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A B S T R A C T

The natural convection and entropy generation during double-diffusive MHD natural convection in a tilted
sinusoidal corrugated porous enclosure is investigated numerically in this work by using heatline visu-
alization technique. The top and bottom horizontal walls are assumed as adiabatic and non-diffusive, while
the left and right vertical corrugated sidewalls are maintained at a constant hot and cold temperatures
and concentrations respectively. The flow in the enclosure is subjected to an inclined magnetic field. The
enclosure is filled with an electrically conducting fluid [Pr = 0.024] saturated with a porous media. The
numerical computations are presented for various values of Rayleigh number (Ra), Hartmann number
(Ha), Lewis number (Le), Darcy number (Da), buoyancy ratio (N), magnetic field orientation angle (φ)
and enclosure inclination angle (Φ). In addition, the entropy generation due to fluid friction, thermal gra-
dients, diffusion, and magnetic field beside the total entropy generation are studied and discussed. It is
found that the flow circulation decreases strongly when the magnetic field applied horizontally and the
enclosure is considered vertical. Heatline visualization concept is successfully applied to the considered
problem. The average Nusselt number decreases when the Lewis number increases, while the average
Sherwood number increases when the Lewis number increases. Also, both average Nusselt and Sher-
wood numbers increase when the Darcy number and buoyancy ratio increase. Moreover, the results show
that the entropy generations due to magnetic field when the enclosure is subjected to the horizontal
magnetic field are higher than the corresponding values when it subjected to the vertical magnetic
field.

© 2016, The Authors. Publishing services by Elsevier B.V. on behalf of Karabuk University

1. Introduction

Natural convection in corrugated or wavy enclosures has an in-
creasing attention in the last ten years. This interest hasmany reasons.
One of them, is due to the many technological application of this ge-
ometry like in electronic packages, micro-electronic devices, solar
heaters, electric machinery and in geometrical design require-
ments. The important point one can observe in the open literature
is that in spite of the significant practical applications of this geom-
etry, the number of published papers dealing with it is still very
limited compared with those discussing classical square, rectangu-
lar or inclinedwalled geometries. This is due to its complex geometry,
which makes the construction of the mesh generation and the nu-
merical modeling of it are very difficult to build. Moreover, in

corrugated or wavy enclosures, the orientation of their sidewalls is
not uniform, but it changes from point to point, which increases also
the complexity of the numerical simulation. Furthermore, in wavy
enclosures many new important factors that are not encountered in
classical geometries must be put in the mathematical model such as
wave ratio, inter-wall spacing and amplitude of surface waves. These
reasons make the published papers deal with this geometry are very
restricted [1–6]. Ali andHusain [7] investigated numerically the natural
convection problem in a square enclosure having two vertical side-
walls of vee-corrugated geometry. They concluded that for high
Grashof number, the heat transfer rate decreased when the corru-
gation was decreased. Saha et al. [8] performed a numerical analysis
using finite element method on steady-state natural convection in
a vee-corrugated square enclosure with discrete heating from below.
The length of the heat sourcewas 20% of the total length of the bottom
wall. The non-heated parts of the bottomwall and entire upper wall
were considered adiabatic. The Grashof number based on the en-
closure height varied from 103 to 106, corrugated frequency varied
from 0.5 to 2 and Prandtl number was taken as 0.71. The results
showed that the average Nusselt number was maximum for low
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corrugation frequency but a reverse trend was found for high cor-
rugation frequency. Hasan et al. [9] numerically investigated the
natural convection of air in a two-dimensional laminar steady-
state incompressible fluid flow in a modified square enclosure with
a sinusoidal corrugated top surface for different inclination angles.
A constant flux heat source was flush mounted on the top sinusoi-
dal wall, modeling a wavy tin shaded room exposed to sunlight. The
results were obtained for Rayleigh number (Ra) ranging from 103 to
106. The results showed that the convective phenomenawere greatly
influenced by the variation of inclination angles. Saha et al. [10] carried
out a numerical simulation to study the effects of discrete isoflux heat
source size and angle of inclination on natural convection inside a
sinusoidal corrugated inclined enclosure. They concluded that for
various heat source sizes, when the angle of inclination was in-
creased, the overall Nusselt number was increased also. Hussain et al.
[11] studied numerically the steady natural convection phenome-
non in a square inclined enclosure with vertical vee-corrugated
sidewalls and horizontal top and bottom surfaces. A discrete heat flux
strip of 24% of the total lengthwas flush-mounted on the bottomwall,
while the other non-heated parts of the bottomwall and the topwall
were considered adiabatic. The two vee-corrugated sidewalls were
maintained at constant cold temperature. They concluded that the
natural convection phenomenon was greatly affected by increasing
the enclosure inclination angle. Bakier [12] studied numerically, by
using the finite difference scheme, the free convection in partially
C-shape open ended enclosure filledwithwater-based nanofluid. They
concluded that the nanofluid increased both the rate of the heat and
mass transfer in the enclosure. Also, he concluded that stream func-
tion was decreased by increasing the aspect ratio. Mliki et al. [13]
used the Lattice Boltzmannmethod to simulate numerically the free
convection in an L-shaped enclosure filled with copper–water
nanofluid. They concluded that heat transfer was increasedwhen the
aspect ratio was low.

The natural convection in wavy enclosures filled with electri-
cally conductingfluid subjected to amagnetic fieldor afluid saturated
with a porousmedia has awide range of industrial applications such
as sewage purification in sand beds, water storage in heavy porous
rocks and nuclear fusion. Examples of recent studies considering
the natural convection in wavy enclosures or surfaces subject to a
magnetic field or filledwith a porousmedia are reviewed in the fol-
lowing sections. Kumar [14] studied numerically the free convection
induced by a vertical wavy surface with heat flux in an enclosure
filled with porous medium. He concluded that the surface temper-
ature was very sensitive to drifts in undulations and amplitude of
thewavy surface.Misirlioglu et al. [15] numerically investigated the
steady-state free convection inside a cavitymade of two horizontal
adiabatic straightwalls and two isothermal vertical bent-wavywalls
and filled with a fluid-saturated porous medium. The wavy walls
were assumed to followaprofile of cosine curve. Flowandheat trans-
fer characteristics (isothermal, streamlines and local and average
Nusselt numbers) were investigated for some values of Rayleigh
number, cavity aspect ratio and surface waviness parameter.
Misirlioglu et al. [16] performed a numerical investigation by using
the finite element method of free convection inside a cavity made
of two horizontal adiabatic straight walls and two isothermal ver-
tical wavy walls filled with a heat-generating porous medium.
Simulations were carried out for a range of wave ratio [λ = 0 to 0.6],
aspect ratio [A = 1 to5] andRayleighnumber [Ra = 10 to1000]. Results
were presented in the form of streamlines, isotherms and local and
average Nusselt numbers. Khanafer et al. [17] carried out a numer-
ical investigation to analyze natural convection inside a cavity with
a sinusoidal vertical wavy wall and filled with a porous medium.
The vertical walls were isothermal while the top and bottom hor-
izontal straightwallswerekept adiabatic. The implicationsof Rayleigh
number, number of wavy surface undulation and amplitude of the
wavy surface on the flow structure and heat transfer characteris-

