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Abstract: In this study, a Distributed Data Aggregation and Selective Forwarding (DiDASeF) protocol for
prolonging the lifetime of wireless sensor networks is suggested. DiDASel combines two energy efficient
approaches for a clustered networle: data aggregation and selective forwarding. DiDASeF works into cycles and
each cycle consists of two stages. In the first stage, DiDASeF aggregates and reduces data dimensionality by
using an Adaptive Piecewise Constant Approximation (APCA) method. The selective forwarding by using
Dynamic Time Warping (DTW) distance measure is implemented in the second stage. DiDASeF was
successfully evaluated using OMNeT+ network simulator and based on sensed data of a real sensor network.
The conducted simulation results show that the proposed DiDASeF protocol decreases the consumed energy
and extending the network hifetime mn comparison with some existing methods whilst keeping the sensed data
quality at the sink node.
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INTRODUCTION

A WSN consists of a large number of tiny low-cost
limited-energy devices that can sense, process, store and
transmit data of surrounding environment with limited
capabilities across the network to the sink node. The most
significant resource in the sensor node that winpacts on
the lifetime of WSN is the energy provided by the battery.
Since, the limited lifetime of the battery in the sensor
node, 1t 1s difficult or impossible to replace (or recharge)
it especially in the remote or hostile environment.
Therefore, the lifetine maximization of the battery
represents one of the biggest challenges in WSN
(Idrees et al., 2015, 2016).

Since,s the limited power of sensor nodes batteries, it
is important to transmit as less volume of data as possible
to the base station (sink). The sensed data received by
the sink node may be similar because there is more than
one sensor monitors the same region. Therefore, it 1is
necessary to improve the energy efficiency of the
sensor network to operate over a long period of time
(Idrees et al., 2015, 2016, Anastasi ef al., 2009; Zhai and
Vladimirova, 2015). In the literature, several energy-saving
strategies are applied to the semsor networks such

as scheduling, routing, clustering, battery repletion,
radio optumization and data-driven approaches
(Povedano et al., 2014). Data aggregation methods are
efficiently applied to WSN in order to remove the
redundant data and decrease the commumnication cost,
thus, enhance the network lifetime (Dalbro et al., 2008).
Based on application requirements, data gathering
can be either triggered events (such as forest fire and gas
or oil leaks detection (Mainwaring et al., 2002) or periodic
triggering (such as habitat momtoring (Bahi ef al., 2014).

This study focuses on the periodic data gathering and
aggregation in WSNs. In some specific W3N applications,
the accuracy of the observations is very critical for
understanding the underlying processes. Therefore, in
order to design data aggregation algorithms for such
applications, it is very important to ensure the accuracy of
the received sensed data by the sink node.

This study provides the following contributions. A
new protocol named DiDASeF (Distributed Data
Aggregation and Selective Forwarding) is proposed to
aggregate the sensed data and prolong the network
lifetime 1n WSNs. It uses an energy efficient method for
data aggregation and selective forwarding for a clustered
network. Selective forwarding method 1s proposed that
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focuses on the transmission function of the sensor nodes,
especially the nodes of the same cluster. Instead of
sending sensed data immediately to the cluster head, a
cluster member must pass the transmission criteria.

DiDASeF protocol is evaluated by OMNeT++
network simulator using extensive simnulation experiments.
DiDASeF has been compared to two algorithms in
the related works: PFF algorithm that proposed by
Harb et al (2016) and ATP protocol proposed by
Sharaf ef al. (2003).

Literature review : This study investigated some existing
related worles to data aggregation in W3SNs. The principle
objective of aggregating the sensed data is to elininate
the redundancy in the sensed data and minimize the
consumed energy, thus, extending the lifetime of the
network (Ren et al., 2013).

However, in order to reduce the data transferring, the
researchers by Xu et al. (2012) and Heinzelman et al.
(2000) used simple aggregation methods (such as MAX,
MIN, AVG and SUM) for aggregation. These methods do
not consider the correlation among the sensed data.
Although, they provided a lugh aggregation performance
but the accuracy of recovered data 1s badly poor.
Therefore, these methods are inappropriate for those
applications that require a high data accuracy. For
example, LEACH (Villas et al., 2014) protocol was divides
the network into several clusters. The cluster heads are
chosen during the setup phase whilst the data are
aggregated using AVG method at each cluster head in the
steady phase s0 as to reduce the network data traffic.

