
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 75

ISSN No. 0976-5697

Proposed Software Re-engineering Process That Combine Traditinal Software Re-
engineering Process With Spiral Model

Ahmed Saleem Abbas*
Department of Computer Science & IT

Karbala University & SHIATS University Babylon, Iraq
ahmed_saleam@yahoo.com

DR. W. Jeberson
Department of Computer Science & IT
SHIATS University Allahabad, India

jeberson@rediffmail.com

V.V. Klinsega
Department of Computer Science & IT
SHIATS University Allahabad, India

segavijayakumar@rediffmail.com

Abstract: Software re-engineering, a recent research area includes reverse engineering, forward engineering and reengineering tools while re-
engineering process modification to get new enhanced process until now does not discussed in a serious manner, so in this paper the traditional
software reengineering process is discussed and the "proposed software reengineering process" is suggested. The proposed process incorporates both
the reverse engineering process and forward engineering process integrated with spiral model where reverse engineering applies to existing system
code to extract design & requirements, although this is often used as means to mitigate risks & reduced costs of operation and maintaining the
software system. This paper briefly describes traditional re-engineering then discusses the emerging process of proposed-reengineering which is often
used as means to simplify the complex tasks. The paper represents how quality is going to be effect with the help of given software reengineering
process. An analysis of various possible risks, their impact and mapping with various attributes is correspondingly presented. This paper is also
presenting the way to reduce the impact of most of these risks by using proposed re-engineering through get all the useful features of spiral model.

Keywords: Software Engineering, Software Re-engineering Process, Proposed Re-engineering Process, Reverses Engineering; Forward Engineering,
Risk Assessment, Software Metrics.

I. INTRODUCTION

Re-engineering is the examination, analysis and
alteration of an existing software system to reconstitute it in
a new form, and the subsequent implementation of the new
form [1]. Proposed Reengineering “is a re-engineering
process that uses not just the traditional six activities, but a
combination of these activities and a set of framework
activities of the spiral model to transition an existing system
to a target system.

There are a lot of number of risks associated with
various principles such as Re-think & Re-specify, Re-
Design, Re-Code, Re-Test i.e. Technical risk, known risk &
project risk belonging to various sub categories of risk such
as selection of code translation, operational, line by line
translation is not possible, quality, reliability, external,
interfacing of COTS with legacy system, schedule, COTS
will perform up to the standards [2], because of these risks
the thinking about planning and risk analysis activity of the
spiral model is discussed as a solution to determine and
reduce risks and their effects. The cyclic approach of spiral
model is used within the proposed software reengineering to
get the benefit of it;s incrementally growing a system degree
of definition and implementation while it decreasing its
degree of risk.

The process typically encompasses a combination of
other processes such as reverse engineering, re-

documentation, restructuring, translation and forward
engineering. As the software industry moves to a new era, many
new software design methodologies are developed, improving
software reusability and maintainability, and decreasing
development and maintenance time. But most companies have
legacy systems that are costly to maintain. These systems cannot
just be replaced with new systems. They contain corporate
information and implied decisions that would be lost. They also
are an investment, and were too costly to develop and evolve
just to discard [2].

For these purposes, re-engineering becomes a useful tool to
convert old, obsolete systems to more efficient, streamlined
systems. But project development is always short on time and
money, making the need to look at alternatives necessary. The
use of COTS packages is seen as a way to increase reliability
while decreasing development and test time. Translation of code
is a means of decreasing time and cost. This has resulted in a
combination of the development methods into a form of proposed
re-engineering. In the proposed software re-engineering process
there are a set of anchor point milestones for ensuring
stakeholders commitment to feasible and mutually satisfactory
system solution.
a. Re-engineering Model: The goal is to understand the

existing software (specification, design and
implementation) and then to re-implement it to improve the
functionality, performance or implementation of the system
and it is used to maintain the existing functionality and
prepare for functionality to be added later, achieving greater

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 76

reliability, preparation for functional enhancement,
improve maintainability & migration [1]

b. System Re-engineering: Re-structuring or re-writing
part or all of a legacy system without changing its
functionality considered as system re-engineering [3]. It
applies where subsystem of a larger system require
frequent maintenance [4]. Re-engineering involves
adding effort to make functionality of those systems
easier to maintain. The system may be restructured and
re-documented [5]. Generally, there are following
phases of software re-engineering, Source code
translation, Reverse engineering, Program structure
improvement, Program modularization and Data re-
engineering.

