
Computer Standards & Interfaces 37 (2015) 53–59

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
Rapid lossless compression of short text messages
Kenan Kalajdzic a,⁎, Samaher Hussein Ali c, Ahmed Patel a,b

a School of Computer Science, Centre of Software Technology and Management (SOFTAM), Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan Malaysia, UKM Bangi,
43600 Selangor Darul Ehsan, Malaysia
b School of Computing and Information Systems, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, United Kingdom
c Department of Information Network, Faculty of Information Technology (IT), University of Babylon, Babylon 00964, Iraq
⁎ Corresponding author.
E-mail addresses: kenan@unix.ba (K. Kalajdzic), sama

(S.H. Ali), whinchat2010@gmail.com (A. Patel).
1 b64 stands for BASE64.
1 b64 stands for BASE64.

http://dx.doi.org/10.1016/j.csi.2014.05.005
0920-5489/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 28 November 2012
Received in revised form 27 May 2014
Accepted 28 May 2014
Available online 6 June 2014

Keywords:
Data compression
Lossless compression
Short text messages
SMS
In this paper we present a new algorithm called b64pack1 for compression of very short text messages. The
algorithm executes in two phases: in the first phase, it converts the input text consisting of letters, numbers,
spaces and punctuation marks commonly used in English writings to a format which can be compressed in the
second phase. The second phase consists of a transformation which reduces the size of the message by a fixed
fraction of its original size. We experimentally measured both the compression speed and the compression
ratio of b64pack on a large number of short messages and compared them with compress, gzip and bzip2,
three most common UNIX compression programs. We show that in case of short text messages up to a certain
size b64pack achieves better compression than any of the three programs. With respect to speed, b64pack
beats all three algorithms by orders of magnitudes. This rapid compression is one of the key strengths of
b64pack.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Until recent years, most algorithms for text compression were
primarily concerned with compressing large inputs. Fast adoption
of SMS messaging and Internet services based on short messages
(e.g. Twitter, chat) has caused an increased interest in compression
of very short texts. Interestingly, though, publications concerning com-
pression of short messages are relatively scarce.

Why is compression of short messages necessary? Given the high
volume of SMS, Twitter and instant messaging traffic, compression of
short text messages can bring tremendous savings in network band-
width. Could not multiple messages be first buffered to form a larger
chunk of data and then compressed with a regular compression
algorithm to achieve better results? The answer is: For realtime com-
munication, such as instant messaging or chat, buffering of multiple
messages is not possible, since each message has to be sent indepen-
dently and immediately after it is typed. Therefore we need a mecha-
nism to compress each of these short messages individually.

In case of SMSmessages, a system called concatenated SMS has been
developed to extend the inherent limit of an SMS message. It works by
breaking a longmessage into smaller parts and sending each of them as
a single SMS message. At the receiving end the short messages are
her@itnet.uobabylon.edu.iq
combined back to one long message. One downside of concatenated
SMS is that, if the length of an SMS message exceeds 140 bytes, the
user is usually charged for two SMS messages, even if the excess is
only a few characters long.

In this paper we introduce a new algorithm called b64pack for effi-
cient compression of very short text messages. In contrast with other
major works in short text compression, such as [1–3], which focus on
certain limitations of prediction by partial matching (PPM) compression
and provide ways to improve it, we follow a different approach.

To facilitate an easy deployment and interoperability across billions
of computers, mobile and embedded devices, we propose a compres-
sion scheme which relies on a straightforward use of standard open
source software libraries available on all operating systems. The use of
b64pack does not require any proprietary software components or
algorithms. We compare b64pack with other standard compression
algorithms implemented by programs such as compress, gzip and
bzip2 to demonstrate how applications and users could directly benefit
from using b64pack for compression of short messages. Our research
objective was to prove that b64pack is able to overcome certain
major drawbacks of existing SMS services. We did not specifically set
out or purport to evaluate against other data compression schemes,
and have used them merely as a reference for comparison.

The key features of b64pack are:

• extremely low memory requirements—a message compressed with
b64pack requires no header/metadata, while in the base case lookup
tables used by b64pack together occupy less than 256 bytes of
memory;

Table 1
Mapping of punctuation marks to letters.