The reseach by Tran and Oh (2014) divided the sensor
nodes into different clusters. One or several nodes in each
cluster are chosen as a representative set of nodes for
data collecting and sending whilst deactivating the other
nodes in the same cluster. The node’s energy can be
saved significantly with these methods but this can lead
to important data loss due to a large number of
deactivated nodes.

The reseach by Chong et al (2007) proposed a
round-based clustering scheme that resolves the
transmission of redundant data m the network, so as to
improve network lifetime. Proposed scheme works in four
phase’s rounds: initialization, cluster head selection,
clustering and data aggregation. Proposed clustering
scheme reduces energy consumption, thus, ncreasing
network throughput by dealing with most of the
redundant data.

MATERIALS AND METHODS
Description of the DiDASeF protocol: The description of

DiDASeF protocol 1s given in more details in this study.
The primary geal of DiDASeF is to develop a cluster

Table 1: Some parameters used in this stidy

SMPe Sampling rate =p

R} Temperatire readings series S =s;, ..., 5,

v Segment construction using SW(S, €), 8% = 5", ..., 8.7
gaF APCA of 8%, 88 =¢;, .., ¢, ¥

3 Reconstruction error bound

n Sensor id

n, Remaining energy of sensor n

based data aggregation and selective forwarding protocol
that works at the sensor node level. DiDASeF protocol
consists of two stages. The aim of the first stage is to
apply an energy efficient data aggregation mside each
sensor node before sending the aggregated data to the
appropriate Cluster Head (CH). In the second stage,
selective forwarding makes each sensor node compare the
data of successive periods in order to decide send this
data or not to CH based on the amount of similarity
between them. As a result, the redundancy in the
collected readings will be reduced and the consumption
of energy will be minimized (WSN lifetime improvement)
while the quality of collected readings is kept up
adequately to permit for a significant analysis at the base
station. Figure 1 illustrates the flowchart of the proposed
DiDASelF protocol. Table 1 explains some parameters
used n this study.

Data aggregation stage using APCA: The proposed
protocol in this article is distributed on the sensor nodes.
These nodes are considered grouped into clusters so as
to achieve energy efficient data aggregation with reduced
cost of communication. DiDASeF protocol 1s a periodic
and works into periods. The PSN consists of N
nodes (n,, n, ..., ny) each node is responsible for sensing
the data measures of the dynamic physical environment
such as humidity, temperature or pressure, etc., In PSN,
the periods are partitioned into time slots. Therefore, each
sensor node n captures the data reading periodically.

Consequently, the time-ordered sequence of sensed
data constitutes a time series S; = {s,, 8,, ..., §8,,, 8,} Where
p is the total number of temperature readings generated
by sensor node n every T sec. Therefore, DiDASeF
protocol treats the sensor readings as a time series and
named it as a temperature readings series. The redundant
temperature readings captured by the semsor node
increase in two states: short time slot and slowly variation
of a monitored area of interest.

The dimensionality p of temperature readings
series (which 1s the number of observed measures)
have a direct proportionality relation with the
commurication cost (Fig. 1).

Thus, a smaller p can result in a significant reduction
in the communication cost and hence, it will prolong the
lifetime of the sensor network (Wang et al., 2013). In this
stage, DiDASel protocol transforms the temperature
readings series S that collected during the period to
an APCA representation m order to decrease Fig.1

4645



J. Eng. Applied Sci., 13 (Special Issue 5): 4644-4653, 2018

Residual energy

Sample capturing
S = Collect measures at SMP,

="
E_

Update residual energy

Fig. 1: Flowchart of proposed DiDASeF protocol

dimensionality of series. It exploits the correlation nature
which is temporal among the sensed data of the sensor
node efficiently by applying an Adaptive Piecewise
Constant  Approximation (APCA) technique. The
efficiency of APCA 1s umproved by sorting the sensed
temperature readings in descending order, so as to group
the similar (or close similar) readings together.

