

International Journal of Engineering and Technology Volume 2 No. 2, February, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 292

The Need of Re-engineering in Software Engineering

Ahmed Saleem Abbas, W. Jeberson, V.V. Klinsega
Department of Computer Science & Information Technology, SHIATS University, India

ABSTRACT

In this paper we will discuss the importance of software re-engineering and the reasons behind this importance followed by a

discussion on each of these reasons with examples to prove that the re-engineering process is a useful tool to convert old,

obsolete systems to more efficient, streamlined systems. And the re-engineering is used to increase maintainability,

interoperability, performance and testability. Also re-engineering is used to decrease personal dependency.

Key words: Software Engineering, Software Re-engineering, restructuring, legacy systems

1. INTRODUCTION

Software Re-engineering is the examination, analysis and

alteration of an existing software system to reconstitute it

in a new form, and the subsequent implementation of the

new form. The process typically encompasses a

combination of other processes such as reverse

engineering, re-documentation, restructuring, translation,

and forward engineering. The goal is to understand the

existing software (specification, design, implementation)

and then to re-implement it to improve the system's

functionality, performance or implementation [1].

There are four re-engineering objectives, they are:

Preparation for functional enhancement, Improve

maintainability, Migration, and Improve reliability [1].

Figure 1 refers to the general model of software re-

engineering and illustrates the reverse engineering and

forwarded engineering.

Figure 1. General Model for Software Re-engineering

For examples when one would wish to re-engineer code

could be the modification of a date field (Y2K) or possibly

re-modularization of code to facilitate later maintenance.

In a typical Y2K scenario, one would expect to find

transformation of items such as the size of the date field in

a record, and other transformations that are concerned with

code that is used for outputting dates.

2. WHY SOFTWARE RE-ENGINEERING?

The need of software re-engineering evolved from the

following:

 Increasing legacy software.

 Emerging technologies.

Implementation

Design

Requirements

Reverse Engineering

Existing System

Forward Engineering

Target System

Implementation

C++, Testing

Design OO, replacement

Algorithms

Requirements dead/

unused

Re-specify

Re-Design

Compare

functionality

quality

International Journal of Engineering and Technology (IJET) – Volume 2 No. 2, February, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 293

 Decreasing ratio of Successful projects.

 Increasing number of competing Companies.

 More demand for quality attributes.

 Changing attitude of people.

 Insistence for Software maintenance.

3. THE BENEFITS OF SOFTWARE RE-

ENGINEERING

The main benefits of software re-engineering are as

follows:

 Increased maintainability [2].

 Improved performance [3].

 Increased interoperability [4].

 Decreased personal dependency [5].

 Improved testability [5].

3.1 Increased Maintainability

Many resources are spent on software maintenance. Thus,

producing software that is easy to maintain may

potentially save large costs. The problem of maintaining

software is widely acknowledged in industry, and much

has been written on how maintainability can be facilitated

by e.g. tools and processes. However, you cannot control

what you cannot measure, and there is yet no universal

measure of maintainability. Some proposals have indeed

been presented, but the very idea of measuring

maintainability has inherent problems [6].

Maintainability: The ease with which a software system

or component can be modified to correct faults, improve

performance or other attributes, or adapt to a changed

environment [7].

In practice, when measuring maintainability of a system

during a long sequence of changes, if it is true that the

system decays continuously, the resulted graph will be

similar to the one in figure 2 [6].

Figure 2. the system deteriorates (measured in

maintainability) as changes are implemented [6].

The maintainability sometimes increases and sometimes

decreases, that was expected. For example, the logical

change “system restructuring” should cause the

maintainability measure to increase, as Figure 3 describes

[6].

Figure 3: Change C’ (a restructuring of the system) causes

maintainability to (temporarily) increase [6].

As was known, the software re-engineering has many

activities and the restructuring activity is one of them so

the maintainability will increase when the SRE is applied.

3.2 Improved Performance

Performance (responsiveness and scalability) is a make-or-

break quality for software. Poor performance costs the

software industry millions of dollars annually in lost

revenue, decreased productivity, increased development

and hardware costs, and damaged customer relations.