tics were investigated in detail while the Prandtl number was
considered equal to unity. Mushatet [18] numerically studied the
natural convection in an inclinedwavy porous cavity. The twowavy
walls were differentially heated, while the upper and lower walls
were insulated. The problem was simulated for different values of
Rayleigh number [50 ≤ Ra ≤ 500] and angle of inclination
[ 0 90° ≤ ≤ °α ]. He concluded that the angle of inclination, number
of undulation, the amplitude and Rayleigh number had a signifi-
cant effect on the flow and thermal field. Also, it was found that the
heat transfer rate was increased as angle of inclination increased.
Mansour et al. [19] studied numerically by using thermal non-
equilibrium model the steady natural convection inside wavy
enclosureswith the effect of thermal radiation. The inter-phase heat
transfer coefficient effect, thermal radiation effect, themodified con-
ductivity ratio effect and theRayleighnumber effectwere investigated
and discussed. They concluded that the average Nusselt number de-
creased by increasing the modified conductivity ratio. Whereas,
increasing the radiation parameter led to the increase in the average
Nusselt numbers for fluid and solid phases. Saha [20] studied nu-
merically the magnetohydrodynamic natural convection in a
sinusoidal corrugatedair-filled enclosurewithdiscrete isofluxheating
from below. The results explained that streamlines and isotherms
were affected significantly for high Grashof number and zero Hart-
mann number. Hussain et al. [21] analyzed numerically the effects
of the longitudinalmagnetic field and the heat source size on natural
convection in a tilted sinusoidal corrugated enclosure for different
values of enclosure inclination angles. A constant heat flux source
was discretely embedded at the central part of the bottom wall,
whereas the remaining parts of the bottomwall and the upperwall
were assumedadiabatic. The twovertical sinusoidal corrugatedwalls
were maintained at a constant low temperature. An empirical cor-
relation was developed by using Nusselt number versus Hartmann
number, Rayleigh number and enclosure inclination angle. They con-
cluded that the increase in the Hartmann number and the ratio of
heating element to enclosurewidth decreased the Nusselt number.
Moreover, double-diffusive natural convection in corrugated orwavy
enclosures or surfaces has an important applications in various en-
gineering fields such as food industries, solidification in material
processing, chemical engineering, cement manufacturing and oil
tanks. In this type of heat transfer process, the natural convection
is generated due to both temperature and concentration effects.
RathishKumar andKrishnaMurthy [22] analyzed the combinedheat
andmass transfer process by natural convection from a corrugated
vertical surface immersed in a non-Darcy porous medium. Krishna
Murthy et al. [23] investigated numerically the double diffusive free
convection due to corrugated vertical surface immersed in a fluid
saturated semi-infinite porous medium under Darcian assump-
tions. The effect of various parameters such as wave amplitude (a),
Lewis number (Le), buoyancy ratio (B), and Soret (Sr) and Dufour
(Df) numbers were analyzed through local and average Nusselt
number, and local and average Sherwood number plots. Rahman
et al. [24] performed a numerical study of double-diffusive buoy-
ancy inducedflow in a triangular cavitywith corrugated bottomwall.
The results were presented for various wave lengths (0.1 ≤ λ ≤ 1.0),
Rayleighnumber (103 ≤ Ra ≤ 105) andPrandtl number (0.071 ≤ Pr ≤ 7).
Itwas found thatwave lengthplayedadominant role onflowstrength
for any Rayleigh numbers. Nikbakhti and Khodakhah [25] made a
numerical investigation by using the finite differencemethod about
the double diffusive natural convection in a cavity partially heated
and cooled from sidewalls. They found that in the aiding flow, the
average Nusselt number was increased with increasing the buoy-
ancy ratio. From theother side, theheat transfer process is considered
as an irreversible process, so it already generates entropy. There-
fore, to get an optimumheat transfer process it is very recommended
to reduce the entropy generation. However, the entropy generation
due to natural convection in a corrugated or wavy enclosure has
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been considered by limited authors. Mahmud and Islam [26] simu-
latednumerically using thefinite-volumemethod the free convection
and entropy generation inside an inclined wavy walled enclosure.
The second law of thermodynamics was also applied to predict the
nature of irreversibility in terms of entropy generation. Simulation
was carried out for a range of wave ratio [λ = 0.0–0.4], aspect ratio
[A = 1.0–2.0] andRayleighnumber [Ra = 1–107] for afluidwithPrandtl
number equal to 0.7 while angle of inclination (θ) was varied from
0° to 360° with 15° interval. They concluded that the entropy gen-
eration due to fluid friction and heat transfer were significantly
affected by changing the inclination angle of the wavy enclosure.
Mahmud and Fraser [27] performed a numerical investigation using
finite volumemethodof free convection andentropygeneration char-
acteristics inside a vertical in-phase wavy cavity. The wavy walls
were assumed to follow a profile of cosine curve. Results were pre-
sented for a range of wave ratio [λ = 0 to 0.6], aspect ratio [A = 1 to
4] and Rayleigh number [Ra = 1 to 107]. Mahmud et al. [28] ana-
lyzed the natural convection and entropy generation characteristics
insidewavy enclosures filledwithmicrostructures. Esmaeilpour and
Abdollahzadeh [29] studiednumerically theeffects of Grashof number
and volume fraction of Cu-water nanofluid on natural convection
and entropy generation inside a wavy enclosure. Calculation were
performed forGrashof numbers from104 to106, nanoparticles volume
fraction from 0% to 10% and surface waviness ranging from 0.0 to
0.4 for different patterns of wavy enclosure. The results showed that
the heat transfer rate decreased as nanoparticles volume fraction
and Grashof number increased. Also, the nanoparticles can be used
to decrease the entropy generation. Das et al. [30] investigated nu-
merically the entropy analysis onMHDpseudo-plastic nanofluidflow
through a vertical porous channelwith convective heating. They con-
cluded that the major source of the entropy and the heat transfer
in the channel was their active walls. Eegunjobi and Makinde [31]
utilized numerically the second law analysis for MHD permeable
channel flow with variable electrical conductivity and asymmetric
Navier slips. They computed both the entropy generation and the
Bejan numbers by using the obtained temperature and velocity pro-
files. Mkwizu and Makinde [32] investigated numerically, by using
the finite difference method, the entropy generation in a variable
viscosity channel flow of water-based nanofluids with convective
cooling. The results of the skin friction, Nusselt number, entropy gen-
eration and the Bejan number were displayed graphically and
discussed extensively. Extra references about the entropy genera-
tion can be found in References 33–35.

Nowadays, heatline and heatfunction method is considered a
very efficient method for visualization of natural convection com-
pared with classical method by isotherms. In fact, a heatline is
similar to a streamline, but it visualizes net energy flow in a
convection heat transfer situation. The heatline concept was sug-
gested for the first time by Kimura and Bejan [36] and represented
mathematically by heatfunctions, which were related to Nusselt
number based on some dimensionless form. For comprehensive
review about heatlines concept, one can go back to Costa [37].
Dalal and Das [38] investigated numerically using finite-volume
method the natural convection inside a two-dimensional cavity
with a wavy right vertical wall. The bottom wall was heated by a
spatially varying temperature while other three walls were kept
at constant lower temperature. The heatfunction equation in the
transformed plane was solved in terms of dimensionless vari-
ables. The results were presented for three different undulations
(1–3) with different wave amplitude (0.00–0.10) and a fluid having
Prandtl number 0.71. Basak et al. [39] performed an analysis of
heatlines for natural convection within porous trapezoidal enclo-
sures to investigate the effect of uniform and non-uniform heating
of bottom wall. The results were presented by using heatlines,
isotherms and streamlines. They concluded that the Darcy number
had a significant effect on heatlines distribution. Kaluri and Basak

[40] performed a heatline analysis of thermal mixing due to natural
convection in discretely heated porous cavities filled with various
fluids. They concluded that the heatline approach was found to be
very useful to analyze thermal mixing in square cavities with
discrete heat sources filled with fluid-saturated porous media by
visualizing the heat distribution. Basak and Chamkha [41] pre-
sented a heatline analysis on natural convection for nanofluids
confined within square cavities with various thermal boundary
conditions. Enhancement of heat transfer rates were illustrated
by isotherms associated with trajectory of heat flow via heatline
method. Two types of boundary conditions were considered: hot
left and cold right walls in the presence of adiabatic horizontal
walls (case 1) and hot bottom wall with cold side walls in pres-
ence of adiabatic top wall (case 2). More references related to
heatlines concept can be found in References 42–44.

