Preparation of (PVA-AlCl₃.6H₂O) Composites and Study Optical Properties

Bahaa H. Rabee

Babylon University, College of Education, Department of Physics, Iraq

Majeed Ali Habeeb

Babylon University, College of Education, Department of Physics, Iraq E-mail: majeed_ali74@yahoo.com

Ahmed Hashim

Babylon University, College of Education, Department of Physics, Iraq E-mail: ahmed_taay@yahoo.com

Rawaa Mizher

Babylon University, College of Science, Department of Physics, Iraq

Abstract

The purpose of the study effect of addition AlCl₃.6H₂O on optical properties of solution consisting of poly-vinyl alcohol (PVA) and AlCl₃.6H₂O. The samples were prepared by adding AlCl₃.6H₂O to the solution of poly-vinyl alcohol with weight percentages from AlCl₃.6H₂O are (0,4,6,8)wt.%. Results show that the absorbance of composites increases with increase the concentration of AlCl₃.6H₂O, refractive index real part of dielectric constant, Berwster angle and coefficient of finesses are increasing with increase weight percentages of AlCl₃.6H₂O.

Keywords: Optical properties, poly-vinyl alcohol, composites.

Introduction

The properties of polymer-mineral reinforced composites are determined by the component properties (particle shape, surface area, surface chemistry, polymer microstructure) and as well as by the processing method and processing conditions. Among of processing methods, injection molding has strong influence on the internal microstructure of polymers and in a consequence on mechanical response of the material. Final properties of the thermoplastic composites are also caused by the particle filler shape (platelet, fibrous or irregular) and its orientation formed during polymer melt flow[1]. PVA is a water-soluble synthetic polymer. Due to the characteristics of easy preparation, good biodegradability, excellent chemical resistance, and good mechanical properties, PVA has been used on many biomaterial applications[2]. This present work deals with results of the effect of AlCl₃.6H₂O on optical properties of polyvinyl alcohol.

Materials and Methods

The materials used in this paper are polyvinyl alcohol and AlCl₃.6H₂O. The weight percentages of AlCl₃.6H₂O are (0,4,6 and 8)wt.%. The samples were prepared by dissolved AlCl₃.6H₂O in 30 mL of a 3% solution of PVA. The transmission and absorption spectra of PVA- AlCl₃.6H₂O composites have been recording in the length range (190-850) nm using double-beam spectrophotometer (UV-210°A shimedza).

Results and Discussion

Figure(1) shows the optical absorbance as a function of the wavelength of composites. The figure indicate the fact that the absorbance increases by adding different weight percentages of $AlCl_{3.6}H_{2}O$, this related to absorbance of $AlCl_{3.6}H_{2}O$.

Figure 1: Effect of AICI₃.6H₂O concentration on Optical absorbance for (PVA-AICI₃.6H₂O) composite

The behavior of refractive index of composites with photon energy of (PVA- AlCl₃.6H₂O) composites is shown in figure(2). The figure shows that the refractive index of (PVA- AlCl₃.6H₂O) composites increases with increase the AlCl₃.6H₂O concentrations, this behavior attribute to increase of the density with increase the concentration of AlCl₃.6H₂O [3].

The behavior of real part of dielectric constant ($\epsilon_1 = n^2$)[8] with energy photon of composites are shown in figure(3).

Figure 3: Effect of AICI₃.6H₂O concentration on real part of dielectric constant (PVA-AICI₃.6H₂O) composite.

The figure shows that the real part of dielectric constant of (PVA- AlCl₃.6H₂O) composites increases with increase the AlCl₃.6H₂O weight, this behavior attribute to increase the refractive index with increase the weight percentages of AlCl₃.6H₂O [4].

The behavior of Berwster angle($\theta_B = \tan^{-1}(n)$)[5] with photon energy is shown in figure(4). This figure shows the Berwster angle of (PVA- AlCl₃.6H₂O) composites increases with increase concentration of AlCl₃.6H₂O. The increase of Berwster angle with concentration of AlCl₃.6H₂O related to increase refractive index.

Figure 4: Effect of AICI_{3.6}H₂O concentration on Berwster angle (PVA-AICI_{3.6}H₂O) composite.

The variation of coefficient of finesses $[F = \frac{4R}{(1-R)^2}]$ where R is reflectance][6] with photon energy of different concentrations of AlCl_{3.6}H₂O. The coefficient of finesses increased with increase AlCl_{3.6}H₂O concentration. This behavior attribute to increase refractive index.

Preparation of (PVA-AlCl₃.6H₂O) Composites and Study Optical Properties

Figure 5: Effect of AICI₃.6H₂O concentration on coeffcient of finesses (PVA-AICI₃.6H₂O) composite.

Conclusions

- 1. The absorbance of (PVA- AlCl₃.6H₂O) composites increases with increase of weight percentages of AlCl₃.6H₂O.
- 2. The refractive index, real part of dielectric constant, Berwster angle and coefficient of finesses of (PVA- AlCl₃.6H₂O) composites are increasing with increase concentration of AlCl₃.6H₂O.

References

- [1] Karol Bula1, Teofil Jesionowski and Sławomir Borysiak, 2011, "Effect of Injection Molding Conditions on Composite Properties Based on PBT With SiO2 and MMt Nanofillers", Proceedings of the Conference of Multiphase Polymers and Polymer Composites: From Nanoscale to Macro Composites", Paris-Est, Creteil Uniersity, June, France.
- [2] M. K. Mahsan1, Chan Kok Sheng1, M. Ikmar Nizam Isa1, E. Ghapur E. Ali 1, M.Hasmizam Razali, 2009, "Structural and Physical Properties of PVA/TiO2Composite", Malaysia Polymer International Conference, 486-49
- [3] Ahmad A.H., Awatif A.M. and Zeid Abdul-Majied N., 2007, "Dopping Effect On Optical Constants of Polymethylmethacrylate (PMMA), J. of Eng. & Technology, Vol.25, No.4, 558-568.
- [4] M. Muhsien, A. Hashim, K. Mahdy, 2010, "Doping Effect On Constants of poly-vinyl alcohol", Proceedings of the First Scientific Conference of physics/ Al- Kufa University, Iraq.
- [5] Danial and Alberty, (1975) "Physical Chemistry", 4th Edition, John, W. and Sons, Inc, 44-94.
- [6] Garl zesis. (1985) "Operating Instruction Abbe-Refroctometer". West Germany oberkochn, 3-25.