II. RELATED WORK

Re-engineering is generally discussed as “business
process change”. Such change imposes new requirements on
systems. Pooley et. al. include re-engineering in business
process change not only changes over time within one
organization but also the situation presenting many of the
same problems in which a system developed in one
organization and to be used in another[6]. Expert in re-
engineering are much rarer than are experts in design and
most of the engineers do not have much research experience
in this area [5]. The problems with legacy systems had
posed everywhere in the world. Brodie et. al. define a legacy

system as one that significantly resists modification and
evolution to meet new and constantly changing business
requirements regardless of the technology used to design it [7].
The legacy system is replaced by a new system with the same or
improved functionality [5].

In 2001, Alessandro Bianchi et al, they published paper titled
"Iterative Reengineering of Legacy Functions", this paper
describes a process of gradual reengineering of the procedural
components of a legacy system. The proposed method enables
the legacy system to be gradually emptied into the reengineered
system, without needing to either duplicate the legacy system or
freeze it. The process consists of evolving the legacy system
components toward firstly a restored system and then toward the
reengineered system. Meanwhile, the legacy system can coexist
with both the restored and the reengineered parts. By the end of
the process, a single system will be in existence: the reengineered
one. The method has been applied to reengineer a real system and
demonstrated its ability to: support gradual reengineering,
maintain the system at work during the process, and minimize the
need to freeze maintenance requests, renew the operative
environment of the reengineered system with respect to the
legacy system and, finally, eliminate all the system’s aging
symptoms This reengineering process is shown in figure 1, the
various phases each being enclosed in a box, while the label on
the arrow linking two successive phases indicates the output
produced by the relative phase [8].

Figure 1. Iterative reengineering process [8].

In 2005, Xiaohu Yang et al. they published paper titled
"A Dual-Spiral Reengineering Model for Legacy System
"This paper presents a dual-spiral reengineering model,
which performs as a cyclic approach. The main workflow in
Dual-Spiral Reengineering Model requires that the two
systems (legacy one and target one) work together, and

move the functionality (not the modules) from the legacy
system to the target system step by step, as in the spiral
model. During the entire process, the active functionality in
the legacy system is in a decremental pattern, and the active
functionality in the new target system is in an incremental
pattern, as Figure (2) [9].

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 77

Figure 2. Decremental Legacy system Pattern and Incremental Target system Pattern in Dual-Spiral Model [9]

In 2012, Sandhya Tarar and Dr. Ela Kumar they design
the Hybrid reengineering paradigm [2]. Hybrid re-
engineering is a re-engineering process that uses not just a
single, but a combination of abstraction levels and alteration
methods to transition an existing system to a target system.
In order to do the hybrid reengineering the reengineering
model is mapped on with the software component library
that can be Commercial off the shelf (COTS) or Math
description engineering (MDE). Because hybrid
reengineering uses COTS or MDE libraries through which
design and requirements can be specified much faster
thereby reducing effort, time and increasing reliability.

COTS have some risk associated with it i.e. A package will
not perform an anticipated or advertised, or that will be
unreliable, immature or incomplete. Also COTS product
may limit further enhancements to the system because
changes in COTS provided functions may not be possible
due to legal or contractual issues. All the main principles of
hybrid reengineering approach namely re-specify, redesign,
recode & retest the main task remains of integrating all the
work of these principles together to make an effective model
or system. Any specific principle is useless unless there is
no integration with the other [2]. The Hybrid model is
shown in figure (3).

