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Abstract: This article suggests a method, called energy-efficient adaptive 
distributed data collection method (EADiDaC), which collects periodically 
sensor readings and prolong the lifetime of a periodic sensor network (PSN). 
The lifetime of EADiDaC method is divided into cycles. Each cycle is 
composed of four stages. First, data collection. Second, dimensionality 
reduction using adaptive piecewise constant approximation (APCA) technique. 
Third, frequency reduction using symbolic aggregate approximation (SAX) 
approach. Fourth, sampling rate adaptation based dynamic time warping 
(DTW) similarity. EADiDaC allows each sensor to remove the redundant 
collected data and adapts its sampling rate in accordance with the monitored 
environment conditions. The simulation experiments on real sensor data by 
applying OMNeT++ simulator explains the effectiveness of the EADiDaC 
method in comparison with two other existing methods. 
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1 Introduction 

The future of internet will include a huge number of interconnected nodes expressing 
various things from tiny sensor nodes and portable devices to large web servers and 
supercomputer clusters. This type of a worldwide network is called the internet of things 
(IoT) (Jun et al., 2011; Li et al., 2013). The effective data collection techniques are 
necessary for IoT in order to gather and process the data at IoT nodes (Jun et al., 2011; 
Ulusoy et al., 2011). In IoT, every sensor node has low cost, power supply, a speed of 
processing, bandwidth, and memory capacity. Sensor nodes are spatially deployed in the 
region of interest in order to monitor the physical or environmental phenomena like 
temperature, humidity, light, pollution, pressure and sound. They collect the sensed data 
from the monitored environment, manipulate the data locally, and transmit them to the 
sink for further analysis. These sensor nodes work in a collaborative manner and 
constitute a wireless sensor network (WSN) (Akyildiz and Vuran, 2010; Idrees et al., 
2014, 2015; Abdelaal et al., 2016). WSN represents one of the big contributors in the IoT 
because of their widespread use in many applications such as agricultural, healthcare, 
transportation, environment, industry, and military (Wang et al., 2012a; Idrees  
et al., 2016). 

One of the most critical constraints of the sensor node is the battery life. Due to the 
environment or cost restrictions, it is difficult or impossible to change or recharge the 
sensor batteries (Abdelaal et al., 2016; Wang et al., 2012a). Thus, the sensor nodes are 
deployed with high density in order to enhance the network lifetime. In sensor node, the 
radio unit represents the principal source of energy consumption. Therefore, it is 
important to remove redundant sensed data before reporting them to the sink to save the 
energy and improve the lifetime of sensor node (Tang and Xu, 2008). It is necessary to 
take into consideration data capturing, communication, and routing problems in order to 
design energy-saving protocol for PSN. Data collection approaches determine the way of 
sensor’s work in data collection and sending to the base station. Therefore, data 
collection represents the crucial function in PSNs (Campobello et al., 2016; Jon, 2016). 

In WSN, the collection of data can be categorised into two models: time-driven and 
event-driven (Abdelaal et al., 2016; Jon, 2016). This work considers time-driven data 
collection model which known as periodic sensor networks (PSNs). In PSN, every sensor 
node transmits the sensed data of the monitored area to the sink periodically. Several 
PSNs applications use the periodic way to monitor certain conditions regularly such as 
pressure, humidity, temperature, etc. Two main challenges in PSN, first, PSN has to 
provide adequate lifetime in order to satisfy application’s needs. Second, data 
management is more difficult due to the huge amount of collected data by this network. 
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The radio communication represents the most influential factor on energy 
consumption of PSNs. Therefore, sending a lot of data to the base station leads to various 
undesired issues such as degrading the quality of data, network congestion, and energy 
consumption (Wang et al., 2012a). Some proposed works focus on reducing 
communication overhead using data reduction techniques (Mohsenifard and Ghaffari, 
2016). They reduce the amount of data communicated by every sensor nodes via use their 
processing capabilities to locally execute simple computations and transmit only required 
and partially processed data (Gupta, 2010). Data reduction aims to prolong the network 
lifetime and facilitate data analysis and decision making. In PSN, the change in the 
monitored environment can slow down or speed up. The energy consumption can be 
decreased when the sensor node modifies its sampling rate based on the dynamic 
modification of the monitored phenomena. Therefore, to prolong the network lifetime, 
adaptive sampling for periodic data collection is required for energy optimisation and 
data reduction (Gupta, 2010). 

This paper introduces the following contributions. 

1 A new method called EADiDaC is devised to collect the sensor data in an adaptive 
way such that the volume of data is reduced while PSN lifetime is enhanced. The 
principal idea of EADiDaC method is to utilise the similarity of collected data and 
adapts its sampling rate accordingly. EADiDaC works into cycles. Four stages in 
each cycle: gathering of data, dimensionality reduction using APCA technique, 
frequency reduction using symbolic aggregate approximation (SAX) technique, and 
adjusting the rate of sampling by using dynamic time warping (DTW) distance 
measure. The sensor node provides a new sampling rate after each cycle based on the 
similarity between the periods of one cycle. 