In the present paper, a numerical analysis of double-diffusive
MHD natural convection and entropy generation inside a tilted si-
nusoidal corrugated porous enclosure is performed. Also, the
visualization of results are presented by using heatfunctions ap-
proach. The use of this visualization tool is increased considerably
to present the numerical results of the convection heat transfer prob-
lems. Our paper contains many original contributions, and among
them is a paper considered as the first study to link between many
effects such as double-diffusive, magnetohydrodynamic, porous
medium and entropy generation within natural convection in a
complex geometry like a tilted sinusoidal corrugated porous
enclosure.

2. Mathematical model

Fig. 1 illustrates a schematic diagram of the considered two-
dimensional tilted corrugated porous enclosure with dimensions
(L × L). The left and right vertical corrugated sidewalls of the cavity
are maintained at fixed but different temperatures (Th,Tc) and con-
centrations (Ch, Cc) respectively. The top and bottom horizontal walls
are considered adiabatic and non-diffusive. The gravitational force
acts in a vertical downward direction. The enclosure is filled with
an electrically conducting fluid (Pr = 0.024) subjected to an in-
clined magnetic field (B) and saturated with a porous media. The
enclosure is inclined at an angle (Φ) that is varied as [Φ = 0°, 30°,
60° and 90°], while the magnetic field orientation angle is varied
as [φ = 0°, 30°, 45°, 60° and 90°]. The shape of wavy vertical walls
is taken as a sine wave with single corrugation frequency and the
corrugation amplitude (λ) has been taken fixed at 20% of the en-
closure length. The Rayleigh number range is [Ra = 103–106], the
Hartmann number (Ha) is varied as [Ha = 0, 25, 50,75 and 100 ],
the Darcy number (Da) is varied as [Da = 10−2, 10−3, 10−4 and 10−5],
the Lewis number (Le) is varied as [Le = 1, 2, 4, 6, 8 and 10] and buoy-
ancy ratio (N) is varied as [N = 0,1, 2,4, 6, 8 and 10]. The following
assumptions are assumed in the present work:

1. The flow is assumed laminar, incompressible, two-dimensional
and steady.

2. A thermal equilibrium occurs between the electrical conduct-
ing Newtonian fluid and the porous media and the latter is
modeled based on the Darcy-Brinkman model.

3. The fluid physical properties are assumed constant and density
variations are ignored except in buoyancy term, which is modeled
according to Boussinesq approximation and changes with tem-
perature and concentration only.

4. Forchheimer’s inertia, viscous dissipation, radiation heat ex-
change and Joule heating are neglected.

The continuity, Navier–Stokes, energy, concentration, heat func-
tion equations in their non-dimensional forms are defined as:
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2.1. Entropy generation

Entropy generation due to fluid friction (SΨ), thermal gradients
(Sθ), diffusion (SC), magnetic field (SM) and total entropy genera-
tion (ST) in their non-dimensional forms are defined as:
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2.2. Boundary conditions

The dimensionless boundary conditions that combined with gov-
erning equations (1–6) for the present study can be written as
follows:
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3. Numerical procedure

The governing equations (1)–(6) are solved using the control
volume method described by Ferziger and Peric [45]. The compu-
tation domain is divided into rectangular control volumes with one
grid located at the center of the control volume that forms a basic
cell. The set of conservation equations are integrated over the control
volumes, leading to a balance equation for the fluxes at the inter-
face. In the course of discretization, the power scheme and a blending
of second order upwind scheme and central differencing are re-
spectively utilized for the convection and diffusion terms respectively.
The system of equations formulated in terms of primitive

Fig. 1. Schematic diagram and coordinate system of the physical domain with bound-
ary conditions.
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variables is solved using the strongly implicit procedure (SIP) solver
based on lower-upper decomposition (ILU) [46]. The pressure–
velocity coupling in the momentum equation needs iterative
procedure based on a pressure correction method where SIMPLER
algorithm is coupled to the SIMPLEC algorithm, for faster
convergence.

Non-uniform grids are implemented in the present investiga-
tion, allowing a fine grid spacing especially near the two corrugated
sidewalls to capture the rapid changes in the dependent variables.
Convergence with mesh size was verified by employing coarser and
finer grids on selected test cases of the present problem. The com-
putations reported in this paper have been performed using more
than a 141 × 141 grid. The convergence criterion is based on both
maximum error of continuity equation and the average quadratic
residual over the whole domain for each equation. It is assumed that
convergence is achieved when the maximum error is less than 10−7.

From the known temperature, concentration and velocity fields,
calculated at the obtained permanent solution by solving Equa-
tions (1–6), local entropy generation (S) is then calculated at any
nodal point of the cavity. The total entropy generation for the entire
cavity (ST) is then obtained by numerical integration. Based on this
procedure, the used numerical code written in FORTRAN lan-
guage to solve all the governing equations have been developed. All
the computational cases in the present paper have been done in my
personal PC Pentium IV 3.3 Ghz CPU Quad Intel with the CPU time
not exceeding 200 s for each one.

4. Numerical results validation

In order to check the accuracy of the computed results, two ver-
ification tests are performed. The first test is related with stream
function (Ψ), heat function (Π) and temperature (θ) as shown in

Fig. 2. This test is considered for square cavity with hot left side-
wall, cold right sidewall and adiabatic top and bottom walls at (a)
Ra = 103 and (b) Ra = 105 respectively for Pr = 0.015. The results are
compared with the same problem considered by Ramakrishna et
al. [47]. The second test is related with local entropy generations
due to heat transfer (Sθ) and fluid friction (SΨ) as shown in Fig. 3.
Again, the same geometry considered in Fig. 2 is investigated. The
only difference is that the Prandtl number in the second test is
Pr = 0.7. The results of this test are compared with the results of Ilis
et al. [48] and Basak et al. [49], respectively. Both considered tests
show an excellent agreement with the results of Ramakrishna et
al. [47] for first test, and Ilis et al. [48] and Basak et al. [49] for second
test. Therefore, these verifications give good confidence of our com-
puter code to handle accurately the numerical analysis of the present
work.

5. Results and discussion

The effects of enclosure inclination angles (Φ) on the flow, thermal
and concentration fields are presented in Fig. 4, which illustrates
stream function (Ψ), temperature (θ), concentration (C) and
heatfunction (Π) for different inclination angles (Φ) at N = 1, Le =10,
Da = 10−3, Ha = 0 and Ra = 106. It can be observed from the results
that when the inclination angle increases from (Φ = 0° or horizon-
tal enclosure) to (Φ = 60°), the stream function values increase from
[Ψ = −7.32] to [Ψ = −14.894]. This result ensures that when the in-
clination angle increases, the strength of natural convection
circulation increases inside the corrugated enclosure. At (Φ = 90°
or vertical enclosure), the stream function values begin to de-
crease to [Ψ = −14.701]. Therefore, the effect of buoyancy force
decreases slightly for vertical corrugated enclosure. Another inter-
esting result that can be observed from stream function values is

 

 

 

 

 

 
(a) 

(b) 
   