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 78

Figure 3. Hybrid Re-Engineering Model [2]

III. SPIRAL MODEL [10]

The spiral model is an evolutionary software process
model that combines the iterative nature of prototyping with
the controlled and systematic aspects of the linear sequential
model. This model was shown in figure (4).

Spiral model is Prevalent in OO design methodologies,
also encompasses all the essential development phases:
Requirements analysis, Design, Code, Test and Maintenance.
This model Marked by use of the control and structure of the

more linear, sequential waterfall process, but with a series of
“evolutionary releases”, it is also known as the “hybrid
model”, Explicitly addresses the issue of quality assurance
by performing the development process in a “step-wise
refinement” method. Each step produces a “deliverable”
which embodies the structure or sequential nature of the
process. This process naturally focuses on a high degree of
customer or stakeholder involvement during the development
process.

Figure 4. spiral model [10].

In this diagram, “Communication” refers to the
Requirements and analysis process, “Planning” corresponds
to preliminary design and scheduling, “Modeling” is the
detailed design, “Construction” refers to
code/debug/integration, and “Deployment” is the delivery to

the customer and the feedback process. Software is
developed in a series of evolutionary releases
a. During early iterations, the release might be a paper

model or prototype
b. During later iterations, increasingly more complete

versions of the engineered system are produced

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 79

c. The final iteration produces the complete software
product
First circuit around the spiral might result in the

development of the product specification; might result in a
CoDR review by the customer. Next iteration might produce
a prototype, containing the GUI, for example; the customer
might want to see this, so there could be a PDR and/or CDR
at this time. Third time around might be used to fill in more
detailed functionality, and release a preliminary working
model. Fourth circuit might result in a complete alpha
release, which the customer could “hammer on” for a while
to test robustness and provide feedback to the solution
provider about the product’s strengths and weaknesses. Fifth
iteration might be a beta test, or it could be the final build
for initial release (if the previous circuit was satisfactory
enough to warrant this).

IV. TRADITIONAL SOFTWARE REENGINEERING
PROCESS:[10]

Reengineering takes time; it costs significant amounts of
money; and it absorbs resources that might be otherwise
occupied on immediate concerns. For all of these reasons,
reengineering is not accomplished in a few months or even a
few years. Reengineering of information systems is an
activity that will absorb information technology resources
for many years. That’s why every organization needs a
pragmatic strategy for software reengineering. A workable
strategy is encompassed in a reengineering process model..
Reengineering is a rebuilding activity, to implement it apply
a software reengineering process model that defines six
activities, shown in Figure (5). In some cases, these
activities occur in a linear sequence, but this is not always
the case. For example, it may be that reverse engineering
(understanding the internal workings of a program) may
have to occur before document restructuring can commence.
The reengineering paradigm shown in the figure is a cyclical
model. This means that each of the activities presented as a
part of the paradigm may be revisited. For any particular
cycle, the process can terminate after any one of these
activities.
a. Inventory analysis: Every software organization

should have an inventory of all applications. The
inventory can be nothing more than a spreadsheet
model containing information that provides a detailed
description (e.g., size, age, business criticality) of
every active application.

b. Document Restructuring: Weak documentation is the
trademark of many legacy systems. But What are
available options to solve it?

(a). Creating documentation is far too time consuming. If
the system works, we’ll live with what we have.

(b). Documentation must be updated, but there are limited
resources. We’ll use a “document when touched”
approach.