The APCA divides the sorted temperature readings
series S into a set of constant value segments (with a
bounded reconstruction error €) of varying lengths based
on data such that their individual reconstruction errors are
minimal. More formally, | R (3*)-8 |< &, R (8*) is the
reconstruction function and € is an error threshold. Tong
segments are used to represent data regions of low

activity and short segments are used to represent regions
of high activity (Yahmed et al 2015). The APCA
representation of S 1s given in Eq. 1:

={{dm, d).... (dm,, dr,)}, dy = (1)

The APCA approximates each segment S;** by a pair
{dmy, dr,) of two numbers where dm, is the mean value of
temperature readings in the jth segment. Whilst dr; is the
right endpoint of the jth segment (Yahmed ez al., 2015).

By using the standard form of APCA with a constant
number of segments of varying lengths can influence on
the accuracy of temperature readings. Hence, the problem
addressed here is: for a given temperature readings series
S and a given reconstruction error bound e, find the
number of segments to approximate the time series such
that the difference between any approximation value and
its actual value is <e. In our method we make some slight
modifications on APCA. First, the number of segments m
will not be constant and predetermined but it will be
adaptive based on the user specified reconstruction error
€. In order to achieve this goal (i.e., making the number of
segments adaptive), the sliding window algorithm is
utilized. The reason for making the number of segments
adaptive 1s to mcrease the accuracy of approximated
measures by using a user-specified reconstruction error.
Second, we modified d, to represent the length of the
segments rather than record the locations of their right
endpoints.

Sliding window algorithm: Several applications such as
weather, medical and stocks employ the algorithm of the
sliding window. It is a temporal approximation over the
actual value of the time series data (Gedik et al., 2007). At
the end of each period, DIDASeF protocol will apply the
sliding window algorithm on the collected readings to
produce a different number of segments with varying
lengths.

The sliding Window approach is used because it is
simple, online and intuitive (Gedik ef @f., 2007). Algorithm
1 represents the process of segment construction using
sliding window algorithm.

Algorithm 1; Segments construction by sliding window:
Tnput: & Reconstruction Frror bound

S (p-dimensions temperature readings series)
Output: S¥ the set of segments with m subsets

Process:
1: 8 ~Borting (S) /8 orting temperature readings
2: FLAG+1 ff Starting point
3 8SEGy, -1 / Number of Segrments
4: while (x <p) do
5: x-2

6: while (Calculate-Error (S [Flag: Flag+x]) <€) do
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7: xext1

8:  end while

9: S¥ [SEG]-Create-Segment (S [Flag: Flag+x-1]
10: Flag-Flag +x

11:  SEGy,SEGu+1

12: end while

13: return 8%

Let 8% be the subset consisting of all the temperature
readings on this segment {s,, s,,, ..., 8} which meet the
reconstruction error bound. Eventually, we have a set S
of m subsets where S"=(3,", S,”. .... S.7). After
segmenting the temperature readings series using sliding
window algorithm, the produced set of segments S” is
used by Algorithm 2 to produce the APCA representation
for temperature readings series S. Algorithm 2 illustrates
the process of dimensionality reduction using APCA. Let
S(SEG,;, SEG,,) denote a subset consisting of all the
temperature readings on this segment {s, s.,..., 83},
where SEG, 1s the mean of these temperature readings and
SEG,,; 1s the length of the segment. The problem
mentioned above is solved by constructing a set of
segments 3*F with m subsets that meet the reconstruction
error bound €.

Algorithm 2; Aggregation stage using APCA:
Input: 8¥ the set of segments with m subsets

Output: $*F the set of segments with m subsets

and two mumnbers per segment

Process:
1:for I-1 to m do
2: 8G-§¥
3: Sum-0
4:  Count-0
51 For j-1 toLen (8G) do
6: Sum~-SurntSG [j]
7: Count+1
8: end for

9: SEG,,~Count

10: 8EG,-sum/count

11:  8fF-create-segment (SEG, SEG.,)
12: end for

13: return §°F

In the aggregation stage and at the end of every
period, each sensor n; will have a set of segments 3 with
m subsets (S, 8,%, ..., 3,*Mand two number per segment
(SEG,, SEG,,,,) that meet the reconstruction error bound €
with no redundant measures. Then, each sensor runs the
selective forwarding in the second phase as explained in
the next section.