Fig. 2. Streamfunction (Ψ), heatfunction (Π) and temperature (θ), for square cavity with hot left sidewall and cold right sidewall and adiabatic top and bottom walls at (a)
Ra = 103 and (b) Ra = 105 for Pr = 0.015 with benchmark problem [47].
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that the increase in the inclination angle of the enclosure causes a
clear change in the vortices pattern. The distance between core of
vortices begins to decrease as the inclination angle increases from
(Φ = 0°) to (Φ = 30°) until it merges in one core when the inclina-
tion angle increases to (Φ = 60° and 90°) respectively. Also, some
minor vortices can be seen in the upper left and lower right edges
of the enclosure for high inclination angle (i.e. Φ = 60° and 90°). In
general, one can see high values of stream function inside the cor-
rugated enclosure, which indicates a high flow circulation. The reason
of this behavior is because the results in Fig. 4 are plotted for high
Rayleigh number [i.e. high natural convection effect] and zero Hart-
mann number [i.e. no magnetic field effect]. For temperature (θ),
the isotherm contoursmatchwith the behavior of streamlines.When
the corrugated enclosure is horizontal (Φ = 0°) the isotherm con-
tours are monotonic and semi-parallel to enclosure horizontal walls.
In this case, the heat is transferred by the conduction. But as the
inclination angle increases from (Φ = 30° to 90°) a clear distur-
bance can be seen in isotherm patterns. This disturbance becomes
very clear for vertical corrugated enclosure (Φ = 90°). Therefore, one
can conclude that as the inclination angle increases from (Φ = 0°
to 90°), the heat transfer mode switches from conduction mode to
convection one. With respect to concentration (C), the iso-
concentrations contours are clustered adjacent the hot left and cold
right sidewalls of the corrugated enclosure. A similar behavior to

isotherm contours can be seen where the iso-concentrations con-
tours refer that the heat diffuses inside the corrugated enclosure
by concentration gradients. Again, as the inclination angle in-
creases from (Φ = 0° to 90°) the activity of iso-concentrations
contours increases considerably. Moreover, it can be seen from the
results that the concentrations adjacent to the hot left sidewall are
greater than their values at the cold right sidewall. This result can
be seen for various values of the inclination angle and satisfies in-
directly the validity of the problem boundary conditions. The last
column in Fig. 4 represents the results of heatfunction (Π). It is pre-
sented in our paper to make a good comparison with the classical
presentation of temperature results by isotherms. Fig. 4 illustrates
heatfunction contours for different inclination angles (Φ). It can be
seen that the heatfunction increases as the inclination angle in-
creases from (Φ = 0° to 60°) and then decreases at (Φ = 90°).
Therefore, it can be concluded from the results of Fig. 4, that the
inclined enclosures are better than the horizontal and vertical en-
closures to enhance the heat transfer inside the corrugated enclosure.
Also, the inclination angle has a clear effect on the patterns shape
of the heatfunction inside the enclosure. On the other hand, since
the Rayleigh number in Fig. 4 is considered high [i.e. Ra = 106] and
the effect of magnetic field is absent [i.e., Ha = 0]. Therefore, the effect
of convection in this case is strong. For this reason it can be seen
from heatfunction contours that the heat is transferred from

(a)

(b)

S S

S S

Fig. 3. Local entropy generation due to heat transfer (Sθ) and fluid friction (SΨ) for square cavity with hot left sidewall and cold right sidewall with adiabatic top and bottom
walls at (a) Ra = 103 and (b) Ra = 105 for Pr = 0.7 with Ilis et al. [48] and Basak et al. [49] results.
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hot left sidewall to the cold right side one, while the heat is
transferred inside the enclosure core in a closed path, indicating that
its effect on the heat transfer process between the hot left and cold
right sidewalls is weak.

Fig. 5 displays entropy generations due to fluid friction (SΨ),
thermal gradients (Sθ), diffusion (SC) and total entropy generation
(ST) for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3,
Ha = 0 and Ra = 106. In fact, the main purpose of this figure is to il-
lustrate the effect of enclosure inclination angles (Φ) on different
types of entropy generation in the absence of the applied magnet-
ic field [Ha = 0]. It can be seen that the entropy generation due to
fluid friction (SΨ) increases from [SΨ,max = 439.71] at (Φ = 0° or hor-
izontal enclosure) to [SΨ,max = 470.086] at (Φ = 60°). This behavior
is due to the increase in the flow velocity as the inclination angle
increases from (Φ = 0° or horizontal enclosure) to (Φ = 60°) as il-
lustrated previously in Fig. 4. But, for vertical corrugated enclosure
(Φ = 90°) the entropy generation due to fluid friction decreases to
[SΨ,max = 339.536] due to the sudden drop in the flow velocity at this
position. Therefore, it can be concluded that the inclined corru-
gated enclosure is better than the horizontal and vertical enclosures
to enhance the entropy generation due to fluid friction. For entropy
generation due to thermal gradients (Sθ), the results show that it
increases from [Sθ,max = 190.882] at (Φ = 0° or horizontal enclo-
sure) to [Sθ,max = 204.797] at (Φ = 60°) and then decreases to

[Sθ,max=183.121] for vertical corrugated enclosure (Φ = 90°). This be-
havior is logical, since the natural convection effect becomes more
effective as the enclosure inclination angle increases as illustrated
previously in Fig. 4. For entropy generation due to diffusion (SC), it
can be seen from Fig. 5, that it increases from [SC,max=334.724] at
(Φ = 0° or horizontal enclosure) to [SC,max=408.523] at (Φ = 60°) and
then increases to [SC,max=419.352] for vertical corrugated enclo-
sure (Φ = 90°). On the other hand, it can be seen that the enclosure
inclination angle has a clear effect on the position of contours of
entropy generation due to diffusion (SC), since the contours are grad-
ually shifted to the vertical position at (Φ = 90°). With respect to
the total entropy generation (ST), a similar behavior to both entropy
generations due to fluid friction (SΨ) and thermal gradients (Sθ) can
be seen. Since the results of Fig. 5 illustrate that it increases from
[ST,max=27955] at (Φ = 0° or horizontal enclosure) to [ST,max=434635]
at (Φ = 60°) and then decreases to [ST,max = 297529] for vertical cor-
rugated enclosure (Φ = 90°). This behavior can go back to the increase
in both the fluid velocity and heat transfer for inclined enclosure,
which leads to increase both friction and thermal entropy gener-
ation contributions and leads as a result to increase the total entropy
generation (ST) for inclined enclosure.

Fig. 6 explains stream function (Ψ), temperature (θ), concentra-
tion (C), heat function (Π), entropy generation due to fluid friction
(SΨ), thermal gradients (Sθ), diffusion (SC) and total entropy

C
= 

90
= 

0
= 

30
= 

60

Fig. 4. Streamfunction (Ψ), temperature (θ), concentration (C), and heatfunction (Π), for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3, Ha = 0 and Ra = 106.
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generation (ST) at Pr = 0.024, Φ = 0°, Da = 10−3and Ha = 0 for (a)
Ra = 104 and (b) Ra = 106 respectively. This figure is devoted to il-
lustrate the effect of the Rayleigh number, when the corrugated
enclosure is placed in the horizontal position [Φ = 0°] and the effect
of the applied magnetic field is negligible. In general, as described
by the stream function (Ψ), the fluid flow inside the corrugated en-
closure is represented by the well-known counterclockwise flow
vortices. The convection currents start from the hot left sidewall and
ends at the cold right sidewall after they pass on the top and bottom
adiabatic walls. When the Rayleigh number is low [Ra = 104], the
values of the stream functions are also low and flow vortices are
somewhat symmetrical especially in the core of the corrugated en-
closure. When the Rayleigh number increases to [Ra = 106], one can
see a clear change in the flow field shape. Also, the stream func-
tion values jump sharply. For example, the stream function in the
core of enclosure increases from [Ψ = −0.7] at [Ra = 104] to [Ψ = −6.51]
at [Ra = 106]. Therefore, as expected when one increases the value
of Rayleigh number the stream function value increases and the con-
tribution of the natural convection in the heat transfer process
increases. This is due to the increase in the buoyancy force when
the Rayleigh number increases. For temperature (θ) and concen-

tration (C) when the Rayleigh number is low [Ra = 104], both
isotherms and isoconcentration are in general symmetrical in their
patterns. The only difference is that the isotherms are more paral-
lel to the hot left and cold right sidewalls of the enclosure than the
isoconcentrations. It can be noted that the values of temperatures
and concentrations are high at the hot left sidewall and low at the
cold right one, which satisfy indirectly the problem boundary con-
ditions. In this case, the thermal energy is transferred inside the
corrugated enclosure by the pure conduction. Another important
conclusion which can be deduced from the results of Fig. 6 is that
the isoconcentrations are more similar to the enclosure geometry
than the isotherms. At [Ra = 106], a clear deformation occurs in both
isotherms and isoconcentrations patterns as a result of domi-
nance of the buoyancy force. Therefore, the natural convection has
a significant effect in this case as explained above. In regard to the
entropy generation, the results of Fig. 6 explain clearly that the
entropy generations due to fluid friction (SΨ), thermal gradients (Sθ),
diffusion (SC) and the total entropy generation (ST) increase strongly
as the Rayleigh number increases from [Ra = 104] to [Ra = 106]. This
increase is very large and can be noticed for various kinds of entropy
generation. For example, the entropy generation due to fluid