(c). The system is business critical and must be fully
redocumented.

c. Reverse Engineering: the Reverse engineering is the
process of analyzing a program in an effort to create a
representation of the program at a higher level of
abstraction than source code. Reverse engineering is a
process of design recovery. Reverse engineering tools
extract data, architectural, and procedural design
information from an existing program.

d. Code Restructuring: The most common type of
reengineering (actually, the use of the term
reengineering is questionable in this case) is code
restructuring. Some legacy systems have relatively
solid program architecture, but individual modules
were coded in a way that makes them difficult to
understand, test, and maintain. In such cases, the code
within the suspect modules can be restructured. To
accomplish this activity, the source code is analyzed
using a restructuring tool. Violations of structured
programming constructs are noted and code is then
restructured (this can be done automatically). The
resultant restructured code is reviewed and tested to
ensure that no anomalies have been introduced.
Internal code documentation is updated.

e. Data Restructuring: A program with weak data
architecture will be difficult to adapt and enhance. In
fact, for many applications, data architecture has more
to do with the long-term viability of a program that the
source code itself. Unlike code restructuring, which
occurs at a relatively low level of abstraction, data
structuring is a full-scale reengineering activity. In
most cases, data restructuring begins with a reverse
engineering activity. Data objects and attributes are
identified, and existing data structures are reviewed for
quality. When data structure is weak (e.g., flat files are
currently implemented, when a relational approach
would greatly simplify processing), the data are
reengineered. Because data architecture has a strong
influence on program architecture and the algorithms
that populate it, changes to the data will invariably
result in either architectural or code-level changes.

f. Forward Engineering: In an ideal world, applications
would be rebuilt using a automated “reengineering
engine.” The old program would be fed into the
engine, analyzed, restructured, and then regenerated in
a form that exhibited the best aspects of software
quality. In the short term, it is unlikely that such an
“engine” will appear, but CASE vendors have
introduced tools that provide a limited subset of these
capabilities that addresses specific application domains
(e.g., applications that are implemented using a
specific database system). More important, these
reengineering tools are becoming increasingly more
sophisticated.

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 80

Figure 5. A software reengineering process model [10]

V. PROPOSED SOFTWARE REENGINEERING
PROCESS

In this section a new reengineering process was
suggested and named as a "Proposed Reengineering
Process“. It is a re-engineering process that uses not just the
six activities of traditional re-engineering process, but a
combination of these activities and a set of framework
activities of the spiral model to perform the transition of an
existing system (legacy system) to a target system (new
system).The proposed reengineering process consists of
eight task regions, these tasks regions as follows:
a. Communication & Detection the Frailer Reasons of

Legacy SW:- Communication with customer in order
to re-specify the requirements as per the new need of
the user, and then map these requirements with the
SRS. The frailer reasons of the selected legacy
software were detected within this first step and the
feasibility study is done.

b. Planning:- it is the activity that required to define
resources, timelines, cost and other project related
information, then risk analysis is accomplished to
assess both technical and management risks.

c. Reverse Engineering:- Reverse engineering is the
process that starts from the implementation phase and
moving towards the coding, design and requirement
phase, through this region the data, architectural and
procedural design information was extracted from
existing legacy software.

d. Document Restructures: in this phase the mapping of
restructured SRS to the Design document is being done
i.e. integration of new SRS to design in order to get the
redesigned document which is the output of this phase.
As SRS changes the design structure consisting of

DFD/ ER diagrams/UML diagrams need to be changed
as per the extent of changed requirements.

e. Code Restructures: To accomplish this activity, the
source code is analyzed using a restructuring tool. The
resultant restructured code is reviewed and tested to
ensure that no Distortions have been introduced.
Internal code documentation is updated.

f. Data Restructures: In most cases, data restructuring
begins with a reverse engineering activity. Data objects
and attributes are identified, and existing data
structures are reviewed for quality. When data
structure is weak, the data are reengineered. Because
data architecture has a strong influence on program
architecture and the algorithms that populate it,
changes to the data will invariably result in either
architectural or code-level changes.

g. Forward Engineering: it is the process which starts
from requirement to the implementation phase.
Forward engineering, also called renovation or
reclamation, not only recovers design information from
existing software, but uses this information to alter or
reconstitute the existing system in an effort to improve
its overall quality. In most cases, reengineered
software re-implements the function of the existing
system and also adds new functions and/or improves
overall performance.

h. Deployment: it is the delivery of reengineered software
to the customer and then feedback process is done to
obtain customer evaluation of that software.