Selective forwarding stage: Tn WSN, the strong factor of
energy consumption is the radio communication.
Therefore, sending a lot of data to the base station can
assist in various undesired 1ssues such as mcreasing
communication overhead, network congestion and energy
consumption (Harb et al., 2014). At the end of the first

stage, the data reading set in each sensor node n; is
constructed. The node n, provides a decision about
transmitting or not this data set to the cluster head. The
similarity between the successive periods 1s calculated by
the sensor node in this stage in order to adapt data set
transmission to the cluster head If the two successive
data sets are similar, the sensor node does not transmit
the current period data set, nstead, it will send a
notification packet to the cluster head inform him that the
current data set is similar to the previous period data set.
This can save the energy of the sensor node and decrease
the commumication cost thus mcrease the PSN lifetime.
The data model of the PSN is applied for monitoring the
dynamic changing environment in which the physical
phenomena can change fastly or slowly (Cassisi et af.,
2012). In the fast cheanging environment (or when the
period p is short), the node transmits a higher redundant
data to the cluster head. Therefore, the sensor node must
adapt 1its data set forwarding to this dynamic changing of
the monitored environment in order to reduce the
transmitted data set to the cluster head and improve the
PSN lifetime.

Similarity measure: The main purpose of using similarity
measure is to exploit the similarity among periods in order
to decide transfer or not the sensed data to appropriate
cluster head according to the amount of similarity among
successive periods. The data aggregation stage at the end
of each period in DiIDASeF protocol will use the modified
APCA technique on the collected measures and produce
for each period a different number of segments with
varying lengths. Since, it s not suitable to use the
Euclidean distance to calculate the distance between
sequences whose lengths are different. Therefore,
Dynamic Time Warping (DTW) distance method has been
adopted to overcome these problems. It 1s an important
data mining measure that used in several time series
problems such as classification, clustering and anomaly
detection, that allows time-axis scaling. DTW 13 able to
measure the distance between two temperature readings
series of varying lengths. Tt is not used one-to-one
comparison such as in Euclidean but it uses many-to-one
(and wvice versa) comparison. 1f we have two
temperature readings series Q = (g, Q. ... @)
and T =(t,t, ..., t,) of length p and m, respectively, we
will build an p-by-m distance matrix in order to align the
two sequences by mimmizing the sum of squared
Euclidean distances using DTW.

Where the element in the position (i, j*) of the matrix
contains distance d(q;, t) between ¢ and t. Usually
distance used m this matrix between two points 1s squared
Euclidean distance. Each matrix element (1, ) corresponds
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to the alignment between the points ¢ and t. The goal of
DTW is to find the warping path W = {wl, w2, ..., wk, ...,
wK} of adjacent elements on DistMtrx where (max (p, m)
=K<p+m -1 and wk = DistMtrx (I, j) such that it minimizes
the following function in Eq. 2:

DTW(Q, T) —min{zg_l(wk)/K} 2

The warping path is ordinarily subject to few
restrictions (Cassisi et al, 2012). Given w, = (I, j) and
w,, = (1, ] )with i, i <p and j, 7’ <m:

+  Boundary conditions: wl=(1,1) and wK = (p, m)
¢+ Continuity: i —i'<1 andj —j<1
*  Monotonicity: 1—1'20and j— 7720

The dynamic programming is used to find this path to
assess this recurrence that defines the cumulative
distance matrix £(I, 1) of the same dimension as the
DistMtrx where the distance d (1,3) 1 found in the current
cell and the minimum of the cumulative distances of the
adjacent elements Eq. 3:

v(i, §) = d(q,.t; ) rmin{y(i-L 1), v(i-L j).v(i. j-1)) 3)

The wy refer to the last warping path element that
meets the computed distance with the DTW approach
(Madden). After finished the distance calculation between
two temperature readings series that transformed to
APCA representation Q, and T,, our protocol uses a
similar function to identify the similarity between them.
The function returns one of two values 0 or 1. If the value
13 0, then temperature readings series are entirely different,
while if the value is 1, then it means that temperature
readings series are sunilar. The sunilar function refers to
the similarity between two APCA temperature readings
series using the following formula Eq. 4:

SIM(Q,,T, )= i QT <e 4
0 otherwise

where, € 13 a reconstruction error fixed by the application.
Furthermore, two temperature readings series are similar
if and only if their similar function is equal to 1. Algorithm
3 illustrates the similarity calculation between two APCA
temperature readings series Q, and T,

Algorithm 3; Similarity algorithm:
Input: &: Reconstruction Error bound
Two APCA temperature series Q, and T,,