Fig. 5. Entropy generation due to fluid friction (SΨ), thermal gradients (Sθ), diffusion (SC) and total entropy generation (ST) for different inclination angles (Φ) at N = 1, Le = 10,
Da = 10−3, Ha = 0 and Ra = 106.
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friction (SΨ) jumps from [SΨ,max = 0.51369] at [Ra = 104] to
[SΨ,max = 439.71] at [Ra = 106], the entropy generation due to thermal
gradients (Sθ) jumps from [Sθ,max = 7.55689] at [Ra = 104] to
[Sθ,max = 190.882] at [Ra = 106]. In the samemanner, the entropy gen-
eration due to diffusion (SC) jumps from [SC,max = 39.3114] at [Ra = 104]
to [SC,max = 334.724] at [Ra = 106], while the total entropy genera-
tion (ST) jumps from [ST,max = 532.702] at [Ra = 104] to [ST,max = 279755]
at [Ra = 106]. Therefore, it can be deduced from these results that
the Rayleigh number has a significant effect to increase all kinds
of entropy generation. Of course, due to the increase in the tem-
perature gradient, concentration gradient and flow velocity as the
Rayleigh number increases, which leads to increase in the differ-
ent kinds of entropy generation. Furthermore, it can be observed
that the entropy generation values due to fluid friction (SΨ) near
the enclosure walls are greater than the corresponding values at the
enclosure core. This is due to the presence of the boundary layer,

which increases the entropy generation values due to fluid fric-
tion (SΨ) at these regions. Again, the last column in Fig. 6 represents
the heatfunction (Π) contours. It can be seen from the results, that
the effect of Rayleigh number on heatfunction (Π) contours is very
clear. When the Rayleigh number is low [Ra = 104], the values of the
heatfunction (Π) are also low. This indicates that the conduction
effect is dominant. Moreover, there is no closed path of the heat
transfer inside the enclosure and the direction of the heatfunction
contours is approximately perpendicular to the isotherms (θ) di-
rection. All of these effects are due to the conduction dominance
inside the enclosure. When the Rayleigh number increases to
[Ra = 106], one can see a different behavior of the heatfunction con-
tours. There is a clear increase in the values of the heatfunctionwhich
indicating that the convection heat transfer is significant. Further-
more, a closed path of heat transfer can be observed inside the
enclosure while the heatfunction contours are not perpendicular

Fig. 6. Streamfunction (Ψ), temperature (θ), concentration (C), heatfunction (Π), entropy generation due to fluid friction (SΨ), thermal gradients (Sθ), diffusion (SC) and total
entropy generation (ST) at Pr = 0.024, Φ = 0°, Da = 10−3, Ha = 0 and λ = 0.02 for (a) Ra = 104 and (b) Ra = 106.
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to the isotherms (θ) direction. This observation ensures the dom-
inance of convection in the case of [Ra = 106]. Therefore, it can be
concluded that the heatlines or heatfunction concept gives a better
description of the heat transfer process compared with the classi-
cal isothermal lines.

Figs. 7 and 9 show stream function (Ψ), temperature (θ), con-
centration (C) and heatfunction (Π), for different inclination angles
(Φ) at N = 1, Le = 10, Da = 10−3 and Ra = 106. These figures are pre-
sented when the magnetic field is applied in the horizontal
[Hax = 100] (Fig. 7) and vertical [Hay = 100] (Fig. 9) directions re-
spectively. In fact to understand the results of these figures, onemust
make a comparison of the results presented in it with the corre-
sponding results presented in Fig. 4. It can be seen from the results
of Figs. 7 and 9 that when the Hartmann numbers in the horizon-
tal and vertical directions are [Hax = Hay = 100] or in other words
that the corrugated enclosure is subjected to a strong magnetic field
in the horizontal and vertical directions, the stream function values
(Ψ) are reduced, which indicates that the magnetic field can be used
to reduce the flow circulation inside the enclosure when applied
either horizontally or vertically. For example, the stream function
values in the core of enclosure decrease from [Ψ = −7.08] at [Φ = 0°]
as shown in Fig. 4 to [Ψ = −5.31] at [Φ = 0] as shown in Fig. 7 for
horizontal magnetic field. The same results can be noticed in Fig. 9
for vertical magnetic field. Similar observation is noticed at [Φ = 30°]
and [Φ = 60°] respectively for both horizontal and vertical magnet-

ic fields. For vertical corrugated enclosure [Φ = 90°], the results
indicated that the reduction in the stream function values become
very strong especially for horizontal magnetic field. For example,
the stream function values in the core of enclosure decrease from
[Ψ = −14.701] as shown in Fig. 4 to [Ψ = −3.724] as shown in Fig. 7.
While for vertical magnetic field, they decrease from [Ψ = −14.701]
as shown in Fig. 4 to [Ψ = −7.556] as shown in Fig. 9. This is because
the velocity components decrease rapidly for strong magnetic field
due to the effect of the Lorentz force. On the other hand, there is
also a clear change in the flow field patterns between the horizon-
tal magnetic field (Fig. 7) and vertical magnetic field (Fig. 9) cases.
This observation is seen for all the considered enclosure inclina-
tion angles. Moreover, one can seemulti-vortices inside the enclosure
when it placed in the vertical direction [Φ = 90°] for both horizon-
tal and vertical magnetic fields. Now, horizontal and vertical magnetic
fields on stream function values are compared. The results pre-
sented in Figs. 7 and 9 display that the reduction in stream function
values for horizontal magnetic field are greater than the corre-
sponding values for vertical magnetic field. This reduction increases
at [Φ = 90°]. Therefore, when the corrugated enclosure is consid-
ered vertical [Φ = 90°] and subjected to a horizontal magnetic field,
a strong damping in the flow circulation can be captured. For tem-
perature (θ), both horizontal and vertical magnetic fields make the
isothermsmore similar to the enclosure shape and decreases greatly
the disturbance in the isotherms especially when the enclosure
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Fig. 7. Streamfunction (Ψ), temperature (θ), concentration (C), and heatfunction (Π), for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3, Hax = 100 and Ra = 106.
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inclination angles are [Φ = 60°] and [Φ = 90°] respectively. This be-
havior ensures the fact that when the enclosure is subjected to a
strongmagnetic field either horizontally or vertically, the heat trans-
fer mechanism switches from convection (for no magnetic field;
Fig. 4) to conduction heat transfer mechanism. In general, the iso-
therms in Figs. 7 and 9 illustrate that a high temperatures are noticed
adjacent to the hot left sidewall while a low temperatures are seen
adjacent the cold right one, which satisfy again the boundary con-
ditions. This notation is seen for all values of the enclosure inclination
angles. Moreover, the results presented in Figs. 7 and 9 explain that
when the orientation of the magnetic field changes either horizon-
tally or vertically no significant difference occurs in the isotherms
patterns.