When performance problems occur, they must be fixed

immediately. In response, the project often goes into

“crisis mode” in an attempt to tune or even redesign the

software to meet performance objectives. In these

situations, it is vital to maximize the performance and

capacity payoff of your tuning efforts [8].

There is a systematic, quantitative approach to

performance tuning that helps you quickly find problems,

identify potential solutions, and prioritize your efforts to

achieve the greatest improvements with the least effort.

The steps are:

 Figure out where you need to be.

 Determine where you are now.

 Decide whether you can achieve your objectives.

 Develop a plan for achieving your objectives.

 Conduct an economic analysis of the project.

Using this approach has been shown to provide a high

payoff for a relatively small cost. Once you run into

trouble, tuning the software is likely to be your only

choice. However, it’s important to realize that a tuned

system will rarely, if ever, exhibit the level of performance

that you could have achieved by re-engineering that

system. The key to achieving optimum performance is to

adopt a proactive approach to performance management

International Journal of Engineering and Technology (IJET) – Volume 2 No. 2, February, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 294

that anticipates potential performance problems and

includes techniques for identifying and responding to those

problems early in the process. With a proactive approach,

you produce software that meets performance objectives

and is delivered on time and within budget, and avoid the

project crisis brought about by the need for tuning at the

end of the project. Software performance engineering

(SPE) provides a systematic, quantitative approach to

proactively managing software performance [8].

Figure 4 illustrate how the software re-engineering process

increases the performance of the system [9].

Figure 4. The effect of SRP on system performance [9].

3.3 Increased Interoperability

The IEEE Standard Glossary of Software Engineering

Terminology defines interoperability as “the ability of two

or more systems or components to exchange information

and to use the information that has been exchanged [10].

The Department of Defense Directive defines

interoperability as “the ability of systems, units or forces

to provide data, information, materiel, and services, to and

accept the same from other systems, units, or forces and to

use the data, information, materiel, and services so

exchanged to enable them to operate effectively together.”

Figure 5 refer to the Levels of Information Systems

Interoperability (LISI) [10].

Figure 5. A Process for Interoperability [10]

System interoperability involves the efficiency of

producing and refining software to interact with new and

existing hardware to reliably exchange information

between systems. More specifically, system

interoperability encompasses the idea of software process

and software modeling involving legacy systems and new

hardware/software that must interact to provide reliable

exchange of information between systems. Dynamic

systems engineering requires that both processes and

models be flexible to allow re-engineering and

reevaluation of the processes and models themselves to

improve the interoperability [10].

3.4 Decreased Personal Dependency

Large-scale software development requires coordination

within and between very large engineering teams which

may be located in different buildings, on different

company campuses, and in different time zones.

Coordination between software development teams is one

of the most difficult-to-improve aspects of software

engineering. Kraut and Streeter argue that the software

industry has been in crisis mode for its entire existence,

and a root cause is the difficulty in coordinating work

between teams of developers. Researchers have studied

professional software development teams empirically to

gain greater understanding of how software development

processes, tools, and people impact coordination. The

importance of intra- and inter-team coordination is a

foremost concern as software development increasingly

becomes globally distributed, and remains a persistent

challenge in other disciplines as well.

Coordination is a decision-making that required

communication, capacity and cooperation. These three

components of coordination are necessary, but by

themselves insufficient, for coordination to take place.

Communication is necessary because person A needs to

communicate to person B, in some form, what needs to be

done, and B needs to understand the communication.

Capacity is necessary because B needs to be able to do

what is required of him. Cooperation is necessary because

B needs to be willing to do what is required of him. If any

of the three necessary components are lacking, the

outcome will be less than ideal [11].

From that, the personal dependency is important and take a

lot of effort to coordinate the software development team

work, so that, Software re-engineering is used to decrease

personal dependency by restructuring the legacy system in

a manner that reduce the dependency of person A on

person B where (both A & B) are members in the

development team [5].