Character @ $ _ ! " # % & ’ () * +
Substitute a b c d e f g h i j k l m
Character , - . / : ; b = N ? □ □ □
Substitute n o p q r s t u v w x y z

□ = reserved for future use.

54 K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
• very efficient compression and decompression—all operations per-
formed by b64pack can be implemented very efficiently using few
CPU instructions, allowing b64pack to be used for realtime message
compression on low-power devices with energy consumption limita-
tions;

• precise estimation of the size of the compressed message during the
compression process—this feature allows users to know the size of
the compressed message while they are composing it;

• reliance on standard software libraries to facilitate rapid deployment
and interoperability on all types of computers, mobile and embedded
devices.

Other than the benefits mentioned above, b64pack is a fast process-
oriented algorithmic schemewhichwe believe should be considered by
developers, users and standards setting bodies as a viable compression
technique.

The plan for the remainder of the paper is as follows: in Section 2we
describe b64pack algorithm in detail. In Section 3, we provide experi-
mental data of performance and compare it with those of three well
known algorithms implemented by compress, gzip and bzip2.
Sections 4 and 5 deal with discussion, future work and conclusions.

2. The b64pack algorithm

As illustrated in Fig. 1, the b64pack algorithm consists of two
phases. The primary purpose of the first phase is to convert the input
text to a format which can be processed in the second phase. The
input can optionally be precompressed in this first phase to achieve
higher gross space savings. We assume that the input is a short text
message, consisting of letters, numbers, spaces and punctuation marks
commonly used in English writings. Even though there are no inherent
limitations imposed on the nature of the input, we demonstrate the
workings of b64pack by following the compression of an SMSmessage.
Therefore, we assume that the input text contains only those punctua-
tion marks, which have a definition within the GSM 03.38 character
set [4].

The output generated by the first phase is processed in the second
phase, which consists of a single transformation that reduces the size
of the message by a fixed percentage. This step is thus fully determinis-
tic and always results in the same, constant compression ratio.

An important characteristic of thewhole b64pack compression pro-
cedure is the absence of any metadata. This means that the compressed
message requires no header, which is highly important when working
with SMS messages or similar kinds of short texts which are inherently
limited to a small number of characters.

2.1. Message transcoding

The compression, which happens in the second phase of b64pack
algorithm, requires the input text to be transformed to a specific format.
To achieve this, the input is transcoded using the following simple rules:

Rule 1 Letters and numbers are left unchanged.
Rule 2 Each SPACE character is replaced with a forward slash ‘/’ character.
Rule 3 Each punctuation mark is replaced with a sequence of two charac-

ters: the plus ‘+’ character followed by a lowercase letter. The
correspondence between punctuation marks and their substitute
lowercase letters is established through Table 1.
in
Phase 1

lossless
transcoding

Phase 2
lossless

compression
out

Fig. 1. The phases of the b64pack compression algorithm.
Rule 3 applies to most common punctuation marks, for which
there is a single-character code in the GSM 03.38 character
set. For less frequently used punctuationmarks, GSM03.38 pro-
vides another representation consisting of two characters per
punctuation mark (first of these two characters is the escape
character 0x1b). For these we use the following rule in place
of Rule 3:

Rule 4 Each punctuationmark from the set of characters shown in the first
row of Table 2 is replaced with a sequence of three characters: two
plus ‘+’ characters followed by a corresponding letter from the
second row of Table 2.
To show how the transcoding procedure alters the input, we
use the examplemessage given in Fig. 2. The length of this mes-
sage is exactly 160 characters, which is the limit imposed on an
SMS message with 7-bit encoding. For clarity, spaces are repre-
sented by white boxes.
Following the aforementioned rules for transcoding, we trans-
form this message into the form shown in Fig. 3.
The use of the ‘+’ escape character for encoding punctuation
marks has led to an increase in message length from 160 to
173 characters. To reduce this loss, we make use of a simple ty-
pographic rule, which states that it is often appropriate to insert
a space after punctuation in order to increase the overall read-
ability of the text. This typographic convention has been used
multiple times in our example message (Fig. 2). Based on this
observation we can now introduce another simple encoding
rule:

Rule 5. If a punctuation mark is followed by a SPACE, this punctuation mark
is encoded according to Rule 3 or Rule 4, except that instead of a
lowercase letter its uppercase equivalent is used. In this case, the
encoded SPACE character (i.e., the forward slash character) is left
out.