With respect to the concentration (C), it can be noticed that the
results of Figs. 7 and 9 are presented when the buoyancy ratio (N)
is equal to one. This means that the buoyancy force due to thermal
diffusion is equal to its corresponding value due to mass diffusion.
The results in both figures show that the iso-concentration con-
tours are affected by the applied horizontal and vertical magnetic
fields. This effect becomes more clear if one compares between the
iso-concentration contours for no magnetic field (Fig. 4) with their

corresponding contours in Figs. 7 and 9. The horizontal and verti-
cal magnetic fields make the iso-concentration contours more
clustered to each other especially in the core of corrugated enclo-
sure. This effect is clearable for all values of the enclosure inclination
angles. Again, the horizontal and vertical magnetic fields make the
iso-concentration contours less disturbed that the corresponding
contours in Fig. 4. This is because the conduction effect becomes
more significant when the enclosure is subjected to a strong mag-
netic field. Also, the iso-concentration in Figs. 7 and 9 illustrate that
high concentrations are noticed adjacent to the hot left sidewall while
a low concentrations are seen adjacent to the cold right one, which
satisfy again the boundary conditions. On the other hand, there is
a difference between the patterns of iso-concentration when sub-
jected to a horizontal magnetic field (Fig. 7) with their patterns when
it subjected to a vertical magnetic field (Fig. 9). This difference is
high for horizontal enclosure [Φ = 0°] and slight for vertical one
[Φ = 90°]. Furthermore, the last column in Figs. 7 and 9 represents
the heatfunction (Π) contours. It can be observed from the results
that the effect of Hartmann number [or magnetic field effect] on
heatfunction (Π) contours is significant. Anyway, when the corru-
gated enclosure is subjected to a horizontal magnetic field

Fig. 8. Entropy generation due to fluid friction (SΨ), thermal gradients (Sθ), diffusion (SC) and magnetic field (SM) for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3,
Hax = 100 and Ra = 106.
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[Hax = 100] (Fig. 7) or a vertical magnetic field [Hay = 100] (Fig. 9),
a decrease in the heatfunction values can be seen. Tomake this effect
clearer, a comparison of the heatfunction results with the corre-
sponding results presented in Fig. 4 [Ha = 0] is necessary in our
opinion. It can be seen from the results of Figs. 7 and 9 that there
is a reduction in heatfunction values (Π) inside the enclosure when
it subjected to a horizontal or vertical magnetic field. For example,
the heatfunction values in the core of enclosure decrease from
[Π = −4.95] at [Φ = 30°] as shown in Fig. 4 to [Π = −2.18] at [Φ = 30°]
as shown in Fig. 7 for horizontal magnetic field. Similar behavior
can be noticed in Fig. 9 for vertical magnetic field. Also, the same
results can be seen for other values of enclosure inclination angles.
In fact, this result is expected since the conduction effect is dom-
inant inside the enclosure when subjected to a strongmagnetic field.
This effect of course is considered the main reason of the reduc-
tion in heatfunction values.

Figs. 8 and 10 explain entropy generations due to fluid friction
(SΨ), thermal gradients (Sθ), diffusion (SC) and magnetic field (SM)
for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3 and
Ra = 106. These figures are presented when the magnetic field is
applied in the horizontal [Hax = 100] (Fig. 8) and vertical [Hay = 100]
(Fig. 10) directions respectively. Therefore, themain purpose of these
figures is to explain the effect of high Hartmann number or strong
horizontal and vertical magnetic fields [Hax = Hay = 100] on differ-
ent kinds of the entropy generation. In order to explain the effect

of magnetic field on the entropy generations, a comparison is oc-
curred between the results in Figs. 8 and 10 with the corresponding
results presented in Fig. 5 [i.e. Ha = 0 or with no magnetic field]. It
can be seen from the results of Figs. 8 and 10 that both horizontal
and vertical magnetic fields are reduced significantly the entropy
generations. This reduction can be seen for horizontal, inclined and
vertical enclosures. For example, the entropy generation values due
to fluid friction (SΨ) at [Φ = 30°] are reduced from [SΨ,max = 708.298]
for nomagnetic field (Fig. 5) to [SΨ,max = 218.126] for horizontal mag-
netic field (Fig. 8) and [SΨ,max = 364.765] for vertical magnetic field
(Fig. 10) respectively. This behavior is due to the reduction in the
flow circulation inside the enclosure which causes to reduce the
entropy generation values due to fluid friction (SΨ). On the other
hand, a clear reduction in the entropy generations due to thermal
gradients (Sθ) can be seen for horizontal and vertical magnetic fields.
For example, the entropy generation values due to thermal gradi-
ents (Sθ) at [Φ = 30°] are reduced from [Sθ,max = 266.604] for no
magnetic field (Fig. 5) to [Sθ,max = 152.02] for horizontal magnetic
field (Fig. 8) and [Sθ,max = 114.315] for vertical magnetic field (Fig. 10)
respectively. This notation is seen for all values of the enclosure in-
clination angles. This behavior is due to the reduction in the natural
convection effect inside the enclosure when the magnetic field is
applied in the horizontal and vertical directions, which causes to
reduce the entropy generation values due to thermal gradients (Sθ).
For the entropy generations due to diffusion (SC), one can observe
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Fig. 9. Streamfunction (Ψ), temperature (θ), concentration (C), and heatfunction (Π), for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3, Hay = 100 and Ra = 106.
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also a clear decreasing in their values. For example, the entropy gen-
eration values due to diffusion (SC) at [Φ = 30°] are decreased from
[SC,max = 431.015] for no magnetic field (Fig. 5) to [SC,max = 344.529]
for horizontal magnetic field (Fig. 8) and [SC,max = 347.195] for ver-
tical magnetic field (Fig. 10) respectively. This effect is repeated for
inclined and vertical enclosures. The reason is due to the reduc-
tion in the mass transfer when the enclosure is subjected to a strong
horizontal and vertical magnetic field, which leads to reduce the
entropy generations due to diffusion (SC). With respect to the entropy
generations due to magnetic field (SM), the results of Figs. 8 and 10
show that the entropy generation values when the corrugated en-
closure is subjected to the horizontal magnetic field (Fig. 8) is higher
than the corresponding values when it subjected to the vertical mag-
netic field (Fig. 10). This observation can be seen for different values
of the enclosure inclination angles. Therefore, the horizontal mag-
netic field increases the entropy generations more than the vertical
magnetic field.

Fig. 11 illustrates profiles of Y-velocity component, X-velocity
component and concentration (C) along the vertical mid-section of
the enclosure with different Rayleigh (1st row) Darcy (2nd row)

numbers, inclination angles (Φ) (3rd row) and buoyancy ratio (N)
(4th row) for Ha = 0, Le =1 and φ = 0°. Themain purpose of this figure
is to explain the effect of Rayleigh number (Ra), Darcy number (Da),
inclination angles (Φ) and buoyancy ratio (N) on Y-velocity com-
ponent, X-velocity component and concentration (C) respectively.
With respect to the Rayleigh number effect [1st row], it can be ob-
served that Y-velocity component has a linear behavior for [Ra = 103]
and varies slowly for [Ra = 104]. But, as the Rayleigh number in-
creases to [Ra = 105 and 106], it begins to vary symmetrically along
the vertical mid-section of the enclosure. This indicates that the
Y-velocity component profiles change their behavior when the
Rayleigh number increases due to the improvement in the flow cir-
culation. The results show that a positive velocity profiles can be
seen in the region from [0 ≤ X ≤ 0.25], while a negative velocity pro-
files can be seen in the region from [0.75 ≤ X ≤ 1]. The same
observation can be seen for X-velocity component profiles but in
the reverse direction. For Darcy number (Da) effect [2nd row], it can
be seen again that the Y-velocity component has a linear behavior
for [Da =10−5] and changes slowly for [Da =10−4]. While, when the
Darcy number (Da) increases to [Da = 10−3 and 10−2] a clear
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Fig. 10. Entropy generation due to fluid friction (SΨ), thermal gradients (Sθ), diffusion (SC) and magnetic field (SM) for different inclination angles (Φ) at N = 1, Le = 10, Da = 10−3,
Hay = 100 and Ra = 106.
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Fig. 11. Profiles of Y-velocity component, X-velocity component and concentration (C) along the vertical mid-section of the enclosure with different Rayleigh (1st row) Darcy
(2nd row) numbers, inclination angles (Φ) (3rd row) and buoyancy ratio (N) (4th row) for Ha = 0, Le = 1 and φ = 0°.