These eight task regions are shown in the (figure 6) and
they are very important to reengineer the legacy software;
this proposed process model integrated the iteration nature
of spiral model with traditional software reengineering
process. There are basics task that have to be accomplished

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 81

by any software reengineering process but the diagnostic
features of the proposed process are the following:

a) The millstones are inserted after each iteration to
check if the process is performed within schedule
time or not.

b) The reengineering process can be finished after any
iteration.

c) The reasons that cause the failure of the legacy
software are determined at first step to remedy these
reasons.

d) In the proposed reengineering process there is
planning task regions that make feasibility study,
scheduling, estimation and risk analysis to determine
all the expected benefit and estimation of the
required cost and effort, so according this the

developer can make his decision to reengineer that
legacy software or rebuild it from scratch.

e) The third, fourth, fifth, sixth, seventh are the same of
that activities that done in traditional software
reengineering process except that in the proposed
there are a non determined number of iterations that
allowed to reach to the final project with new
features, capabilities and high quality software.

f) Deployment and waiting for the customer feedback it
is also diagnostic activity of the proposed
reengineering process. According this feedback the
decision is made if the reengineering process is
finished or not. If the customer dose not satisfy the
next iteration will began.Authors and Affiliations

Figure 6: Proposed reengineering process

A. Benefits of Proposed software reengineering
process:

Proposed re-engineering has the advantage that it
determine the causes of failure to overcome it and prevent it
for the future, also it is reduces the development schedule time
and reduced the costs. This process can be used to produce
many versions of modern software by using the legacy
software as a baseline.

B. Limitations of Proposed software reengineering
process:

Since the proposed re-engineering is a new approach in the
re-engineering area although a very cost efficient approach as

it reduces development time & cost but there are no exact
metrics available for this in order to measure the scalability &
performance and most of these metrics depend on estimation
values such as human effort (person/ hour), this metric is
deferent from person to other according to experience and
skills of that person, also cost and time are depend on human
effort metrics and the complexity of the software, so this is a
main limitation that face as a developer.

VI. EXPECTED RISKS

There are number of risk that can be recognized and the
reengineering teams have to take care about them, they are:

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 82

(a). Development Environment: risks associated the
availability and quality of the COTS/MDE tools.

(b). Product Size: risks impact is directly proportional to the
overall product size that has to be re-engineered/re-
build/re-modulated.

(c). Size and experience; risks associated with the overall
technical and project experience of the software engineers
who will do the task of re-engineering.

(d). Customer characteristics: risks associated with the
sophistication of the customer and the developer's ability
to communicate with the customer in a timely manner.

(e). Technology to be built: risks associated with the
complexity of the system to be reengineered and the
"newness" of the technology that is packaged by the
system.

(f). Process definition: risks associated with respect to the
process followed by the organization to perform re-
engineering process.

(g). Business impact: risks associated with constraints
imposed by management or the marketplace and also the
Domain of the business causes risks for performing
reengineering process.

The reengineering risk can be distributed into six risk areas
as shown in figure (7). These risk areas as following [11]:

a. Technology risks:
a) Recovered information is not useful or used
b) Reverse engineering to representations that cannot be

shared
c) Reengineering technology inadequate to accomplish

reengineering goals
b. Tool risks:

a) Dependence on tools that do not perform as advertised
b) Not using installed tools

c. Strategy risks:
a) Premature commitment to a reengineering solution for

an entire system
b) Failure to have a long-term vision with interim goals
c) Lack of global view: code, data, process reengineering
d) No plan for using reengineering tools

d. Application risks:
a) Reengineering with no local application experts

available
b) Existing business knowledge embedded in source code

is lost
c) Reengineered system does not perform adequately

e. Process risks
a) Extremely high manual reengineering costs
b) Cost benefits not realized in required time frame
c) Cannot economically justify the reengineering effort
d) Reengineering effort drifts
e) Lack of management commitment to ongoing

reengineering solution
f. Personnel risks:

a) Programmers inhibiting the start of reengineering

b) Programmers performing less effectively to make an
unpopular reengineering project look less effective