For example, according to Rule 3, a questionmark followedby a SPACE

would be encoded as ‘+w/’. Rule 5 allows both these characters to be
merged into a two-byte sequence ‘+W’, thus preventing any loss caused
by the use of the ‘+’ escape character.

Following the same procedure, the whole message can be trans-
formed into the form shown in Fig. 4. The length of this message is
167 characters.

2.2. Compression of the transcoded message

A closer look at the transcoded message in Fig. 4 reveals an impor-
tant clue. Namely, all the characters which appear in this message are
part of the BASE64 character set.

BASE64 encoding maps an arbitrary sequence of 24 bits into a
sequence of four printable characters. In a given sequence of 24 bits
(i.e., three octets) of data

a1a2a3a4a5a6a7a8 b1b2b3b4b5b6b7b8 c1c2c3c4c5c6c7c8
Table 2
Mapping of less frequent punctuation marks to letters.

Character [\] ⋀ { | } ~
Substitute a b c d e f g h

Fig. 2. An example message to be compressed using b64pack.

55K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
the individual bits are grouped to form four bit sextets

a1a2a3a4a5a6a7a8 b1b2b3b4b5b6b7b8 c1c2c3c4c5c6c7c8

Each sextet is then replaced with a printable character based on the
mapping established through Table 3.

BASE64 decoding is the reverse operation, which uses Table 3 to con-
vert a block of four characters into an equivalent block of three octets.

BASE64 encoding was first introduced in Internet Engineering Task
Force (IETF) de facto standard RFC989 [5] to allow binary data to be rep-
resented in printable form. In the usual case, BASE64 is used to convert
three octets of data into four 8-bit Extended ASCII characters. This
means that each of the characters in even columns of Table 3 is repre-
sented with 8 bits.

There is, however, no specific requirement that these characters be
coded using 8 bits. We can make use of this fact to compress the text
of an SMS message using BASE64 decoding, by treating the text in Fig. 4
as BASE64-encoded data.

2.2.1. Compression ratio for input text with 7-bit characters
If we are dealingwith an SMSmessage encoded using the GSM03.38

character set, each character in Fig. 4 is representedusing7 bits. A group
of four characters thus occupies 28 bits.

Applying BASE64 decoding to a four-character block reduces its size to
24 bits. The compression ratio is defined as the fraction where the
numerator is the size of the compressed message and the denominator
is the size of the original message with 7 bits/character. Thus we have

ratio7bit ¼
24
28

¼ 6
7
≈ 85:7% ð1Þ

Given the fact that the maximum size of an SMS message is 160
characters, based on (1) we can now calculate the maximum length
Ltmax of a transcoded message (i.e., SMS message after processing in
phase 1 of b64pack) which would not exceed 160 characters after
BASE64 decoding:

Ltmax ¼ 160� 7
6
≈ 186:67≈ 186 characters ð2Þ

The maximum length of 186 characters, calculated in (2), applies to
an already transcoded SMS message. As we know from Section 2.1,
transcoding of punctuation marks may increase the size of the original
message, so that the user would have to estimate in advance how
much to type in order to stay within the limits of a single SMS message
after compression.

Although it is not possible to know in advance howmuch space in a
messagewould be occupied by punctuation, a simple statistical analysis
of a standard corpus of English writings [6] shows that punctuation
takes around 2.67% of the corpus text.We could thus assume that nearly
3% of the length of user input are punctuation marks.
Fig. 3. Example message from Fig. 2
Assuming that every punctuationmark extends the originalmessage
by one character, transcoding would extend the user message by 3%.
If we denote the length of the original user message by Lu, its length
after transcoding would be

Lt ¼ Lu � 1:03 ð3Þ

To calculate the maximum length Lumax of the user message, which
after compression with b64pack should fit into a single SMS message,
we substitute (2) into (3):

Lumax ¼
Ltmax

1:03
¼ 186

1:03
≈ 180:58≈180 characters ð4Þ

This means that in most cases the sender of an SMS message should
be able to type 180 characters and stay within the 140-octet limit of a
single SMS message after b64pack compression has been performed.

