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 الخلاصة

  ددلنالان عدديجنلامددانالادد يلمنيعا دد ن مدد ننإب.نن يلأليدديمن عدديجنلمادد يلمنال  ددداةنلاا  لنهدددن سا دد  ال دديل  الهدد من ددبنال  ددث
ن نلماد ي  نالكميد ندنادر يسنالا يلمنالسقي  ندنال كدننألييم ج د  ن بنال اغيساتندنال اض ن نن   نالداجه ,نُ  انالا ي  ,ااجيهن

دنيلدددان ا ميدددلن ددد  ن دددبنالاددد يلمن ي ددداص ا ن سندددي  ننالعنيادددسننالظددسدمنال  د يددد .نهددديهنال اغيدددساتناددد نس بهدددين ددد ن  دددلنالان عددديج
  يبنلج يد نال يفديةنهددننإ ني ياتنن يلألييملا ي  ن  داةننللألييماسايبننأفضلنإب.ن بنصلالنال  ثندج ننANSYS ال    ةن
,ندنااغيدسنهديهنال يلد ن ند ناغييدسنالظدسدمنال  د يد .نف د ن يلد نال د د نن2دن1لج يد نالا د يانياتنن دبنالداجهد نند45 زادي ن
ف ن  يد  نالان عيجندنلج ي نن دبنالداجهد ,ن ين دينفد ن يلد ننال  يل هدنالاسايبنن30-/30+   تنكيبنالاسايبن-   ت-  يب-  يب

,نيدز ا ن  دلنالان عديجنأ دلاه.ندنلج يد نال ديلاتنال ديكدسةنالأفضدلهددنن 15-/15+   دتننكديبنالاسايدبن-   دت-   دتن-ال  د ن سة
نُ  انالا ي  .ننن يلاركي ن  نزيي ة  نزيي ةنن   نالداجه ندن

                    Abstract: 

The objective of the current research is to investigate the critical buckling load of fiber reinforced 

(FR) plate. The buckling load of an FR plate depends on a variety of variables, including aspect 

ratio, thickness of the laminate, fiber orientation of the laminae that make up the laminate, and the 

boundary conditions. These variables were related to the buckling load of laminated plates by 

analyzing a number of laminated plates using the commercially available ANSYS finite element 

software. Among other things, it was found that for the analyzed FR laminated plates simply 

supported on all edges, the optimal fiber orientation of the mat layers was   45 degrees for all 

thicknesses with aspect ratios of 1.0 and 2.0 , but that was not the case for the other boundary 

conditions considered. In the case of simple-simple-fixed-fixed, the +30/-30 orientation  produce 

the highest buckling load for all aspect ratios cases considered; while for free-fixed-fixed-fixed the 

+15/-15 did in the majority of the cases. For all cases of the boundary conditions, critical buckling 

loads increase with increasing aspect ratio and of course with increasing plate thickness. 

 

Keywords: buckling, fiiber reinforced, symmetric laminate plate, ANSYS.  

 

1. Introduction 

Over the last few decades, the critical buckling load of rectangular plates has been very extensively 

studied for a wide range of loading cases and boundary conditions (Huyton and York 2001). By 

contrast, far fewer studies have considered the buckling behavior of fiber reinforced laminated plate 
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structures, despite the practical importance of laminated plates in aircraft wing and fuselage panels. 

Fiber reinforced has been used for many years in the aerospace and automotive industries for their 

advantages such as lightweight, corrosion resistance, low thermal and electrical conductivity, high 

strength to weight and stiffness to weight ratios, and the ability to vary the properties over a wide 

range of values. Although various materials can be used as fiber reinforcement, the most common 

used are glass, carbon, and organic fibers (Barbero, 1999). The type of fiber used depends on the 

application, the properties desired, and the cost. Glass is the most common type of fiber used 

because of its low cost. The laminated plates are subjected to any combination of in plane, out of 

plane and shear loads during application. Due to the geometry of these structures, buckling is one of 

the most important failure criteria. 

 

      Many researchers were studied the buckling of rectangular plates. Exact and approximate 

solutions have been derived. There are many exact solutions for linear elastic isotropic thin plates; 

many treated by Timoshenko (1961). The mechanical properties of composite materials are often 

approximated as orthotropic. Buckling of orthotropic plates has been the subject of many 

investigations during the past. According to Vakiener, Zureick, and Will (1991), the first treatment 

of the stability of an orthotropic plate with one free edge was done by Trayer and March in 1931. 