Output: 8im

Process:
1: for i-1 to len () do

forj - 1tolen (T) do

Distance [i, j] - (Q [L]-T[i]’

end for

:end for

: Accumulated-Cost [1, 1]-Distance [1, 1]

for I-1 to len (Q) do
Accumulated-Cost [i, 1]-Distance [T, 1]+ Accumulated-Cost [i, 1,
1]

9: end for

10: forj-1 to len (T) do

11:  Accumulated-Cost [1, j]-Distance [1, jJ+Accumulated-Cost [1, j-

1]

12: end for

13: for i-1 to len (()) do

14:  for j~1 tolen (T) do

15:  Accumulated-Cost [i, j]-Distance [i, j]+min (Accumulated-Cost [i,

Jj» 1] Accumulated-Cost [i-1, j-1])

16:  end for

17: end for

18: if (Accurmnulated- Cost [p, m] <€) then

19:  Sim-1

20: else

21:  Sim-0

22: end if

23: return 8im

R

g &

Selective forwarding approach: In the second stage, the
selective forwarding approach is applied, so, as to adapt
the data set forwarding in each sensor node to the cluster
head. This data transmission adaptation can contribute to
conserving the energy and improving the PSN lifetime.
Two types of packets are used by the sensor node mn this
stage: data packet or control packet. The latter is an empty
control packet that used to notify the cluster head that the
current data set is similar to the previously transmitted
data set. The former mcludes the data of the constructed
data set in the current period. As soon as the first stage
1s fimished in this period, the selective forwarding
approach calculates the similarity between the newly
constructed data set and the previously transmitted data
set. After that, it decides to send a control-packet or data
packet to the cluster head based on the percentage of the
similarity between the two data sets. A control packet is
sent to the cluster head when the two data sets are similar
to prevent data repetition and decrease the consumed
energy. Otherwise, the sensor node saves the current data
set and send it by a data-packet to the cluster head The
received data set of each node will be stored in the
memory of the cluster head. The cluster head updates its
memory periodically. It transmits all the received data sets
of the sensor node to the sink at the end of each period.
The sink node sends the whole data set to the end user
for further analysis. The idea in this stage is inspired from
(Cassisi et al., 2012) with some modifications. DiDASeF
protocol applied a selective forwarding approach for data
set transmission adaptation based on the Dynamic Time
Warping (DTW) distance to prevent the node from
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sending the current sensed data which have high
correlations with the previously sensed data to the cluster
head as illustrated in algorithm 4.

Algorithm 4; Selective-forwarding algorithm:
Input: Sensor id, set of measures $,4% at perid j
saved set measures S,F
e: Reconstruction Error
Output: saved set of measures 5%
Process:
1: if is the fisrt period then
Save-in-memory -8/
Send-Measure-Packet (id, $47)
s else
if Similarity (S#°, 8,*, £) =1 then
Delete (S
Rend-8imilarity-notification (id)
else
Rave-in-memory-e
10: Save-in-memory-S$;*
11: Send-Measure-Packet (id, S;*F)
12: end if
13: end if
14: return

R Rl

RESULTS AND DISCUSSION

Protocol evaluation

Simulation framework: In order to evaluate DiDASeF
protocol, extensive simulations experiments are performed
with discrete event simulator OMNeT++ and based on
real sensor data. In these simulations, we consider N
sensors deployed in the Intel Berkeley Research Lab,
(Harb et al., 2014). Sensors periodically capture local
readings (e.g., temperature) at a specified rate. We assume
there 1s a single cluster head located at the center of the
lab. The cluster head receives sensed data readings from
each sensor node in the lab periodically via a single hop.
DiDASeF protocol is distributed at each sensor node and
it i3 based on the dataset of Intel Berkeley Research Lab,
(Harb et al., 2014). PSN in this lab includes 54 MicaZDot
SEIISOTS,

The sensed data of the weather (such as temperature,
humidity and light) are periodically collected by these
sensors once each 31 sec. In our simulation, the sensor
nodes use a log file contans about 2.3 million readings
collected previously by Mica2Dot sensor nodes i the
lab. This study uses only one measure of sensor node
measurements: temperature. There are seven sensor
nodes not used in our simulation because its data may be
missed or truncated. Therefore, the results are the average
of 47 sensor nodes. Table 2 gives the selected parameters
settings.