2.2.2. Compression ratio for input text with 8-bit characters
The calculation of compression ratio given in (1) is valid for SMS

messages using 7-bit character encoding. In case b64pack compression
is applied to textmessages encoded in 8-bit Extended ASCII (e.g. instant
messages, IRC messages, Twitter tweets, RSS feeds), the corresponding
ratio is

ratio8bit ¼
24
32

¼ 3
4
¼ 75% ð5Þ

2.3. Runtime estimation of maximum message size

Using BASE64 decoding in the second phase of b64pack allows the
compression to happen while the user is typing the message. An appli-
cation for message composition can begin transcoding the message as
soon as the user begins typing. Each time the transcoding function
generates four characters, these four characters can immediately be
processed by the BASE64 decoder to produce the corresponding sequence
of three octets of compressed data.

For example, if the user is composing themessage shown in Fig. 2, as
soon as the user types ‘Hi m’,b64pack transcodes this to ‘Hi/m’ and then
proceeds with BASE64 decoding which converts these four characters to
the three-octet sequence 0x1e, 0x2f, 0xe6.

In case of SMS, this allows an SMS composition application to calcu-
late the number of bytes occupied by the compressed message and
provide the user with an estimated number of characters left for input
before the 140-octet limit for a single SMS message is reached.

2.4. Dictionary substitution

The two phases of b64pack compression, described in Sections 2.1
and 2.2, guarantee a fixed, deterministic compression ratio. Introducing
after applying Rules 1, 2 and 3.

Fig. 4. Example message from Fig. 2 after transcoding.

56 K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
a simple dictionary, shared between the sender and the receiver, can
lead to further space savings.

To save additional space, every word in the input text, for which
there is an entry in the dictionary, is replaced with the corresponding
key. More generally, dictionary substitution can be applied to an
arbitrary sequence of letters.

Forb64packdictionary substitution, a key is formed by concatenating
the plus character ‘+’ and a sequence of numbers which uniquely corre-
sponds to the replaced sequence of letters. If a letter sequence is found in
the dictionary, it is replaced with the corresponding key. This happens
immediately after the transcoding phase, before BASE64-decoding takes
place (Fig. 5). Obviously, to achieve space savings, the total length of the
key must be at least one character less than the length of the replaced
sequence.

It is important to notice that thismethod of forming the key does not
allow substitution in case of letter sequences immediately followed by
numbers. If, for instance, the key for the word ‘high’ is ‘+71’, then the
sequences ‘highfive’, ‘high/five’ and ‘high/5’ can safely be replaced
with ‘+71five’, ‘+71/five’ and ‘+71/5’ respectively. On the other
hand, using the samekey in case of the sequence ‘high5’wouldproduce
‘+715’, which is ambiguous.

2.4.1. An example of dictionary substitution
To see dictionary substitution in action, let us assume the words

(letter sequences) are, know, last, one, that, the, want and you exist in
the dictionary. The dictionary maps each of these letter sequences to a
unique sequence of numbers, as shown in Table 4.

Nowwe can revisit the transcoding phase and apply dictionary sub-
stitution to the transcoded message in Fig. 4. Fig. 6 shows the result of
this transformation.

In this example, dictionary substitution reduced the length of the
transcodedmessage from 167 to 157 characters. This fully compensates
for the loss introduced by transcoding and saves three additional char-
acters (recall that the original message size was 160 characters),
which is a significant gain given the tiny size of the dictionary.

2.4.2. Building and sharing the dictionary
A dictionary is built from a list ofmost frequentwords appearing in a

large set of messages. The building of a dictionary can be a one-time
Table 3
BASE64 code table.