An energy solution was presented for the stability of an elastically restrained flange with orthotropic 

properties. Ashton and Waddoups (1969) determined critical buckling loads for the general case of 

anisotropic plates. Using an approximate Rayleigh-Ritz solution, they presented solution techniques 

for the buckling load of laminated rectangular anisotropic plates. Ashton and Whitney (1970) 

formulated approximate buckling load equations for laminated plates. They treated the specially 

orthotropic laminate case as equivalent to homogeneous orthotropic plates. Khdeir (1989) 

investigated the stability of antisymmetric angle-ply laminated plates. Khdeir used a generalized 

Levy type solution to determine the compressive buckling loads of rectangular shaped plates. He 

showed the influence of the number of layers, lamina orientation, and the type of boundary 

conditions on buckling response characteristics of composite plates.  Pandey and Sherbourne (1991) 

used energy methods to present a general formulation for the buckling of rectangular anisotropic 

symmetric angle-ply composite laminates under linearly varying, uniaxial compressive force. The 

plates were subjected to four different combinations of simple and fixed boundary conditions. The 

results showed that = 45 degrees is the optimal fiber angle for laminates with simply supported 

loaded edges under a wide range of stress gradients. Chen (1994) used energy methods to determine 

the buckling mode change of antisymmetric angle-ply laminates. Chen evaluated numerically the 

effects of lamination angle, length-to-thickness ratio, aspect ratio, modulii ratio and boundary 

conditions on the change of buckling modes. Bao, Jiang and Roberts (1997) used finite element 

solutions to critically review this exact solution for buckling of rectangular orthotropic plates. They 

found that for plates with all edges simply supported the solution is accurate. Veres and Kollar 

(2001) presented closed form approximate formulas for the calculation of rectangular orthotropic 

plates with clamped and/or simply supported edges. They used these formulas and finite element to 

compare to the exact solutions obtained by Whitney and the formulas were found to over estimate 

the buckling load by less than 8%. 

 

2. Macromechanics of a Lamina 

The goal of macromechanics of a lamina is to determine the stress-strain behavior of an individual 

lamina. Since a laminate is made up of laminae with various fiber orientations, the stress-strain 

relationships for a lamina is first expressed in terms of the lamina coordinate system and then 

transformed to the global coordinate system of the laminate. This is necessary in order to determine 

the stiffness of a laminate in terms of the global coordinate system. 

 

2.1 Stress-Strain Relationship in a Lamina 

Using contracted notation, the generalized Hooke‟s law relating stresses to strains is 
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                          }]{[}{ jiji C                                                                                                  (1) 

where, i are the stress components, Cij is the 6 * 6 constitutive matrix, and j  are the strain 

components. The stiffness matrix has 36 constants, but by using energy methods it can be shown 

that the stiffness matrix is symmetric (Cij=Cji) and therefore only 21 of the constants are 

independent (Jones, 1999). The relationship in Eq.(1) characterizes an anisotropic material, which 

has no planes of symmetry for the material properties. For a lamina, which is considered to be 

orthotropic, the stiffness matrix has only nine independent constants. 

 

2.1.1 Lamina Coordinate System. 
 Assuming a state of plane stress in the 1-2 material plane gives: 
 

  0312333                                                                                                 (2) 

 

which reduces Hooke‟s law to: 
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where [Q] is the reduced stiffness matrix. The components of the reduced stiffness matrix are 

defined in terms of the in-plane mechanical properties of the lamina and are 
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2.1.2 Global Coordinate System. 
The response of a laminate to loading in the global coordinate system is found using the stress-

strain relationships, determined in terms of the global coordinate system, of each lamina. Generally, 

Eq. 3 must be transformed to reflect rotated fiber orientation angles. The following relationship 

reflects this transformation [Brian,1998 ]: 
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where [ Q ] is the transformed reduced stiffness matrix, which is found using the relation 

 

                                 T
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                                                                                                  (6) 

 

where the superscript T denotes the matrix transpose and [T] is the transformation matrix, which is  
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where m = cos θ, n = sin θ and θ is the angle between the lamina‟s coordinate system and the global 

coordinate system as shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Lamina On- and Off-axis Configurations 

(Staab, 1999) 

  

Using Eq. (6) and Eq. (7), the components of the transformed reduced stiffness matrix are 
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      Note that the transformed reduced stiffness matrix, [ Q ], has terms in all positions in the matrix 

as opposed to the presence of zeros in the reduced stiffness matrix, [Q]. Therefore, in terms of the 

global coordinate system, a generally orthotropic lamina appears to be anisotropic, since shear-

extension coupling exists (Jones, 1999). 