2 A new adaptive sampling rate algorithm-based DTW similarity is suggested. In each 
cycle, the speed of readings capturing inside the sensor node depends mainly on the 
previously calculated sampling rate adaptively. EADiDaC method uses SAX 
approach to eliminate the redundancy in the collected measures before sending them 
the base station in order to conserve the energy and enhance the network lifetime. 

3 The simulation results are accomplished by OMNeT++ network simulator to 
illustrate the effectiveness of the EADiDaC method. EADiDaC method has been 
compared to two algorithms in the related works: PFF algorithm that proposed by 
Bahi et al. (2014) and Harb et al. algorithm that introduced in Harb et al. (2016). 

The rest of this paper is organised as follows. Next section exhibits literature review. 
Section 3 explains the description of EADiDaC method. Method evaluation is shown in 
Section 4. Finally, we present the conclusion and future works in Section 5. 

2 Literature review 

This section reviews some related literature concerning the adaptive data collection in 
WSNs. Adaptive collection approaches are considered as a good candidate to save energy 
and extend the network lifetime of PSNs. The major objective of an adaptive collection 
technique is to make the sensor node be able to change its sampling rate dynamically in 
accordance with the monitored environment conditions. This can reduce the repetitive 
gathered data, consume less energy, and decrease the processing load at the base station 



   

 

   

   
 

   

   

 

   

   4 A.K.M. Al-Qurabat and A.K. Idrees    
 

    
 
 

   

   
 

   

   

 

   

       
 

(Gupta, 2010). Adaptive collection avoids capturing the redundant samples so as to 
reduce the volume of sent data to the base station and prolong the PSN lifetime. 

In order to conserve the energy of a PSN, several MAC protocols are proposed (Nam 
et al., 2006; Van Dam and Langendoen, 2003; Zheng et al., 2005; Ye et al., 2002). The 
authors in Nam et al. (2006) proposed an adaptive MAC protocol to ensure the  
pre-configured network lifetime while the end-to-end latency is reduced. The protocol 
achieves this goal by using adaptive duty cycle which is adjusted using the  
pre-configured lifetime and the ratio of the remaining energy to the initial energy. 
Therefore, the sensor node with high energy wakes up repeatedly in order to deal with 
relaying data, whilst the sensor node with low energy becomes in sleep mode for a long 
time. The work in Zheng et al. (2005) presents a pattern-MAC (PMAC) protocol for 
WSN. It decides the schedules of sleep/wake up in an adaptive way for a node according 
to its own traffic, and the traffic patterns of its neighbours. 

Adaptive collection avoids capturing the redundant samples by exploiting the 
correlation [temporal (Chatterjea and Havinga, 2008; Masoum et al., 2012), spatial 
(Willett et al., 2004; Wang et al., 2012b), or spatio-temporal (Masoum et al., 2013; Gedik 
et al., 2007; Liu et al., 2007)] between sensed data. The works proposed in Willett et al. 
(2004) and Wang et al. (2012b) considers adaptive sampling schemes-based spatial 
correlation among the physical sensed data. In Willett et al. (2004), the sampling rate is 
adapted by the base station. Initially, the base station activates a set of sensors to get the 
sensed data of monitored environment. The correlation percentage is computed for the 
received sensed data to increase or decrease the activated sensors. Some other approaches 
study temporal correlation among sensed data (Chatterjea and Havinga, 2008; Masoum  
et al., 2012). Chatterjea and Havinga (2008) present a sampling algorithm-based temporal 
correlation among sensed data. In this algorithm, the sampling rate is modified depending 
on the stability of the monitored environment. The sampling rate increases when the 
environment conditions are unstable, otherwise the rate decreases. Spatio-temporal 
correlation is used by some adaptive sampling techniques such as in Liu et al. (2007), 
Gedik et al. (2007) and Masoum et al. (2013). For instance, Masoum et al. (2013) 
introduce an energy-saving mechanism for data collection. Their scheme exploits  
spatio-temporal correlation among sensors and their sensed data to determine the 
candidate sensors which are responsible for sampling and transmission. The selected 
sensors are adaptively changed. 