Pattern Char Pattern Char Pattern Char Pattern Char

000000 A 010000 Q 100000 g 110000 w

000001 B 010001 R 100001 h 110001 x

000010 C 010010 S 100010 i 110010 y

000011 D 010011 T 100011 j 110011 z

000100 E 010100 U 100100 k 110100 0

000101 F 010101 V 100101 l 110101 1

000110 G 010110 W 100110 m 110110 2

000111 H 010111 X 100111 n 110111 3

001000 I 011000 Y 101000 o 111000 4

001001 J 011001 Z 101001 p 111001 5

001010 K 011010 a 101010 q 111010 6

001011 L 011011 b 101011 r 111011 7

001100 M 011100 c 101100 s 111100 8

001101 N 011101 d 101101 t 111101 9

001110 O 011110 e 101110 u 111110 +

001111 P 011111 f 101111 v 111111 /
process, or can be done periodically to adapt to possible changes in
word frequencies. Which of these two dictionary-building approaches
is used, largely depends on the type of application for which it is used.

If b64pack compression is to be used on a mobile phone for ex-
change of SMS messages, the simplest approach consists of building
the dictionary once and bundling it with the SMS composition applica-
tion. This way the dictionary would be installed alongwith this applica-
tion, which guarantees that all its users share the same dictionary. In a
massive deployment of such an application, it is impractical to allow
dictionary to be updated, since this may introduce various inconsis-
tencies when multiple users have different versions of the dictionary.

More flexibility with regard to updating dictionary contents can be
achieved in cases where the dictionary is shared between a small
number of devices, especially if these devices operate under common
administration. In private communication, it may be feasible to have a
dictionary shared between only two parties, if these two parties
exchange a relatively high number of messages. In a company, the
dictionary may be updated as a part of a policy which affects all users.

The situation is even more convenient with messaging applications
whichwork over IP networks. These applications can easily have multi-
ple versions of the dictionary and can perform regular dictionary up-
dates. In case of server-based instant messaging or chat applications,
such as Jabber or IRC, the server could easily push new versions of the
dictionary to all logged-in clients.
3. Results and evaluation

Tomeasure the twomost important aspects of compression of short
textmessageswith b64pack, namely, compression speed and compres-
sion ratio, we ranmultiple experiments under the GNU/Linux operating
system running on a general-purpose PC with 1 GB of RAM and an Intel
Pentium 4 HT CPU running at 3.0 GHz.

In all the experiments, b64pack was compared with compress,
gzip and bzip2, three most common UNIX compression programs.
Compress is based on a variant of the LZW compression algorithm,
gzip uses the Deflate algorithm, while bzip2 relies on Burrows–
Wheeler compression and Huffman coding.

We first considered running our experiments on parts of the Canter-
bury Corpus [7], which is themost commonly used reference corpus for
evaluating and comparing compression algorithms. Since, however, we
are dealing with compression of short text messages, whose structure
and typography greatly differ from those of literary works and long
texts, such as those available in the Canterbury Corpus, we had to
adopt another set of texts, which resemble true structure of messages
we wish to compress.

Fortunately, researchers from theWeb Information Retrieval/Natural
Language Processing Group of the National University of Singapore have
compiled a corpus of a huge number of real SMS messages (NUS SMS
Corpus) contributed by different people [8]. In all our experiments, we
used 50,619 messages from the corpus (including duplicates), which
contain exclusively Latin characters.
in
Phase 1

lossless
transcoding

Phase 1.5
dictionary

substitution

Phase 2
lossless

compression
out

Fig. 5. The phases of b64pack with dictionary substitution.

Table 4
Mapping of letter sequences to numbers in the dictionary.

Sequence Mapped to Sequence Mapped to

The 0 want 08
One 1 that 23
Are 3 know 65
You 7 last 84

1.60
2.90

 8.72

 14.98

A
ve

ra
ge

 m
es

sa
ge

 c
om

pr
es

si
on

 ti
m

e
(m

s)

Compression algorithm

b64pack
compress

gzip

bzip2

Fig. 7. Compression time comparison between b64pack, compress, gzip and bzip2.

57K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
3.1. Measurements of compression speed

The objective of our first set of experiments was to compare
b64pack with the other three compression methods with regard to
compression speed. Since we were dealing with very small amounts
of data (i.e., shortmessages), it was difficult tomake speed comparisons
by measuring times required for compressing each individual message.
Instead, we let each algorithm compress the entire set of 50,619 mes-
sages and measured the total compression time for each of the four
algorithms, then divided these times by the total number of messages
to obtain the average compression time for a single message.

