,
10, and 15% by weight of cement. When there was a sub-
stitution of cement with SF with 5, 10, and 15%, the com-
pressive strength was 43, 52, and 73.5 MPa after 7 days and
was 52, 60, and 84 MPa, respectively, after 28 days. When

Figure 5: EUNIFLOW 612i.

Figure 6: (a) Portable cement mixer and (b) different specimen cubes.

Figure 7: Compressive strength machine.

Figure 8: UPV (Pundit Lab+).
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replacing SF withWGP with 5, 10, and 15%, the compressive
strength was 43, 54, and 78MPa after 7 days and 55, 63, and
88MPa, respectively, after 28 days. The maximum magni-
tudes of compressive strength were found at 15% during
the replacement of cement with WGP instead of SF. The
WGP gave the higher values of compressive strength than
the SF after 7 and 28 days, which might result from the
WGP pozzolanic materials’ high activity being the cause of
the increased compressive strength of concrete. Addition-
ally, the silica present in WGP reacted with calcium hydrate
formed throughout the hydration process to form calcium
silicate hydrate gel, which provides additional binding char-
acteristics and contributes to the increased compressive
strength of concrete [49].

The UPV in HSC was detected after 28 days of curing
values in concrete samples having 5, 10, and 15% SF was
4,870, 4,984, and 5,200 m/s, respectively, while concrete

specimens containing WGP (5, 10, and 15%) were 4,984,
5,245, and 5,300m/s, as demonstrated in Figure 9. The UPV
increased in concrete specimens containing 15% of WGP and
SF, while 5% in concrete specimens containing WGP and SF
caused UPV values to decrease.

Impact of replacing WGP and SF cement by on the den-
sity of concrete after replacement of SF with 5, 10, and 15%,
the density values were found 2,395, 2,388, and 2,440 kg/m3 at
7 days, while at 28 days, the density was 2,390, 2,432, and
2,456 kg/m3 respectively; however, during the replacement
of SF by WGP with 5, 10, and 15%, the density values were
2,375, 2,420, and 2,489 kg/m3 after 7 days and 2,422, 2,455, and
2,481 kg/m3 after 28 days, as demonstrated in Figure 10. Ade-
sina and Das [50] discovered that the substitution of 25%
fly ash with glass powder improved the performance of
designed cementitious composite mixes using glass powder,
reducing concrete voids and improving concrete density.
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When 15% cement was changed with WGP instead of
SF, the density and UPV values rose. Nonetheless, the WGP
provided greater values than the SF because the WGP was
finer than the SF and had high activity led to fill the gaps,
increasing both UPV and leading to denser concrete, as
seen in Figure 10. Figure 11 demonstrates the relationship
between UPV and density after using different replacement
ratios of both SF and WGP; however, WGP gives higher
density and UPV comparison with similar replacement
ratios of SF. Based on Aldeeky and Al Hattamleh [51], there
is a good coefficient of correlation (ranged 0.832 and 0.929)
between UPV and dry density, where in current research
the authors obtained similar coefficients of correlation
range (Figure 12).

5 Conclusion

To enhance the development sustainability goals, most of
industrial wastes have been reused or recycled based on
the composite of the selected materials; in the current
study, glass powder and SF waste were recycled to improve
the concrete strength. Depending on the findings of the
experimental work of this research, it has been reached:

The highest compressive strength values were discov-
ered when cement was replaced with 15% SF and SF was
replaced with WGP. After 7 and 28 days, the compressive
strength was 78 and 88 MPa, respectively. UPV values in
concrete specimens containing 15% powder glass, on the
other hand, are higher than in specimens containing 15%
SF. However, 5% WGP in the concrete mix reduced UPV
readings.

The density values increased as the percentage of WGP
in the mix increased, with up to 15% of the WGP instead of
SF. The density level was 2,482 and 2,481 kg/m3 after 7 and

28 days, respectively. Partial replacement of SF with WGP
at a ratio of 15%was observed. Therefore, WGP gave higher
mechanical (compressive strength) and physical properties
(density and UPV) than SF with a ratio of 15% and lower
properties with a ratio of 5%. WGP can be used instead of
SF in HSC production.
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