Some researchers used prediction techniques as a way to adjust the sampling rate of 
sensor nodes and to conserve energy of PSN (Jain and Chang, 2004; Alippi et al., 2010; 
Liu et al., 2005; Law et al., 2009; Padhy et al., 2010; Lazaridis and Mehrotra, 2003; Le 
Borgne et al., 2007; Tulone and Madden, 2006; Jain et al., 2004). An energy saving 
information gathering scheme is proposed by Liu et al. (2005) to predict the sampling 
rate inside sensor using ARIMA model. In Law et al. (2009), the authors presented an 
algorithm for adaptive sampling using Box-Jenkins approach to estimate the future sensor 
readings, depending on the existing readings. Alippi et al. (2010) introduced a power 
aware adaptive sampling method for snow monitoring. Their algorithm provides online 
estimation based on fast Fourier transform. An adaptive sampling method-based Kalman 
filter is introduced in Jain et al. (2004). This method used Kalman filter in both of base 
station and sensor nodes to predict future samples. When the sensor nodes filters fail to 
predict a future sample within a bounded precision, the base station will receive an 
update in order to update its filter accordingly. 
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The authors in Mehrnoush et al. (2015), Layuan et al. (2007), de Graaf (2013), Jun  
et al. (2008) and Huang et al. (2013) investigated the impact of the proposed protocols 
behaviours on the network performance. These protocols deal with some protocol 
evaluation metrics to improve the lifetime of the network, throughput, connectivity, etc. 

In recent years, several adaptive sampling approaches in PSNs have been studied 
(Makhoul et al., 2015; Srbinovski et al., 2015; Laiymani and Makhoul, 2013; Zhang  
et al., 2015; Bahi et al., 2014; Harb et al., 2016). Laiymani and Makhoul (2013) proposed 
a scheme for adaptive sampling using ANOVA model and Fisher test in PSNs. This 
algorithm works at the sensor node to adapt its sampling rate. The authors in Bahi et al. 
(2014) proposed a method to remove the repetition of collected data in PSN called prefix 
frequency filtering (PFF). Makhoul et al. (2015) suggested adaptive data gathering 
approach for PSN. They combine between ANOVA model and remaining energy to 
permit every sensor node to modify its sampling rate in accordance with environment 
dynamics. Srbinovski et al. (2015) proposed a power saving data collection algorithm for 
power scavenging in WSNs. Their approach takes the energy harvesting from the 
monitored sensing area and modifies its sampling rate based on the remaining energy and 
observed environment. An adaptive sampling algorithm based on an endocrine regulation 
mechanism (EASA) in WSN is presented in Zhang et al. (2015). The EASA algorithm 
uses hormone information to control the nodes in working state or resting state and 
adjusts collecting frequency dynamically. Harb et al. (2016) proposed adaptive data 
collection approach based set similarity among sensor readings. Their technique allows 
each sensor node to identify, first, the similarity between data collected among successive 
periods using set similarity function, then to adjust its sampling rate to the newly 
calculated score of similarity. The sensor node reduces the amount of redundant collected 
readings and extends the network lifetime. 

This paper proposed an energy-efficient adaptive distributed data collection 
(EADiDaC) method for PSNs. The main objective of EADiDaC is to remove redundant 
sensor readings, save energy, and improve the network lifetime. EADiDaC performs four 
main phases. First, data collection according to the adaptive sampling rate. Second, 
adaptive piecewise constant approximation (APCA) is applied to reduce the 
dimensionality of the collected sensed data. Third, SAX technique is used to remove the 
redundancy in the collected data and then transmits them to the sink. Fourth, EADiDaC 
allows to each sensor node to adapts its sampling rate for each cycle (cycle = 2 periods) 
based on the DTW similarity. EADiDaC is simulated on the OMNeT++ network 
simulator using real data of sensor nodes. The comparison results show that EADiDaC 
method can provide a better performance and prolong the network lifetime. 

3 Description of the EADiDaC method 

The description of EADiDaC method is given in more details in this section. The primary 
goal of EADiDaC method is to enable every sensor node to adjust its sampling rate 
adaptively according to the dynamic changing in the monitored environment. As a result, 
the redundancy in the collected readings will be reduced, and the consumption of energy 
will be minimised (prolong the lifetime of PSN), while the quality of collected readings is 
maintained sufficiently to permit significant analysis. Figure 1 illustrates the flowchart of 
the proposed EADiDaC method. This section describes in detail EADiDaC method stages 
and algorithms associated with each stage. Table 1 explains some parameters used in this 
paper. 
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Figure 1 Flowchart of proposed EADiDaC method (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    EADiDaC method for periodic sensor networks 7    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Some parameters used in this paper 

SMPR Sampling rate 
MINSMP Application criticality 
S Temperature readings series S = s1,…,sn 
SAP APCA of S, 1 , ,ap apAP

wS c c= …  

Sx Symbolic representation of SAP, 1 , ,x x x
wS c c= …  

ε Reconstruction error bound 
a Number of alphabet (for instance, if the alphabet = (w, x, y, z), a = 4) 

β Breakpoints, β  = β1,…,βa–1 
n Sensor id 
ne Remaining energy of sensor n 

3.1 Data collection 

The sensor network consists of N sensor nodes (n1, n2,…,nN) and a base station node. 
EADiDaC method is a periodic and works into cycles. The cycle includes two periods  
(j = 2). The period is partitioned into time slots. Therefore, each sensor node n captures 
the data reading periodically and at a specific speed (SMPR). Consequently, the  
time-ordered sequence of sensed data constitutes a time series, Si = {s1, s2,…,sρ–1, sρ}, 
where ρ is the total number of temperature readings generated by sensor node ni every T 
seconds. Therefore, EADiDaC method treats the sensor readings as a time series and 
named it as a temperature readings series. The SMPR is initiated to ρ temperature readings 
per period. The redundant temperature readings captured by the sensor node increase in 
two states: short time slot and slowly variation of a monitored area of interest. 