Figure (7): Re-engineering Risks area [11]

VII. SOFTWARE METRICS

Metrics is a quantitative measurement of its attributes.
Various parameters such as Cost, Reliability, Quality, Object-
Oriented Measures, Reusability, Complexity, and Portability
can be used to measure the software re-engineering in
quantitative form. As shown in table (1) corresponding metrics
leads to various factors responsible for the measurement of the
software re-engineering [2][10].

Table I. Software Reengineering Metrics
Complexity • Size (LOC,FP)

• Design structure
• Data analysis

Cost • Effort (person, months)
• Time
• Productivity

Reliability • Interoperability
• Availability
• MTTR
• MTTF

Reusability • Retrievability
• Integrability
• Testability
• Generality
• Portability
• Modifiability

Quality • Functionality
• DRE
• Complexity
• Reliability
• Reusability
• Performance
• Security

Object oriented measures • Inheritance
• Encapsulation
• Polymorphism
• Abstraction

VIII. CONCLUSION

The new era is recognized by the very fast changes in the
computer industry that introduce new hardware and software,
making older systems suffers from the market competition and
the difficulty in maintenance. Software re-engineering provides
reduced risk level. There is a high risk in new software

Ahmed Saleem Abbas et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 75-83

© 2010, IJARCS All Rights Reserved 83

development. There may be development problems, staffing
problems and specification problems which are reduced by the
use of reengineering process. Another advantage of software
re-engineering is reduced cost. The cost of re-engineering is
often significantly less than the costs of developing new
software because some part i.e. sub-systems are used as it is
and some sub-systems are changed. Based on previous history,
project development is usually short on time and money,
making it necessary to look at another solution. "Proposed Re-
engineering" plays as a solution in this scenario. The use of re-
engineering approaches provides a way to increase reliability
and quality of the system while decreasing development
efforts. Translation of code is a means of decreasing time and
cost. This results in a combination of development methods of
traditional software reengineering with the Spiral software
development model into a form of proposed re-engineering
process model.

IX. ACKNOWLEDGMENT

We thank everyone at the SHIATS/department of computer
science and information technology who participated in this
research for many stimulating discussions. Also special thanks
to Karbala University/department of computer science for them
great support.

X. REFERENCES

[1] L Manzella. Mutafelija.: Concept of re-engineering Life
Cycle, ICSI Second International Conference On System
Integration. IEEE. 1992.

[2] Sandhya Tarar, Dr. Ela Kumar, "Design Paradigm and Risk
Assessment of Hybrid Re-engineering with an approach for

development of Re-engineering Metrics", International
Journal of Software Engineering & Applications (IJSEA),
Vol.3, No.1, January 2012.

[3] Linda H. Rosen Berg, Lawrence E.Haytt. : Hybrid Re-
engineering, Software technology conference. Utah, April
1997.

[4] MindTree Ltd.: Rehosting & Re-engineering from Mainframe
to Wintel, Case Study, 2010.

[5] Shekhar Singh, Significant role of COTS to design Software
Reengineering Patterns, International Conference on
Software Engineering and Applications(ICSEA),2009.

[6] 15. Pooley R., Stevens P., Systems Reengineering Patterns,
CSG internal report, 1998.

[7] Brodie, Michael L., and Stonebraker, Michael, “Migrating
Legacy Systems: Gateways, Interfaces and the Incremental
Approach”, Morgan-Kaufman Publishers, 1995.

[8] Alessandro Bianchi et al, " Iterative Reengineering of Legacy
Functions", IEEE International Conference on ISBN:
07695118 Year: 2001 Pages: 632-641 Provider: IEEE
Publisher: IEEE.