The results of these measurements are summarized in Fig. 7. They
clearly demonstrate superiority of b64pack, which is almost twice as
fast as compress, about 5.5 times faster than gzip and about 9 times
faster than bzip2.

3.2. Measurements of compression ratio

When it comes to compression of short text messages, the obvious
advantage of b64pack over compress, gzip and bzip2 lies in the
fact that b64pack does not require a header. Otherwise, all the other
three compression methods are far superior to what b64pack is able
to achieve by the simple transformations it performs.

Since we are primarily interested in compression of SMS messages,
we have concentrated our experiments around those messages,
whose length is greater than 160 characters. There are a total of 1984
such messages in the NUS SMS Corpus. Since the primary goal of
compression of these SMS messages is to make them fit into the 160-
character limit, in our experiments we compressed each of the mes-
sages with each of the four algorithms and counted the successful
compressions resulting in the compressed message being less than or
equal to 160 characters in length. Even though b64pack can only
successfully compress messages with lengths up to 213 characters
160� 4

3≈213:33
� �

, we haven't imposed any limits on the maximum
message length in our experiments, whose results are shown in Table 5.

The total number of successful compressions is 1006. It is obvious
from Table 5 that gzip is the only true competitor to b64pack when
it comes to compressing short messages. Nonetheless, our results
show that b64pack is still significantly superior to gzip in the total
number of successfully compressed messages. In most cases b64pack
achievesminimal compression ratio and is the only successful algorithm
out of all four in about 21%of all successful compressions, with gzip
being the only successful algorithm in around 4% of all successful
compressions.

Since the compression ratio of b64pack depends on the structure of
themessage (e.g.more punctuationmeansworse compression), it is in-
teresting to know how successful b64pack is in compressing real SMS
Fig. 6. Example message from Fig. 2 after tr
messages of varying lengths. Fig. 8 shows the length distribution of
the 947 messages successfully compressed by b64pack.

As Fig. 8 shows, b64pack is good at compressing real SMSmessages
of all lengths from 161 to 213 characters, being slightly more successful
in the case of shorter messages with lengths ranging up to about 180
characters.

A further experiment shows how the use of a simple and relatively
small dictionary affects the compression ratio of all four considered
algorithms, in particularb64pack. For this experimentwe used a dictio-
nary containing a total of 1110 frequent English words: 10 three-letter
words, 100 four-letter words and 1000 five-letter words. The runtime
storage requirements for this small dictionary can be accommodated
with 6 kilobytes of memory. As a reference for building the dictionary
we used a list of 10,000most frequent English words obtained from [9].

In case of compress, gzip and bzip2, we first performed dictionary
substitution on the original SMS messages, then let each algorithm
perform compression and counted successful compressions. In case of
b64pack, dictionary substitution was performed after transcoding, as
described in Section 2.4.

Our results are summarized in Table 6. With dictionary pre-
compression the total number of successful compressions grew from
1006 to 1179. This does not look like a significant gain, yet for the indi-
vidual algorithms, dictionary precompression has certainly brought
some benefits.

Even though compress is the winner in the absolute sense in terms
of additionally performed successful compressions, b64pack and gzip
still retained more significance. We must, however, notice that
b64pack gained 20% in additional successful compressions, whereas
the relative gain of gzip is 10%. Other evaluation criteria in Table 6
show a loss of gzip over b64pack.

Finally, we wanted to see how dictionary precompression affected
themaximummessage length and the number of messages of different
lengths successfully compressed by b64pack. Fig. 9 shows the results.
On the graph,wehave also included the resultswe gotwithout dictionary
precompression as given in Fig. 8.

Aswe can see, in our experiments dictionary precompression helped
increase the potential maximum message length to around 230, which
corresponds to a gain of approximately 10%.
anscoding and dictionary substitution.

Table 5
Results of experiments comparing success of individual algorithms in compressing
messages longer than 160 characters.

Algorithm b64pack compress gzip bzip2

Total successful compressions 947 467 793 204
Only one algorithm succeeds 212 0 41 0
Minimal compression ratio 886 0 109 0

Table 6
Results of experiments comparing success of individual algorithms in compressing
messages longer than 160 characters after dictionary substitution.