3.2 Dimensionality reduction 

Since time series representation has a great impact on the simplicity and effectiveness of 
data readings mining; therefore, it is required to choose the suitable technique to 
represent the sensed readings series (Cassisi et al., 2012). Several representation methods 
are found in the literature such as discrete Fourier transform (DFT), the discrete wavelet 
transform (DWT), and singular value decomposition (SVD) (Cassisi et al., 2012). 
EADiDaC method uses a simple and efficient representation technique called APCA 
(Wang et al., 2013; Chakrabarti et al., 2002). 

Normally, the aim of deploying sensor nodes is to measure the region of interest at 
fixed periods, and this produces a time-ordered series of samples which constitute a 
temperature readings series. Often, the volume of temperature readings series is very 
huge. Therefore, it is not practical to send all the collected readings from every sensor 
node back to the base station due to the constrained bandwidth and energy consumption 
on data sending. The dimensionality ρ of temperature readings series (which is the 
number of observed measures) have a direct proportionality relation with the 
communication cost. Thus, a smaller ρ can result in a significant reduction on the 
communication cost and hence, it will prolong the lifetime of the sensor network (Liu  
et al., 2007). In this stage, the EADiDaC method aims to minimise the volume of data of 
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each sensor node before sending them to base station. Therefore, EADiDaC method 
achieves this task by using dimensionality reduction technique APCA. 

In this stage, EADiDaC method transforms the temperature readings series  
S = {s1, s2,…,sρ–1, sρ} that collected during the first stage with SMPR speed to an APCA 
representation in order to decrease the dimensionality of series. Data sorting is an integral 
part of data analysis. It improves the search and merges the sequences efficiently. 
Therefore, the efficiency of APCA is improved by sorting the sensed temperature 
readings in descending order so as to group the similar (or close similar) readings 
together. The APCA representation of S is given as follow 

{ }1 1 0,  , ,  , ,  0AP
m mS dm dr dm dr dr= =…  (1) 

The APCA divides the sorted temperature readings series S into a set of constant value 
segments (with a bounded reconstruction error ε) of varying lengths based on data such 
that their individual reconstruction errors are minimal. More formally, |R(SAP) – S| < ε, 
R(SAP) is the reconstruction function, and ε is an error threshold. Long segments are used 
to represent data regions of low activity, and short segments are used to represent regions 
of high activity (Zifan et al., 2007). Figure 2 illustrates this notation. 

Figure 2 A temperature readings series S and its APCA representation SAP, with m = 4  
(see online version for colours) 

 

The APCA approximates each segment AP
jS  by a pair (dmj, drj) of two numbers, where 

dmj is the mean value of temperature readings in the jth segment which is defined as 

1 1

1
.

j

j

dr
kk dr

j
j j

s
dm

dr dr
−= +

−
=

−

∑
 (2) 

Whilst drj is the right endpoint of the jth segment (Wang et al., 2013). 
By using the standard form of APCA with constant number of segments of varying 

lengths can influence on the accuracy of temperature readings. Hence, the problem 
addressed here is: for a given temperature readings series S and a given reconstruction 
error bound ε, find the number of segments to approximate the time series, such that the 
difference between any approximation value and its actual value is less than ε. 

In our method, we make some slight modifications on APCA. First, the number of 
segments m will not be constant and determined priori, but it will be adaptive based on 
the user specified reconstruction error ε. In order to achieve this goal (i.e., making the 
number of segments adaptive), the sliding window algorithm is utilised. The reason for 
making the number of segments adaptive is to increase the accuracy of approximated 
measures by using a user specified reconstruction error. Second, we modified dr to 
represent the length of the segments rather than record the locations of their right 
endpoints. 
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3.2.1 Sliding window algorithm 

Several applications such as weather, medical, and stocks employ the algorithm of sliding 
window. It is a temporal approximation over the actual value of the time series data 
(Yahmed et al., 2015). At the end of each period, EADiDaC method will apply the 
sliding window algorithm on the collected readings to produce a different number of 
segments with varying lengths. The mechanism of sliding window algorithm is given as 
follows: 

1 for the potential segment, tying its left point with the first point of a temperature 
readings series 

2 try to approximate the data to the right side with expanding the long of segments 

3 in a specific point x of the temperature readings series, the potential segment will has 
a reconstruction error exceed the user-specified threshold ε 

4 hence, the subsequence from the tying point to x – 1 is converted into a segment. 

5 tying point is put on the location x, and repeat steps 1, 2, 3, and 4 until all the 
temperature readings series has been converted into segments. 