939S.H. Hussain / Engineering Science and Technology, an International Journal 19 (2016) 926–945



variation in the Y-velocity component profiles can be detected. They
increase as (X) increases, then become approximately linear in the
mid-section at [X = 0.5] and then decrease until they reach zero ve-
locity at [X = 1]. Similar but an opposite behavior can be seen for
X-velocity component profiles. Therefore, it can be conclude that
both Y and X velocity component profiles affected strongly for high
Darcy number. The reason of this behavior is due to the increasing
in the natural convection effect at high Darcy number. To study the
effect of inclination angle (Φ) [3rd row], the results of Fig. 11 show
that the Y-velocity component increases when the inclination angle
increases from (Φ = 0° or horizontal enclosure) to (Φ = 60°). At
(Φ = 90° or vertical enclosure) it begins to decrease slightly. These
results are due to the increase in the stream function values when
the inclination angle increases from (Φ = 0°) to (Φ = 60°) and to the
decrease in their values at (Φ = 90°) as discussed previously in Fig. 4.
However, the Y-velocity component profiles increase as (X) in-
creases, then become approximately linear in the mid-section at
[X = 0.5] and drop until they reach zero velocity at [X = 1]. The same
notation is seen for X-velocity component profiles but in the op-
posite direction. To discuss the effect of buoyancy ratio (N) [4th row],
the results of Fig. 11 demonstrate that the Y-velocity component
increases when the buoyancy ratio increases. The minimum profile
can be seen at [N = 0] or pure thermal convection, while the
maximum one can be seen at [N = 10]. This is because the flow cir-
culation increases for high concentration case. Anyway, all profiles
reach zero velocity at enclosure mid-section and then begin to de-
crease to negative values until they reach zero velocity at [X = 1].
It is useful to mention that for high buoyancy ratio, the flow field
is strongly affected by buoyancy forces due to temperature and con-
centration. For X-velocity component, negative velocity profiles can
be seen in the region of [X ≤ 0.2] while a positive profiles are seen
in the region [0.8 ≤ X]. With respect to profiles of dimensionless con-
centration (C) along the vertical mid-section [Y = 0.5] of the enclosure.
The results show that the profiles are approximately linear for low
Rayleigh and Darcy numbers [Ra = 103–104] and [Da = 10−5]. But, when
Rayleigh and Darcy numbers increase a variation in the profiles can
be seen. This is due to the increase in the concentration for high
Rayleigh and Darcy numbers. On the other hand, the profiles of di-
mensionless concentration (C) are also affected by enclosure
inclination angles, since they convert their shape from uniform vari-
ation for (Φ = 0° or horizontal enclosure) to non-uniform one as
inclination angles increases. The results of Fig. 11 shows that the
profiles of dimensionless concentration (C) are not greatly affect-
ed by the variation of buoyancy ratio (N) where an approximately
symmetrical profiles can be seen for various values of buoyancy ratio.

Fig. 12 presents profiles of Y-velocity component, X-velocity com-
ponent and concentration (C) along the vertical mid-section of the
enclosure with different Hartmann numbers at φ = 0° [horizontal
magnetic field] (1st row), φ = 90° [vertical magnetic field] (2nd row),
magnetic field angles (φ) (3rd row) and Lewis number (Le) (4th row)
for Ra = 106, N = 1,Φ = 0° and Da =10−3. It can be seen from the results
that both Y and X velocity components decrease as the Hartmann
number increases. This observation can be seen when the enclo-
sure is subjected to a horizontal magnetic field [Hax = 0–100] or
when it subjected to a vertical magnetic field [Hay = 0–100]. The
velocity profiles are approximately linear in the mid-section of the
enclosure. For strong horizontal and vertical magnetic fields
[Hax = Hay = 100] at [X = 0.5] the velocity components reach zero
velocity. This is a logical result, since the magnetic field reduces flow
circulation significantly. Also, it can be seen that the profiles of
Y-velocity component and X-velocity component grow in the op-
posite direction to each other. On the other hand, the effect of
magnetic field orientation angle (φ) is also presented in Fig. 12. For
Y-velocity component, the profiles reach their maximum value as
the orientation angle increases from [φ = 0°] to [φ = 90°]. However,
a significant variation in the velocity components can be seen at

the hot left [X = 0] and cold right [X = 1] sidewalls of the enclosure
due to the presence of the flow circulation. The fourth row of Fig. 12
explains the effect of Lewis number on profiles of Y-velocity com-
ponent, X-velocity component and concentration (C) along the
vertical mid-section of the enclosure. It can be noticed that Y-velocity
component increases as the Lewis number decreases. In fact, when
the Lewis number increases, the velocity of the flow circulation de-
creases due to the increase in the fluid thermal diffusivity. From the
other hand, the increasing in the Lewis number causes to increase
the thermal boundary layer thickness, which causes to decrease the
fluid velocity. Again, at mid-section of the enclosure the velocities
approach zero. An opposite behavior can be observed for X-velocity
component. With respect to the concentration, it can be seen that
concentration reaches its maximum value when the Lewis number
is low [Le = 1] and then begins to decrease as the Lewis number in-
creases. This is a logical result since when the Lewis number is low
the mass diffusivity is high and as a result the concentration in-
creases. But, when the Lewis number increases, the mass diffusivity
decreases and causes the reduction of the concentration. A reverse
behavior can be seen at the cold right sidewall.

Fig. 13 shows the variation of the average Nusselt and Sher-
wood numbers along the heated wall with Rayleigh numbers for
various buoyancy ratios (N) (on the left when Da = 10−3) and various
Darcy numbers (on the right when N = 10) at Φ = 0°, φ = 0° and Ha = 0
with Le = 1(on the top) and Le = 10 (at the bottom). The results exhibit
that as the buoyancy ratio (N) increases, the relationship between
the average Nusselt and Sherwood numbers with Rayleigh number
increases. For (N = 0), the flow is driven by thermal convection only
(or the effect of mass transfer is negligible). But, when the buoy-
ancy ratio increases, the flow inside the enclosure will be driven
bymixed effect of thermal and concentration buoyancy forces which
cause to a clear increase in the average Nusselt and Sherwood
numbers value. With respect to the relationship between the
Rayleigh number and average Nusselt and Sherwood numbers for
various values of Darcy number. It can be seen that as the Darcy
number increases from [Da = 10−5] to [Da = 10−2], an increasing re-
lationship can be seen between the Rayleigh number and average
Nusselt and Sherwood numbers at the heated wall. Since, when the
Darcy number is low [Da = 10−5], the flow andmass circulations inside
the porous media are very weak, which cause a clear reduction in
the average Nusselt and Sherwood numbers value. But, as the Darcy
number increases to [Da = 10−2], the average Nusselt and Sher-
wood numbers increase strongly with the Rayleigh number due to
the strong flow andmass circulations inside the porous media when
the Darcy number is high [i.e. Da = 10−2].