In the experimental simulations, some performance
metrics are applied to assess the effectiveness of the
DiDASeF protocol such as percentage of data after
aggregation, the percentage of data sets sent to the
cluster head, data accuracy and energy consumption.
DiDASeF protocol uses the same energy consumption
model discussed in Technology and Management.

Table 2: Simulation parameters for PSN initialization

Parameters Values

PSN size 47 nodes

¢ 20, 50 and 100 readings
€ 0.03, 0.05 and 0.07

J 50 nl/bit

By 100 pJbit/m?

Energy consumed by the sensor node is caused by the
commurication unit (data transmission and receptiomn).
Therefore, the cost of transmission 1s calculated for
a m-bits message and for a distance d as in Eq. 5:

E (m,d)=E,, *m+f, *m*d’ (5)

elec

The energy consumption required for reception
m-bits 1s calculated as m Eq. 6:
B (d, m)=E,, *m (6)
These experiment simulations consider the length of
data reading m equal to 64. In the case of transmission, 64
bits are added to m bits message which corresponds to
the frequency of data reading m. The length of the
transmitted data packet is calculated as follow data packet
length = (number of readings in the data set x2) x64 bits.
Hence, the packet length is the number of reading in
the sensed data set with their frequencies
multiplying by 64 bits.

Performance comparison and analysis: Several
experiments are achieved in this section to show the
performance of DIDASeF protocol. DiDASeF s
distributed at each sensor node in the PSN. Every node
reads real temperature readings periodically and aggregate
them in the first stage and then applied selective
forwarding algorithm in the second stage to decide
whether send or not the current temperature readings
based on the similarity percentage among collected sets
of temperature readings. Furthermore, DiDASeF protocol
is compared to two existing data aggregation approaches:
ATP (Harb et al,, 2014) and PFF (Harb et ad., 2015). ATP
method works into two steps: in the first step, ATP
calculates the similarities between collected data to
remove the duplicated data. The second step calculates
the similarity between the data using one-way ANOVA
model and Fisher to decrease the number of transmitted
data sets to the cluster head. Harb et al. (2015) two level
data aggregation is performed. The first level achieves a
local processing inside the node, whilst Jaccard similarity
method is used by PFF at the aggregators level to
combine the sensed data after removing the similar data
that received by the close nodes. For simplicity, the
parameter & in the next figures is equivalent to
reconstruction error bound €.
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Percentage of data after applying aggregation stage: The
result of the aggregation in this stage depends on the
chosen reconstruction error bound £ (&), the number of
the collected measures p in the period and the changes in
the monitored region. Figure 2 illustrates the remaining
data Percentage without and with applying aggregation
stage at the end of simulation by every sensor node using
DiDASeF protocol compared with ATP and PFF
approaches. The results show a maximum of 10% of the
data remains after applying the aggregation stage by
DiDASeF protocol at each period, whilst the rate is equal
to 31% after applying the aggregation step in ATP and
100% without applying the aggregation step in PFF.
Therefore, DiDASeF protocol decreases the volume of
sensed data transmitted to the cluster head by removing
the duplicated measures at every period successfully. It
can be seen at the step of aggregation when the p or &(8)
increases, the redundant data are increases. The reason
behind this is to remove a larger amount of similar data by
using APCA method.

Percentage of transmitted sets to the cluster head at the
second stage: In this experiment, the transmitted sets
percentage by the sensor node to the cluster head after
implementing the selective forwarding stage is
investigated. Figure 3 displays the transmitted sets
percentage by the sensor node and for three protocols
(DIDASeF, ATP and PFF). By wsing various values for
both #i and &(g), the comparison results illustrate the
reduction in the transmitted data sets to the cluster head
from 15- 63% using the proposed DiDASeF protocol while
ATP decreases the transmitted data sets to cluster head
from 10-17%. The percentage of transmitted data sets by
the node to the cluster head using PFF 15 100% because
it does not use adaptive transmission inside the sensor
node. Hence, the selective forwarding stage allows to
each sensor node to adapt its transmitted sensed data
according to the real modifications in the monitored
environment.