[9] Xiaohu Yang et al, "A Dual-Spiral Reengineering Model for
Legacy System", TENCON 2005 - 2005 IEEE Region 10
Conference ISBN: 0780393112 Year: 2005 Pages: 1-5
Provider: IEEE Publisher: IEEE.

[10] Pressman, Scott (2005), Software Engineering: A
Practitioner's Approach (Sixth, International ed.), McGraw-
Hill Education Pressman.

[11] Ian Sommerville, “Software Engineering, 6th edition”, 2000.

	INTRODUCTION
	RELATED WORK
	SPIRAL MODEL [10]
	TRADITIONAL SOFTWARE REENGINEERING PROCESS:[10]
	PROPOSED SOFTWARE REENGINEERING PROCESS
	Communication & Detection the Frailer Reasons of Legacy SW:- Communication with customer in order to re-specify the requirements as per the new need of the user, and then map these requirements with the SRS. The frailer reasons of the selected legacy ...
	Planning:- it is the activity that required to define resources, timelines, cost and other project related information, then risk analysis is accomplished to assess both technical and management risks.
	Reverse Engineering:- Reverse engineering is the process that starts from the implementation phase and moving towards the coding, design and requirement phase, through this region the data, architectural and procedural design information was extracted...
	Document Restructures: in this phase the mapping of restructured SRS to the Design document is being done i.e. integration of new SRS to design in order to get the redesigned document which is the output of this phase. As SRS changes the design struct...
	Code Restructures: To accomplish this activity, the source code is analyzed using a restructuring tool. The resultant restructured code is reviewed and tested to ensure that no Distortions have been introduced. Internal code documentation is updated.
	Data Restructures: In most cases, data restructuring begins with a reverse engineering activity. Data objects and attributes are identified, and existing data structures are reviewed for quality. When data structure is weak, the data are reengineered....
	Forward Engineering: it is the process which starts from requirement to the implementation phase. Forward engineering, also called renovation or reclamation, not only recovers design information from existing software, but uses this information to alt...
	Deployment: it is the delivery of reengineered software to the customer and then feedback process is done to obtain customer evaluation of that software.
	The millstones are inserted after each iteration to check if the process is performed within schedule time or not.
	The reengineering process can be finished after any iteration.
	The reasons that cause the failure of the legacy software are determined at first step to remedy these reasons.
	In the proposed reengineering process there is planning task regions that make feasibility study, scheduling, estimation and risk analysis to determine all the expected benefit and estimation of the required cost and effort, so according this the deve...
	The third, fourth, fifth, sixth, seventh are the same of that activities that done in traditional software reengineering process except that in the proposed there are a non determined number of iterations that allowed to reach to the final project wit...
	Deployment and waiting for the customer feedback it is also diagnostic activity of the proposed reengineering process. According this feedback the decision is made if the reengineering process is finished or not. If the customer dose not satisfy the n...

	Benefits of Proposed software reengineering process:
	Limitations of Proposed software reengineering process:

	EXPECTED RISKS
	Technology risks:
	Recovered information is not useful or used
	Reverse engineering to representations that cannot be shared
	Reengineering technology inadequate to accomplish reengineering goals

	Tool risks:
	Dependence on tools that do not perform as advertised
	Not using installed tools

	Strategy risks:
	Premature commitment to a reengineering solution for an entire system
	Failure to have a long-term vision with interim goals
	Lack of global view: code, data, process reengineering
	No plan for using reengineering tools

	Application risks:
	Reengineering with no local application experts available
	Existing business knowledge embedded in source code is lost
	Reengineered system does not perform adequately

	Process risks
	Extremely high manual reengineering costs
	Cost benefits not realized in required time frame
	Cannot economically justify the reengineering effort
	Reengineering effort drifts
	Lack of management commitment to ongoing reengineering solution

	Personnel risks:
	Programmers inhibiting the start of reengineering
	Programmers performing less effectively to make an unpopular reengineering project look less effective

	SOFTWARE METRICS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