 

2.2 Variation of Strain and Stress in a Laminate 

The strain of any point in a laminate that has undergone deformation can be determined by 

considering the geometry of the undeformed and deformed cross section shown in Fig. 2. Point B in 

this figure is located at the mid-plane and in going from the undeformed to the deformed shape 

Point B undergoes a displacement in the x-direction of uo. (Note that the symbol „nought‟ (o) 

designates mid-plane values of a variable) Since, due to Kirchhoff‟s hypothesis, line ABCD 

remains straight under deformation of the laminate, the displacement of arbitrary point C is 

 

                                 coc zuu                                                                                                    (9) 

 

 

 

 

 

y 

x 


y 

2 

1 y(2) 

x(2) 



 5 

 

 

 

 

 

 

 

 

 

Figure 2: Geometry of Deformation (Jones, 1999) 

 

 

Based on Kirchhoff‟s hypothesis, under deformation, line ABCD remains perpendicular to the mid-

plane; therefore,  is the slope of the laminate mid-plane in the x-direction, that is, 
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The displacement, u, at any point z through the thickness of the laminate is 

                                  
x

w
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Similarly, the displacement, v, in the y-direction is 

                                 
y

w
zvv o

o



                                                                                               (12)  

According to Kirchhoff‟s hypothesis 0 yzxzz  , therefore the remaining non-zero laminate 

strains are x , y , and xy . Combining these relationships with Eq. 5 gives the following expression 

for the kth
 layer: 
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    Even though the strain variation is linear through the thickness of a laminate, the stress variation 

is not necessarily linear through the thickness of a laminate because the transformed reduced 

stiffness matrix, [ Q ], can be different for each lamina in a laminate. 

    By integrating through the thickness of the laminate, the net force resultants and moment 

resultants can be calculated. 
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    where zk and zk-1 are defined in the geometry of an N- layered laminate, which is depicted in Fig. 3. 
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Figure 3: Geometry of an N-Layered Laminate (Jones, 1999) 

 

Combining these relationships with Eq. 13 gives: 
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       The extensional stiffness matrix is [A], the bending-extension coupling stiffness matrix is [B], 

and the bending stiffness matrix is [D]. The presence of matrix [B] implies that there is a coupling 

between bending and extension, therefore if a laminate has Bij terms, pulling on the laminate will 

cause bending and/or twisting of the laminate. The terms A16 and A26 represent shear-extension 

coupling, which means coupling exist between shear stress and normal strains and between normal 

stresses and shear strain, in a laminate. The terms D16 and D26 represent bending-twisting coupling in 

a laminate. The [A], [B], and [D] matrices are very useful in understanding the behavior of a 

laminate under given loading conditions and are used frequently in the analysis of composites. 

 

3. Laminate Plate Buckling 

This section deals with the analytical determination of the critical buckling load of various types of 

plates. Buckling of a plate occurs when the in-plane compressive load gets large enough to cause a 

sudden lateral deflection of the plate. Initially a plate under compressive load undergoes only in-

plane deformations, but as this compressive load gets large, the plate reaches its critical buckling 

load, the load at which a sudden lateral deflection of the plate takes place. 

    The critical buckling load of a plate will be determined in two ways: (1) using previously derived 

equations, and (2) using the finite element program ANSYS, version 9. In using ANSYS to 

determine buckling loads for laminated plates, the effect of layer orientation, boundary conditions, 
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plate aspect ratio, and laminate thickness on the critical buckling load of laminated plates is taken 

into consideration. 

     A general plate subjected to an in-plane load is shown in Fig. 4, where Nx is critical buckling 

load. The aspect ratio, which is an important quantity in plate buckling, is defined as length „a‟ 

divided by width „b‟. The boundary condition notation used (e.g., free-fixed-fixed-fixed) refers to 

the boundary conditions along edge (x = 0)-(y = 0)-(x = a)-(y = b). 