Therefore, our protocol outperforms the two
techmques: ATP and PFF where it i1s successfully,
achieved data sets reduction sent to its proper cluster
head at each period. We can also observe that at the
selective forwarding stage, the sensor node transmits a
higher data sets when 8(g) decreases. In addition, the
sensor node removes a larger number of data sets
when p decreases because of the high similarity between
gathered data in the short periods. Therefore, selective
forwarding stage becomes more efficient when p
decreases.

DIiDASeF (p=20) B ATP(p=20)
ATP (p =20) B ATP (p = 50)
DiDASeF (p=50) B ATP (p=100)
100 - = PFF

5

=

S 80

ES

€ = 60

2 c

2%

23"

E <

3 201

o

[=9

0-
0.03 0.05 0.07
Stages

Fig. 2: Percentage of data after aggregation stage

DiDASeF (p = 20)
DiDASeF (p = 50)
DiDASeF (p = 100)

m ATP (p=20)
= ATP (p=50)
m ATP (p=100)

PFF

100

80 -

g 60
jas)

O 40 4

20

0 T T
0.07

0.03 0.,05
Stages
Data accuracy: In this experiment, the data accuracy is
considered as an essential performance factor in WSNs.
In this study, it represents the percentage of data loss
after applying the aggregation and selective forwarding
inside the sensor node. Tt has a significant impact on the
final decision that will be taken by the end user. It can be
considered as the error of aggregation. In this section, the
proposed DiDASeF protocol 1s compared with the ATP
and PFF techniques. Figure 4 shows the results of data
accuracy for our technique DiDASeF, ATP and the PFF.
It can be seen that our protocol provides better
results from the data accuracy pomt of view. DiIDASeF
outperforms ATP and PFF in all cases. In the worst case,
the percentage of data which are not received by the sink
are almost 1.06% (1e., d (g) = 0.03 and p = 20 in Fig. 4a.
This percentage is not unportant in comparison with the
received data by the base station. Therefore, it can be
noted that our protocol is able to get rid of the redundant
data while mamtaimng the accuracy of received data by
the end user. Furthermore, the data loss percentage

Percenta of sets sent to the

Fig. 3: Percentage of sets sent to CH
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minimizes when p and (g ) maximizes because of using
efficient method for data reduction n the first stage whilst
the selective forwarding in the second stage prevent
transmitting the replicated data sets to the cluster head.

Energy consumption: The energy consumption 1s another
performance factor for evaluating our protocol in
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Fig. 5: Energy consumption (loules) at each sensor node:
a)p=20,b)p=>50and ¢)p =100

comparison with other existing methods (ATP and PFF).
The energy consumption mimmized when the transmitted
data to the cluster head minimized. DiDASeF protocol
decreases the consumed energy while maintaining the
integrity of information by applying two energy efficient
approaches data aggregation and selective forwarding.
Figure 5 displays the energy consumption for DiDASeF,
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ATP and PFF for various 8(¢) and p values. The
conducted simulation results explain that DiDASeF is
better than both ATP and PFF from the energy
consumption point of view. DiDASeF saves more energy
when either p or 8(¢) increase.

CONCLUSION

The increased use of the sensor networks in several
applications led to provide a huge amount of data which
are transmitted across the network. This is greatly
contributed in decreasing the network lifetime due to the
high communication cost. Therefore, the energy efficient
data aggregation and communication approaches are very
necessary for eliminating the replicated data in the
network. Tn this study, we propose a protocol named
DiDASeF (Distributed Data Aggregation and Selective
Forwarding) to extend the lifetime of the WSNs. This
protocol is periodic and it works into two phases: energy
efficient data aggregation using an Adaptive Piecewise
Constant  Approximation (APCA) and selective
forwarding by using Dynamic Time Warping (DTW)
distance measure to allow for each sensor node to check
the similarity between the successive sensed data sets to
prevent sending the current set which is similar to the
previous sensed set, thus improving the network lifetime.
The simulation results that based on real data of the
sensor network using OMNet++ network simulator show
that DiDASeF protocol outperforms the ATP and PFF
protocols in terms of data reduction percentage,
transmitted data sets percentage to the cluster head,
energy consumption and data accuracy.

RECOMMENDATIONS

In future, we plan to apply the data aggregation into
two levels: sensor node level and aggregator node level
(cluster heads). The first level is responsible for temporal
correlation among the data inside the sensor node whilst
the second level deals with data correlation among
neighboring nodes.
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