Algorithm b64pack compress gzip bzip2

Total successful compressions 1140 709 874 395
Additional successful compressions 193 242 81 191
Only one algorithm succeeds 299 0 19 0
Minimal compression ratio 1102 4 71 0

58 K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
4. Discussion—future work

In the average case, message transcoding and BASE64-decoding pro-
duce a nearly fixed ratio for all message lengths. Therefore, we propose
that future research addresses dictionary precompression. We have
seen how a relatively small dictionary with 1110 entries, based on a
generic list of words, helped increase maximum length of an SMS mes-
sage by about 10%. Richer dictionaries with longer words would lead to
further improvements in the overall compression ratio of b64pack.
With access to a large set of real messages, such as those available in
the NUS SMS Corpus, the dictionary could be optimized to include
most frequentwords from true conversations. This should givemaximal
space savings in the dictionary substitution phase.

Besides enhancing dictionary substitution, improvements in com-
pression speed can easily be achieved by parallelizing the two phases
of b64pack. The fact that the BASE64 decoder operates on groups of
four characters allows it to begin decoding as soon as the transcoder
generates a sequence of four characters. We saw an example of this in
Section 2.3. If transcoding and BASE64-decoding functions are executed
in parallel, we can expect to see measurable speed improvements on
hardwarewhich allows simultaneous execution of two ormore threads.

The b64pack algorithm is very similar to the class of compression
techniques known as transformation algorithms that perform a revers-
ible precompression transformation which increases its compressibility
to other compression techniques. The b64pack algorithm is distin-
guished from these algorithms by the facts that the transform itself
provides a fixed compression ratio and there is no need for metadata
to be transmitted along with the compressed file.

The well known Burrows–Wheeler Transform [10,11] is a reversible
sorting algorithm that creates long runs of identical characters in the
output text. This is followed by a Move To Front algorithm and by
Huffman or arithmetic coding. This yields compression that outper-
forms most of the classic algorithms. A much simpler recent algorithm
proposed by Mukherjee and Franceschini called Star Compression per-
forms a transformation using a dictionary and yields comparable perfor-
mancewith respect to compression [12]. Its implementation is available
on-line [13]. Several modifications have been proposed to improve the
performance (see [14]). We plan to explore the possibility of applying
the Star Compression ideas for SMS messages.

Finally, one additional strength of b64pack lies in the fact that it
relies on standards and de facto standards, such as SMS code tables
and BASE64 encoding. BASE64 decoding, which forms the basis of the
0

 10

 20

 30

 40

 160 170 180

N
um

be
r

of
 s

uc
ce

ss
fu

lly
co

m
pr

es
se

d
m

es
sa

ge
s

Length of uncompre

Fig. 8. Distribution of successful compressions b
second phase of b64pack compression, iswell supported on all operating
systems and is available in all major programming languages in form of
standard library functions and classes. In the interest of increased interop-
erability, future research should attempt to find new solutions to advance
the process of large-scale deployment of new compression algorithms. To
avoid potential legal issues and reduce costs in massive deployments,
such as those among mobile phone users worldwide, these advance-
ments should follow the track of standard-compliance and avoid the
use of proprietary algorithms.

5. Conclusion

In this work we have shown how a combination of relatively simple
transformations can be used to efficiently compress text. More impor-
tantly, we proved that for compression of short texts this approach is
superior to other well-known lossless compression algorithms. One
major advantage of b64pack in the context of compression of short
texts lies in the fact that it does not require anymetadata. This effective-
ly means that the compressed message can be transmitted without a
header, which keeps the full capacity of the communication link for
transmission of the data. This is essential for some types of short
messages which are inherently limited in size, such as SMS messages.
The absence of a header together with the fact that b64pack uses
extremely small amounts of memory space and CPU processing
power, makes b64pack a very powerful method which can hardly be
beaten in compressing short messages by any of the existing compres-
sion algorithms.