3.5 Improved Testability

Test costs are driven by the size and complexity of the

software. Size can be measured in terms of the number of

elements making up the system. These could be

International Journal of Engineering and Technology (IJET) – Volume 2 No. 2, February, 2012

ISSN: 2049-3444 © 2012 – IJET Publications UK. All rights reserved. 295

statements, methods, classes, components, interfaces, files,

database tables and GUIs. Complexity is measured in

terms of the number of interactions between the elements.

These could be associations, calls, messages, file transfers,

database accesses, import, exports and events from

outside. The less there are, the less there is to test [5].

Another factor which influences testability is the visibility

of the data interfaces. Data passed between components

can be encoded in internal data formats or it can be passed

as readable character strings [5].

A very critical factor in testability is the separation of the

user interface from the processing logic. This separation of

presentation from processing is a prerequisite to testing the

processing, i.e. the business logic, without having to enter

the data in the user interface, which requires a lot of time

and is difficult to automate. A final factor in reducing test

effort is the separation of the data access operations from

the data processing [5].

The goal of re-engineering for testability is to restructure

the software in such a way that testability criteria can be

met while at the same time reducing the size and the

complexity of the system. Re-engineering software for

testability is definitely a worthwhile effort. Identifying and

removing clones, refactoring deeply nested code and

restructuring the architecture are tasks that can be

automated. Several tools exist which support that. By

using them, re-engineering costs can be minimized. Other

tasks such as algorithm optimization, merging data

accesses and simplifying user interfaces can be done

manually at a rather low cost. In view of the potential

savings in testing costs, it is well worth it to invest in a re-

engineering project running parallel to the development

project. Re-engineering for testability can still be

worthwhile before going into system testing. It might also

mean that the development process is being complemented

by a parallel re-engineering process, intended to raise the

quality of the software, including testability. Figure 6 refer

to parallel projects [5].

Figure 6. Parallel Projects

4. CONCLUSION

Many modern software design methods have been

developed to improve the reusability and maintainability

of software and to reduce the time required for the

maintenance and development operations, but many

companies have old or legacy software systems, these

companies spend a lot of money to maintain their old

systems. These systems cannot be replaced by new

systems because they contain implicit information and

decisions cannot be lost. For these purposes, re-

engineering becomes a useful tool to convert old, obsolete

systems to more efficient, streamlined systems.

REFRENCES

[1] Dr. Linda H. Rosenberg, "Software Re-engineering"

Software Assurance Technology Center, p. 2-3

Linda.Rosenberg@gsfc.nasa.gov

[2] Fowler, M.: Refactoring–improving the design of

existing code, Addison-Wesley, Reading, MA., 1999,

p. 53

[3] Sneed, H.: “Measuring the Reusability of Legacy

Software Systems“, Software Process – Improvement

and Practice, Wiley Pub., No. 4, March, 1998, p. 43

[4] Sneed, H., Nyary, E.: „“Downsizing large Application

Programs“, Journal of Software Maintenance, Vol. 6,

No. 5, Oct. 1994, p. 235-248

[5] Harry M. Sneed, Anecon GmbH, Wien, " Re-

engineering for Testability", Universities of

Regensburg and Passau, May, 2006

[6] Rikard Land, "Measurements of Software

Maintainability", Department of Computer

Engineering, Mälardalen University.

[7] IEEE, IEEE Standard Glossary of Software

Engineering Terminology, report IEEE Std 610.12-

1990, IEEE, 1990.

[8] Lloyd G. Williams, Ph.D, Connie U. Smith, Ph.D.

"Five Steps to Solving Software Performance

Problems", June, 2002.

[9] T. Hillman Willis, Ann Hillary Willis-Brown, (2002)

"Extending the value of ERP", Industrial Management

& Data Systems, Vol. 102 Iss: 1, pp.35 – 38

[10] Cadet Pamela A. Sanders, Dr. John A. Hamilton, "A

Process for Interoperability", Auburn University.

[11] Christopher Poile, Andrew Begel, Nachiappan

Nagappan, and Lucas Layman " Coordination in

Large-Scale Software Development: Helpful and

Unhelpful Behaviors", Dept. of Computer Science,

North Carolina State University, September 28, 2009.

mailto:Linda.Rosenberg@gsfc.nasa.gov