The sliding window algorithm is attractive because of its great simplicity, intuitiveness 
and particularly it is an online algorithm (Yahmed et al., 2015). Algorithm 1 represents 
the process of segment construction using sliding window algorithm. 

Algorithm 1 Segments construction using sliding window 

Require: S: ρ-dimensional temperature readings series, ε: reconstruction error bound. 
Ensure: SW: the set of segments with m subsets. 
 1 S ← Sorting(S)  // Sorting temperature readings in descending order 
 2 Flag ← 1 // Starting point 
 3 SEGNo. ← 1 // Number of segments 
 4 while (x< ρ) do 
 5  x ← 2 
 6  while (Calculate_Error(S[Flag: Flag + x]) < ε) do 
 7   x ← x + 1 
 8  end while 
 9  SW[SEGNo.] ← Create_Segment(S[Flag: Flag + x – 1]) 
 10  Flag← Flag + x 
 11  SEGNo. ← SEGNo. + 1 
 12 end while 
 13 return SW 

Let W
iS  be the subset consisting of all the temperature readings on this segment {si, 

si+1,…,sj}, which meet the reconstruction error bound such that the difference between the 
approximation value and the actual value is not larger than a given reconstruction error 
bound. Eventually, we have a set SW of m subsets, where 1 2( , , , ).W W W W

mS S S S= …  After 
segmenting the temperature readings series using sliding window algorithm, the produced 
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set of segments SW is used by Algorithm 2 to produce the APCA representation for 
temperature readings series S. Algorithm 2 illustrates the process of dimensionality 
reduction using APCA. 

Algorithm 2 Dimensionality reduction using APCA 

Require: SW: the set of segments with m subsets 
Ensure: SAP: the set of segments with m subsets and two numbers per segment 
 1 for i ← 1 to m do 
 2  SG ← W

iS  

 3  Sum ← 0 
 4  Count ← 0 
 5  for j ← 1 to Len(SG) do 
 6   Sum ← Sum + SG[j] 
 7   Count ← Count + 1 
 8  end for  
 9  SEGlen ← Count 
 10  

μ
SumSEG

Count
←  

 11  _ ( , )AP
i μ lenS Create segment SEG SEG←  

 12 end for  
 13 return SAP  

Let ( , )i i
AP

μ leniS SEG SEG  denote a subset consisting of all the temperature readings on 
this segment {si, si+1,…,sj}, where iμSEG  is the mean of these temperature readings and 

ilenSEG  is the length of the segment. The problem mentioned above is solved by 
constructing a set of segments SAP with m subsets 1 2{ , , , },AP AP AP

mS S S…  that meet the 
reconstruction error bound ε. Figure 3 is an example for the process of transforming  
250 temperature readings into an APCA representation with 21 segments, where the 
reconstruction error ε is 0.1. 

Figure 3 Example of APCA transformation (see online version for colours) 
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3.3 Frequency reduction 

In PSN, radio communication is the most influential factor on energy consumption. 
Sending a lot of data to the base station leads to various undesired issues such as 
degrading the quality of data, network congestion, and energy consumption (Wang et al., 
2012a). Furthermore, there is a directly proportional relationship between the 
communication cost and the dimensionality of temperature readings (Liu et al., 2007). 
Hence, in order to reduce the energy consumption and prolong the PSN lifetime while 
keeping up the acceptable accuracy of sent readings, the sensor node has to transmit to 
the base station as few as possible of sensed readings. The primary goal of this stage is to 
reduce the volume of temperature readings, which are assembled by every sensor node 
and keep the recurrence number of every reading in order to not impact on the readings 
analysis in the base station. In this stage, the EADiDaC method uses SAX symbolic 
algorithm (Lin and Li, 2009; Malinowski et al., 2013) as a method to remove the 
redundancy in the temperature readings series before sending them to the base station. 
SAX symbolic representation method is considered a pioneer in reducing 
dimensionality/numerosity of temperature readings series. It consists of two steps: 
piecewise aggregate approximation (PAA) transformation and the transformation of the 
numerical data into a set of symbols. Each symbol takes its value from a finite alphabet 
(Lin and Li, 2009; Malinowski et al., 2013). EADiDaC method uses SAX method 
because it requires a low processing cost and achieves high data reduction while keeping 
the primary features of temperature readings. 