Fig. 14 explains the variation of the average Nusselt and Sher-
wood numbers along the heated wall with Rayleigh numbers (on
the left) for various Lewis numbers (Le) when Φ = 0°, Ha = 0 andwith
enclosure inclination angles (Φ) (on the right) for various Hartman
numbers (Ha) when Ra = 106 at Da = 10−3 with Le = 1 (on the top)
and Le = 10 (at the bottom) respectively. It can be observed that as
the Lewis number increases, the relationship between the average
Nusselt number and Rayleigh number decreases. This is due to the
increase in the fluid thermal diffusivity, which causes to increase
the effect of conduction and as a result decreases the average Nusselt
number along the heated wall. While, the relationship between the
average Sherwood number and Rayleigh number increases as the
Lewis number increases. This is due to the decrease in the fluidmass
diffusivity, which causes to increase the mass transfer effect inside
the enclosure. From the other side, the results show that for hori-
zontal enclosure [Φ = 0°], the average Nusselt number along the
heated wall reaches a maximum value for [Ha = 0 or with no mag-
netic field] and decreases as the Hartmann number increases. This
is because the magnetic force reduces the flow circulation. But, as
the enclosure inclination angle increases to (Φ = 30°), a clear im-
provement on the average Nusselt number values can be seen
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Fig. 12. Profiles of Y-velocity component, X-velocity component and concentration (C) along the vertical mid-section of the enclosure with different Hartmann numbers at
φ = 0° (1st row), φ = 90° (2nd row), magnetic field angles (φ) (3rd row) and Lewis number (Le) (4th row) for Ra = 106, N = 1,Φ = 0° and Da = 10−3.
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especially at high values of Hartmann number. This is due to the
increase in the flow circulation. But, the average Nusselt number
values drop sharply for vertical enclosure (Φ = 90°). Since, the effect
of buoyancy force decreases for vertical corrugated enclosure as dis-
cussed previously in Fig. 4. With respect to the average Sherwood
number, it can be seen also that as the enclosure inclination angle
increases, the average Sherwood number begin to decrease. The
maximum value of average Sherwood number can be noticed at
(Φ = 0°) and (Ha = 50). Therefore, it can be concluded that the hor-
izontal position of the enclosure is better than the inclined and
vertical enclosures to improve the mass transfer inside the corru-
gated enclosure.

6. Conclusions

The following conclusions can be drawn from the results of the
present work:

1. The inclination angle of the corrugated enclosure has an im-
portant effect on the flow pattern. When it increases to
(Φ = 60° and 90°), the strength of flow circulation increases
and someminor vortices begin to appear inside the enclosure.

2. The heat transfer mode switches from conduction to con-
vection one, when the enclosure switches from horizontal
position (Φ = 0°) to the inclined (Φ = 30° and 60°) or verti-
cal (Φ = 90°) positions.

3. Activity of iso-concentrations contours increases as the in-
clination angle increases from (Φ = 0° to 90°).

4. When the Rayleigh number is low, the isotherms and
isoconcentrations are uniformly distributed in the corru-
gated enclosure and the heat conduction is dominant.

5. The strength of circulation increases when the Rayleigh
number increases. Also, a deformation occurs in the iso-
therms and isoconcentration indicating that the natural
convection has the biggest share in the heat transfer process
inside the corrugated enclosure.

6. A clear reduction in the flow circulation can be seen
when the enclosure is subjected to a strong magnetic field
either horizontally or vertically. This reduction becomes very
strong at [Φ = 90°] especially for horizontal magnetic
field.

7. To enhance the flow circulation inside the corrugated enclo-
sure, one must exclude the vertical position of the enclosure
and horizontal magnetic field.

8. No significant difference occurs in the isotherm patterns when
the orientation of the magnetic field changes either horizon-
tally or vertically.

9. The horizontal and vertical magnetic fields make the iso-
concentration contours less disturbance and increase the effect
of heat conduction.

10. The inclined corrugated enclosure is better than the hori-
zontal and vertical enclosures to enhance the entropy
generation due to fluid friction (SΨ), thermal gradients (Sθ)
and the total entropy generation (ST).

11. When the Rayleigh number increases, a clear jump in all kinds
of entropy generation is noticed.

Fig. 13. Variation of the average Nusselt and Sherwood numbers along the heated wall with Rayleigh numbers for various Buoyancy ratios (N) (on the left when Da = 10−3)
and various Darcy numbers (on the right when N = 10) at Φ = 0°, φ = 0 and Ha = 0 with Le = 1(on the top) and Le = 10 (on the bottom).
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12. The entropy generations due to magnetic field (SM) when the
enclosure is subjected to the horizontal magnetic field are
higher than the corresponding values when subjected to the
vertical magnetic field for different values of the enclosure
inclination angles.

13. The results of heatfunction contours explain that the heat
transfer enhancement is better for inclined position of the
enclosure than the horizontal and vertical positions of it.

14. The values of the heatfunction increases as the Rayleigh
number increases. Also, the heatlines or heatfunction concept
gives a better description of the heat transfer process com-
pared with the classical isothermal lines.

15. Both Y and X velocity component profiles are affected strongly
by Rayleigh number, Darcy number, enclosure inclination
angle, magnetic field angles, Hartmann number, Lewis number
and buoyancy ratio.

16. Dimensionless concentration (C) profiles are affected highly
by Rayleigh number, Darcy number, enclosure inclination
angle, Lewis number and have slight variation with buoyan-
cy ratio.

17. The average Nusselt number decreases when the Lewis
number increases. While the average Sherwood number in-
creases when the Lewis number increases.

18. The average Nusselt and Sherwood numbers increase when
the Darcy number and buoyancy ratio increase.

19. The enclosure inclination angle has a clear effect on the
average Nusselt and Sherwood numbers value.

20. Heatline visualization concept is successfully applied to the
considered problem.

Nomenclature

Nu Average Nusselt number
B Magnitude of magnetic field, (Tesla)
c Dimensional concentration, (kg/m3)
C Dimensionless concentration
D Mass diffusivity, (m2/s)
Da Darcy number
g Gravitational acceleration, (m/s2)
Ha Hartmann number
K Permeability of the porous media, m2

L Length and width of the sinusoidal corrugated enclo-
sure, (m)

Le Lewis number
N Buoyancy ratio
Nu Local Nusselt number
P Dimensionless pressure
p Pressure, (N/m2)
Pr Prandtl number
Ra Rayleigh number

Fig. 14. Variation of the average Nusselt and Sherwood numbers along the heated wall with Rayleigh numbers (on the left) for various Lewis numbers (Le) when Φ = 0°,
Ha = 0 and with enclosure inclination angles (Φ) (on the right) for various Hartman numbers (Ha) when Ra = 106 at Da = 10 with Le = 1 (on the top) and Le = 10 (on the
bottom).
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S Dimensionless entropy
T Temperature, (°C)
u Dimensional velocity component in x-direction, (m/s)
U Dimensionless velocity component in X-direction
v Dimensional velocity component in y-direction, (m/s)
V Dimensionless velocity component in Y-direction
x Cartesian coordinate in horizontal direction, (m)
X Dimensionless coordinate in horizontal direction
y Cartesian coordinate in vertical direction, (m)
Y Dimensionless Coordinate in vertical direction

Greek symbols
βc Coefficient of expansion due to concentration, (m3.kg−1)
βT Coefficient of expansion due to temperature, (K-1)
Π Dimensionless heat function
σ Electrical conductivity (s/m)
ϑ Fluid kinematics viscosity, (m2/s)
φ Irreversibility coefficient
ϕ Magnetic field orientation angle, (degree)
α Thermal diffusivity, (m2/s)
θ Dimensionless temperature
λ The corrugation amplitude
ρ Fluid density, (kg/m3)
Φ Enclosure inclination angle, (degree)
Ψ Dimensionless stream function

Subscripts
c Cold
C Diffusion
Cor Corrugated
h Hot
M Magnetic
T Total
θ Thermal
Ψ Friction
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