Compression of short texts can be employed in a wide range of im-
portant applications, such as SMS, instant messaging, IRC, Twitter, RSS,
and many more. Given the huge volume of such messages exchanged
today on the Internet and within GSM networks, bandwidth savings
which can result from deployment of b64pack can be tremendous.
Furthermore, the ability to compress short messages at almost no com-
putational cost can potentially conserve huge amounts of energy con-
sumed by wireless communication between computers and sensors in
Wireless Sensor Networks and large networked embedded systems
such as the Internet of Things.

Very efficient and lightweight processing and low memory require-
ments of b64pack make it particularly suitable for use on mobile
phones. B64pack gives mobile users the privilege of typing up to 213
characters for the price of a single SMS message. We saw how this
 190 200 210

ssed message (characters)

y b64pack over different message lengths.

0

 10

 20

 30

 40

 160 170 180 190 200 210 220 230

N
um

be
r

of
 s

uc
ce

ss
fu

lly
co

m
pr

es
se

d
m

es
sa

ge
s

Length of uncompressed message (characters)

without dictionary precompression
with dictionary precompression

Fig. 9. Comparison of distributions of successful compressions by b64pack over different message lengths with and without dictionary precompression.

59K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59
limit can easily be extended up to about 230 characters by using a small
static dictionary with a size of a few kilobytes only.

Another important aspect of b64pack compression is that it can be
done in real time, while the user is typing amessage.We have described
how this fact can be used to estimate the length of the compressed
message during composition.

6. Acknowledgments

The authors wish to thank Professor Amar Mukherjee from the
University of Central Florida and the unknown reviewers for providing in-
sightful and valuable comments and expert advice on text compression.

References

[1] S. Rein, C. Guhmann, F. Fitzek, Low complexity compression of short messages,
Proceedings of the IEEE Data Compression Conference (DCC 2006), March 2006,
pp. 123–132.

[2] S. Rein, C. Guhmann, F. Fitzek, Compression of short text on embedded systems, J.
Comput. 1 (6) (September 2006) 1–10.

[3] Y. Hu, J.C. Zhang, F. Khan, Y. Li, Improving PPM algorithm using dictionaries,
Proceedings of the IEEE Data Compression Conference (DCC 2011), March 2011,
p. 459.
[4] 3GPP, Alphabets and language-specific information. TS 23.038, 3rd Generation
Partnership Project (3GPP), http://www.3gpp.org/ftp/Specs/html-info/23038.htm
(accessed on 3 January 2014).

[5] RFC989 - Privacy Enhancement for Internet Electronic Mail. Part I: Message
Encipherment and Authentication Procedures.

[6] The Brown Corpus in plain text format, http://dingo.sbs.arizona.edu/hammond/
ling696f-sp03/browncorpus.txt (accessed on 3 January 2014).

[7] The Canterbury Corpus, http://www.corpus.canterbury.ac.nz/ (accessed on 3
January 2014).

[8] NUS SMS Corpus, http://wing.comp.nus.edu.sg/SMSCorpus/ (accessed on 3 January
2014).

[9] 10,000most commonEnglishwords in order of frequency, as determined by n-gram
frequency analysis of the Google's Trillion Word Corpus, https://github.com/
first20hours/google-10000-english/ (accessed on 3 January 2014).

[10] M. Burrows, D.J. Wheeler, A Block Sorting Data Compression Algorithm, SRC
Research Report 124, Digital Systems Research Center, Palo Alto, California,
1994.

[11] D. Adjeroh, T. Bell, A.Mukherjee, The Burrows–Wheeler Transform:Data Compression,
Suffix Arrays, and Pattern Matching, Springer, 2008.

[12] R. Franceschini, A. Mukherjee, A. Mukherjee, Data Compression using Encrypted
Text, Proceedings of the Third Forum on Research and Technology. Advances on
Digital Libraries, ADL96, 1996, pp. 130–138.

[13] M. Nelson, Star encoding, Dr. Dobbs J. (August 2002) 94–96 (Also see
http://marknelson.us/2002/08/01/star-encoding-in-cpp/ (accessed on 3
January 2014)).

[14] A. Mukherjee, F. Awan, in: K. Sayood (Ed.), Text Compression, Chapter 10, Lossless
Compression Algorithm, Academic Press, 2003.