SAX transforms a temperature readings series S of length n into a reduced vector, for 
example, RV with length m. By applying the process to the series S = (8, 16, 6, 4, 2, 2, 2, 
2, 2, 2, 20, 10) with length n = 12. The resulted reduced vector RV is (12, 5, 2, 2, 2, 15) of 
length m = 6. After that, the obtained reduced vector transformed into a symbolic based 
on the break points are determined by the Gaussian distribution as illustrated in Table 2. 
In this case, the produced vector is changed into the symbolic representation CBAAAC. In 
order to increase the efficiency of SAX method, the PAA method is replaced by APCA 
approach. The PAA method uses constant length segments whilst APCA approach allows 
creating segments with varying lengths. In the previously mentioned example, the values 
(2, 2, 2, 2, 2, 2) are decreased to (2, 2, 2), where it is aggregated to one value because of 
the constant length of m (Ganz et al., 2014). In EADiDaC method, we use a variable 
length m in order to get a smaller reduced vector when the readings have low activity. 
This achieves through replacing the PAA transformation by the APCA transformation. 
The APCA representation SAP of the original temperature readings series S is transformed 
into SAX representation RV X using the following steps: 

1 normalising temperature readings series to have zero mean and one standard 
deviation 

2 partitioning the temperature readings series into an unspecified number of segments 
using sliding window algorithm with varying lengths 

3 the mean (SEGμ) and length (SEGlen) for each segment is computed 

4 the mean values are quantised into symbols selected from an alphabet of size N. 
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Table 2 A lookup table of the breakpoints for a 

 a 3 4 5 6 7 8 9 10 

βi β1 –0.43 –0.67 –0.84 –0.97 –1.07 –1.15 –1.22 –1.28 

 β2 0.43 0 –0.25 –0.43 –0.57 –0.67 –0.76 –0.84 

 β3  0.67 0.25 0 –0.18 –0.32 –0.43 –0.52 

 β4   0.84 0.43 0.18 0 –0.14 –0.25 

 β5    0.97 0.57 0.32 0.14 0 

 β6     1.07 0.67 0.43 0.25 

 β7      1.15 0.76 0.52 

 β8       1.22 0.84 

 β9        1.28 

Steps 2 and 3 are APCA representation. In step 4, the quantisation uses (N – 1) 
breakpoints which partition the region under the Gaussian distribution into a equal 
proportional regions. Breakpoints can be defined as a sorted values list B = β1,…,βa–1. 
The region under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a, where β0 and βa refer to 
–∞ and ∞ respectively. The breakpoints are located by search them in a statistical table. 
For instance, Table 2 shows a lookup table of the breakpoints for a with values range 
from 3 to 10 (Lin and Li, 2009; Malinowski et al., 2013). 

When the breakpoints are determined, we can quantise the APCA coefficients as 
follow. Every APCA normalised mean value less than the smallest breakpoint will be 
converted to ‘a’ symbol, whilst the APCA normalised mean values that are equal to or 
larger than the smallest breakpoint and less than the second smallest breakpoint are 
converted into ‘b’ symbol, etc. For Figure 3, we use a = 5, SAX representation provides 
five symbols: a, b, c, d, and e. The symbols can be merged to introduce a sequence called 
word. It can be defined as follow. Let alphai indicates the ith value of the alphabet (i.e., 
alpha1 = a and alpha2 = b). Consequently, the transformation from a APCA 
representation SAP to aword Sx is computed as follows 

( )1, .x AP
j j μ ji i

S alpha iif s SEG−= ≤ <β β  (3) 

After converting the APCA mean values into SAX symbols, the resulted SAX symbols 
sequence will include redundant symbols due to multiple consecutive segments are 
transformed to the same symbol. In this stage, EADiDaC method removes these 
redundant symbols in each period to prevent transmitting the same symbols to the base 
station. Therefore, we will define a function that allows each sensor node to find the 
similarity among the symbols of 1 , ,x x x

wword S s s= …  to eliminate this redundancy. The 
identical function identifies the similarity between two symbols x

is  and x
js  and can be 

defined as follow 

( )
1

,
0

x x
i jx x

i j
if s s

Identical s s
othewise

=⎧⎪= ⎨
⎪⎩

 (4) 

The sensor node n will search for the same symbols in the word of the period j. If the 
same symbols are found, the sensor will sum the means associated with each symbol. It 
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also sums the frequency associated with each symbol every time occurs in the word. 
After that, the average of accumulated means is found and the segment that contains 
(mean, frequency) is created. Otherwise, the sensor will create a new segment and add 
the mean and the associated frequency to it. The frequency of the symbol ( )x

iFr s  is 
defined as the sum of the associated frequency of the same symbol in the same set. 

3.4 Adaptive sampling rate 

In this stage, EADiDaC method modifies its sampling rate based on the percentage of 
similarity between temperature readings of different periods in the cycle. The main 
purpose of this stage is to calculate the similarity among periods after each finished cycle 
to acclimate the rate of sampling according to the new similarity rate. EADiDaC method 
adapts its rate of sampling at the end of each cycle. Therefore, it uses the DTW distance 
measure to find the amount of similarity between periods of each cycle. 