 

 

 

 

 

 

 

  

 

   

Figure 4: Plate Subjected to Uniform Uniaxial In-Plane Compression (Jones, 1999) 

 

3.1 Analytical Critical Buckling Load of Laminated Plates Using Previous Derived Equations 

 

Buckling of FR laminated plates is a complicated topic, and buckling solutions for only a few 

laminate cases have been published. The solution that will be presented is for a symmetric, specially 

orthotropic laminated plate simply supported on all edges. A specially orthotropic laminate has no 

shear-extension coupling (A16 = A26 = 0), no bend-twist coupling (D16 = D26= 0), and no bending-

extension coupling ([B] = 0). The critical buckling load for a symmetric, specially orthotropic 

laminated plate simply supported on all edges is, (Jones, 1999) 
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Where m is the number of half-waves of the buckled shape in the x-direction 

As can be seen by Eq. 19, the buckling load is dependent on the components of the bending 

stiffness matrix. Eq. 19 will produce erroneous results for laminates with nonzero values of D16 and 

D26. For laminates that have values for D16 and D26 (bend-twist coupling exists) the principal 

influence is to lower the buckling load obtained with Eq. 19. Therefore, the specially orthotropic 

solution is considered an unconservative approximation to the general class of laminates that 

usually have bend-twist coupling. The approximation of a general laminate by a specially 

orthotropic laminate can result in errors as big as a factor of 3 (Jones, 1999). A more accurate 

solution for the buckling load of general laminated plates (laminates having no zero terms for all 

components of the bending stiffness matrix) has been done, but the solution procedure is 

complicated. Eq. 19 is considered suitable for this work and is compared to ANSYS buckling load 

results for laminates simply supported on all edges. 

 

3.2 Critical Buckling Load of Laminated Plates Using ANSYS  

 

Critical buckling loads of various plates were found using the commercially available finite element 

software, ANSYS, version 9. Using ANSYS, an eigenvalue buckling analysis was done to 

determine the critical buckling load. Eigenvalue buckling analysis predicts the bifurcation point (the 

critical buckling load) of an ideal linear elastic structure. It should be noted that using this approach 

will often yield unconservative results when compared to “real-world” structures which rarely ever 

reach their theoretical buckling load due to imperfections, non-linearties, etc. For the purpose of this 
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research, eigenvalue analysis is an appropriate tool to use since the concern is to see the general 

effects, on the critical buckling load, of changing the make up, physical dimensions, and/or 

properties laminate plates. 

    ANSYS was used to analyze the critical buckling load of various laminated plates in order to see 

how changes in the laminated plate would affect the buckling load. The changes to the laminated 

plate were based on four variables: boundary condition, thickness, aspect ratio and orientation of the 

stitched mat layers used in FR laminates. The laminated plates were analyzed under three different 

boundary conditions: simple-simple-simple-simple, free-fixed-fixed-fixed, and simple-simple-

fixed-fixed. Three different plate thicknesses, t, were used: 2, 3, and 4 mm. Four different aspect 

ratios (a/b) were considered: 1.0, 1.2, 1.5, and 2.0. The length, a, was held constant at 0.5 m and the 

width, b, was varied between 0.5, 0.41666, 0.3333, and 0.25 m. The mat orientation of the 

  //90 stitched mat was varied for  =15, 30, 45, and 60 degrees. Combinations of each of 

these variables were analyzed for a laminated reinforced plate consist of 12 layers using ANSYS. 

 

       The element used for the laminated plates was Shell99, which is an 8- node linear layered 

structural shell element (See Fig. 5). The element has six degrees of freedom at each node: 

translations in the x, y, and z directions and rotations about the nodal x, y, and z-axes. The Shell99 

element is perfectly suited for composites materials because it allows entry of up to 250 layers. 

Each layer has its own thickness, material property, and orientation. For laminated FR composites, 

the direction of the fibers determines the layer orientation. For each layer, the layer material 

properties (E1, E2, 12, G12, G13, and G12 listed in table 1), the orientation (angle between the layer 

and global coordinate system, , as shown in the off-axis configuration of Fig. 1), and the thickness 

are inputted.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Shell99 Element (ANSYS Element Reference) 

 

 

Table 1: Micromechanical Properties of Stiffened Layers in a Laminate E-glass/ epoxy 

[Barbero, 1999] 

 

E1  

GPa 

E2 

GPa 

v12 G12=G13 

GPa 

G23 

GPa 
37.8522 6.57 0.3001 2.3924 3.0681 

 

4. Results and Discussion 

 

Table 2, show the critical buckling loads obtained for a laminated plate simply supported on all 

edges using Eq. 19 and ANSYS. The ANSYS results for simply supported laminated plates with 
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stacking sequence of 90/+15/-15, as expected, are less than the critical buckling load determined by 

using the specially orthotropic approximation (Eq. 19), with a maximum percent difference of –27.4 

% and a minimum percent difference of –1.85 %. Also as expected, the 0.004 m thick plates, which 

had the highest values for D16 and D26, gave the highest percent difference. As aspect ratio and 

thickness increases, the effect of bend twist coupling on the buckling load increases. This 

comparison proved the reliability of using ANSYS with high efficiency.  