3.4.1 Similarity measure 

The main purpose of using similarity measure is to exploit the similarity among periods 
in order to adjust the sampling rate according to the amount of similarity among periods 
for each cycle. At the end of each period, EADiDaC method uses the modified APCA 
technique on the collected measures to produce a different number of segments with 
varying lengths for each period. The Euclidean distance can not be used to calculate the 
distance between sequences whose lengths are different. Therefore, DTW distance 
measure has been adopted to overcome this problem (Cassisi et al., 2012). It is a widely 
used measure in data mining community. It is a utility for various tasks in time series 
problems including classification, clustering, and anomaly detection that allows time-axis 
scaling. The distance between two temperature readings series of varying lengths can be 
measured using DTW. It does not use one-to-one comparison such as in Euclidean but 
uses many-to-one (and vice versa) comparison (Cassisi et al., 2012). If we have two 
temperature readings series Q = (q1, q2,…,qp) and T = (t1, t2,…,tm) of length p and m 
respectively, a p-by-m distance matrix can be built in order to align the two sequences 
using DTW (Cassisi et al., 2012). 

Algorithm 3 SAX frequency reduction 

Require: SAP: m subset of APCA coefficients, a: alphabet length, α: alphabetic 
Ensure: RVX: reduced vector of segments with two number per segment {SG1(V1, Fr1),…, 

SGj(Vj, Frj)}, where (j < m) 
 1 for i ← 1 to m do //Normalise means of APCA coefficients 
 2  AP

iTemp S←  

 3  [1]
NOR

Temp μD
σ

−
←  

 4  // ( , , )i i i
AP AP

i NOR i μ len NORS D S SEG SEG D←  

 5 end for 
 6 for i ← 1 to m do // quantised normalised mean of APCA into symbols 
 7  AP

iTemp S←  
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 8  for j ← 1 to a do 
 9   if βj ≤ Temp[3] < βj+1 then 
 10    // ( , , , )i i i

AP AP
i j i μ len NOR jS S SEG SEG D←α α  

 11   end if 
 12  end for 
 13 end for 
 14 z ← 0  
 15 for j ← 1 to a do 
 16  z ← z +1 
 17  Idx ← 0 
 18  for i ← 1 to m do 
 19   iAPTemp S←  

 20   if Identical(Temp[4], αj) = 1 then 
 21    Idx ← Idx +1  
 22    Frz ← Frz + Temp[2]  
 23    Totalμ ← Totalμ + Temp[1]  
 24   end if 
 25  end for 
 26  if Idx > 1 then 
 27   Vz ← Totalμ/Idx 
 28  end if 
 29  _ ( , )X

z z zRV Create segment V Fr←  

 30 end for 
 31 return RVX 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

, , ,
, , ,

( , )

, , ,

m

m

p p p m

d q t d q t d q t
d q t d q t d q t

DistMtrx Q T

d q t d q t d q t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # #
"

 

where the element in the position (ith, jth) of the matrix contains the distance d(qi, tj) 
between qi and tj. Usually the distance used in this matrix between two points is 
Euclidean distance d(qi, tj) = (qi – tj)2. Each matrix element (i, j) corresponds to the 
alignment between the points qi and tj. This is illustrated in Figure 4. 
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Figure 4 (a) Two temperature reading series sequences (b) To align the sequences, we construct 
a warping matrix, and search for the optimal warping path (solid squares) (see online 
version for colours) 

 

 

 

 
(a)    (b) 

The goal of DTW is to find the warping path W = {w1, w2,…,wk,…,wK} of adjacent 
elements on DistMtrx, where max(p, m) ≤ K < p + m – 1, and wk = DistMtrx(i, j)), such 
that it minimises the following function 

( )
1

( , ) min .
K

kk
DTW Q T w

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠∑  (5) 

The warping path is ordinarily subject to few restrictions (Cassisi et al., 2012). Given  
wk = (i, j) and wk–1 = (i′, j′) with i, i′ ≤ p and j, j′ ≤ m: 

1 boundary conditions: w1 = (1, 1) and wK = (p, m) 

2 continuity: i – i′ ≤ 1 and j – j′ ≤ 1 

3 monotonicity: i – i′ ≥ 0 and j – j′ ≥ 0. 

This path can be found using dynamic programming to evaluate the following recurrence 
which defines the cumulative distance matrix γ(i, j) of the same dimension as the 
DistMtrx, where the distance d(i, j) is found in the current cell and the minimum of the 
cumulative distances of the adjacent elements is 

( ) { }( , ) , min ( 1, 1), ( 1, ), ( , 1) .i jγ i j d q c γ i j γ i j γ i j= + − − − −  (6) 

The last element of the warping path, wK corresponds to the distance calculated with the 
DTW method (Cassisi et al., 2012). After finishing the distance calculation between two 
temperature readings series of the APCA representation Qp and Tm, EADiDaC method 
uses Similar function to identify the similarity between them. The Similar function refers 
to the similarity between two APCA temperature readings series using the following 
formula 

( ) 1, .
1 ( , )p mSIM Q T
γ p m

=
+

 (7) 
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After that, in order to measure the similarity percentage (PSim), the following formula can 
be used 

( )( ), 100 .Sim p mP SIM Q T= ×  (8) 

Algorithm 4 gives the similarity percentage (PSim) calculation between two APCA 
temperature readings series Qp and Tm. 