 

    What wasn‟t expected was that most of the laminated plates with aspect ratio of 2.0 had, at its 

critical buckling load, a mode two buckled shape (m = 2, see Fig. 6). The laminated plates that had 

a mode two-buckled shape are indicated with the larger bold numbers in Table 2. At first when 

using Eq. 19 to predict the buckling load of the laminates, m = 1 was used in the equation, but after 

the ANSYS results were acquired, Eq. 19 was re-evaluated for aspect ratio of 2.0 using m = 2. After 

using m = 2 in Eq. 19, the equation did produce lower buckling loads for aspect ratio of 2.0.  

 

Table 2: Laminate Plate Buckling Loads for (90/+15/-15): 

Simple-Simple-Simple-Simple 

 
Percent 

Difference 

ANSYS Critical 

Buckling Load (Nx)cr 

(kN) 

Calculated Critical 

Buckling Load (Nx)cr (kN) 

Plate Thickness 

(m) 
Aspect Ratio 

(a/b) 

b 

(m) 

a 

(m) 

-1.85% .08.8 .0823 0.002 1 0.5 0.5 

-3.4% 10.33 10.68 0.002 1.2 .04166 .05 

-4.2% 1033. 10385 0.002 1.5 .03333 .05 

-8.8% 626.6 62761 0.002 2 .025 .05 
       

-6.2% 20727 20896 0.003 1 0.5 .05 

-7.1% 30482 30729 0.003 1.2 .04166 .05 

-8.5% 40483 40864 0.003 1.5 .03333 .05 

-17.8% 52475 62441 0.003 2 .025 .05 

       
-10.2% 60438 70.94 0.004 1 0.5 .05 

-11.4% 80218 90154 0.004 1.2 .04166 .05 

-14.8% 1.0572 120136 0.004 1.5 .03333 .05 
-27.4% 6.2126 662465 0.004 2 .025 .05 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6: Mode 2 Buckled Shape, (m = 2) 

 



 1. 

The effect of mat orientation on the critical buckling load is illustrated in Fig. 7. It can be observed 

that for the laminated plate simply supported on all edges, the laminated plates with mats orientated 

at 90/+45/-45 yielded the greatest buckling load for all thicknesses with aspect ratios of 1.0 and 2.0. 

For an aspect ratios of 1.2 and 1.5 the laminated plates with mats orientated at 90/+30/-30 yielded 

the greatest buckling load for all thicknesses considered. The results for the laminated plates simply 

supported on all edges agree, except for an aspect ratio of 1.2 and 1.5, with the results of Pandey 

and Sherbourne [1991 ] who analytically observed that a +45/-45 orientation yielded the greatest 

buckling load for simply supported laminated plates under uniform compressive loading. 
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In the case of simple-simple-fixed-fixed shown in Fig. 8, the +30/-30 orientation  produce the 

highest buckling load for all aspect ratios cases considered; while for free-fixed- fixed- fixed the 
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Figure 7: ANSYS Buckling Load versus Mat orientation, Simple-Simple-Simple-Simple  

(a) for a/b=1, (b) for a/b=1.2, (c) for a/b=1.5, and (d) for a/b=2.(+, t=0.002m, ,t=0.003m, 

,t=0.004m)     
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+15/-15 did in the majority of the cases as shown in Fig. 9. Also, it is clear that buckling load seems 

insensitive to changes in mat orientation when the plate thickness decrease and show almost flat 

curves for buckling load versus mat orientation. For all cases of the boundary conditions, critical 

buckling loads increase with increasing aspect ratio and of course with increasing plate thickness. 

   From the results, it can be conclude that each of boundary conditions, mat orientation, aspect 

ratio, and plate thickness have a considerable effect on the critical buckling load. Thus, it is very 

important to take care in the design of the laminated fiber reinforced plate subjected to in-plane 

compressive load. 
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Figure 8: ANSYS Buckling Load versus Mat orientation, Simple-Simple-Fixed-Fixed  

(a) for a/b=1, (b) for a/b=1.2, (c) for a/b=1.5, and (d) for a/b=2.(+, t=0.002m, ,t=0.003m, 

,t=0.004m)     
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