Algorithm 4 Similarity algorithm 

Require: Two APCA temperature series Qp and Tm 
Ensure: PSim 
 1 for i ⇐ 1to len(Q) do 
 2  for j ⇐ 1 to len(T) do 
 3   Distance[i, j] ← (Q[i] – T[j])2 
 4  end for 
 5 end for 
 6 Accumulated_Cost[1, 1] ← Distance[1, 1]  
 7 for i ⇐ 1 to len(Q) do 
 8  Accumulated_Cost[i, 1] ← Distance[i, 1] + Accumulated_Cost[i – 1, 1] 
 9 end for 
 10 for j ⇐ 1 to len(T ) do 
 11  Accumulated_Cost[1, j] ← Distance[1, j] + Accumulated_Cost[1, j – 1] 
 12 end for 
 13 for i ⇐ 1 to len(Q) do 
 14  for j ⇐ 1 to len(T) do 
 15   Accumulated_Cost[i, j] ← Distance[i, j] + min(Accumulated_Cost[i, j – 1], 

Accumulated_Cost[i – 1, j], Accumulated_Cost[i – 1, j – 1]) 
 16  end for 
 17 end for 
 18 1

1 _ [ ( ), ( )]
Sim

Accumulated Cost len Q len T
←

+
 

 19 PSim ← Sim × 100 
 20 return PSim 

3.4.2 Verification the similarity of periods 

In EADiDaC method, the sampling period refers to the time duration during which the 
sensor capture sensed temperature readings from the surrounding environment. The speed 
of change of environmental conditions and what fundamental features should be 
periodically gathered in temperature readings collection model can influence on the 
sampling period. In EADiDaC method, every node able to adapt its rate of sampling 
according to the amount of similarity among temperature readings series collected during 
different periods. The aim of computing the similarity between the temperature readings 
series every cycle is to adapt the rate of sampling based on the new calculated similarity. 
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Therefore, the APCA similarity coefficient is employed to discover the similarity 
percentage, PSim among several periods per cycle. On one hand, If PSim is high, it means 
the monitored condition is changed at a slow speed. Therefore, the sensor node will 
decrease its rate of sampling to the minimum value to prevent collecting redundant 
readings. On the other hand, if PSim is low, the sensor node will collect temperature 
readings at approximately maximum sampling rate so as to avoid missing significant 
measures. Therefore, to adapt the rate of sampling of sensor node in accordance with the 
computed similarity among periods, the reverse of similarity percentage for APCA 
similarity coefficient SimPR  is computed as follow 

100 .SimP SimR P= −  (9) 

Consequently, the computed SimPR  will be used to adapt the rate of sampling of the sensor 
in the new periods. When there is a high degree of similarity among periods (i.e., PSim is 
high), the sensor node balances its rate of sampling to the minimum value ( SimPR  is low). 
Otherwise, it balances its rate of sampling to the maximum value. As aforementioned, 
how the process of adapting the sampling rate in the sensor node depends on the ,SimPR  
the application criticality will be taken into consideration in this process. 

3.4.3 Application criticality 

The PSN can be used for monitoring disasters by using various kinds of sensor devices, 
e.g., for temperature, displacement, pressure, and concentration of chemicals, or noise 
detection. The influence of disasters on people and on the environment is not the same. 
Therefore, the sensor can modify its rate of sampling in a different manner for each 
monitored disasters. Therefore, if the risk level of the disaster is high then the sensor 
node must collect sensed readings more than if the risk level of the disaster is low. This 
can provide collected readings with high quality to make both the analysis easier and the 
monitored disaster is better to understand. There is an inversely proportional relation 
between PSim and ,SimPR  therefore, when the similarity among periods is high, the SimPR  
will push the sensor node to make its sampling rate as minimum as possible. 

In general, when the sensor node has the ability to alter its rate of sampling depending 
on the application’s needs in PSNs, this will save its energy. In EADiDaC method, the 
criticality of application is expressed as a minimum amount of sampling rate in a period 
for a sensor node, MINSMP. MINSMP takes values in the range 0 to 100 which represent the 
criticality level either low or high respectively. The sensor node adapts the new sampling 
rate to the MINSMP and not to the SimPR  when the recently calculated sampling rate is less 
than MINSMP. Depending on the requirements of the application and before the 
deployment, all the sensor nodes initialise their MINSMP. It is also possible to change 
MINSMP dynamically during the lifetime of the network for the whole sensors or for just a 
given subgroup of sensors if there are some types of management and control schemes 
are available. 

Algorithm 5 illustrates an adaptive sampling rate approach. The main purpose of this 
algorithm is to give every sensor device the ability to modify its rate of sampling to 
conserve its power and to decrease the volume of collected data. Algorithm 5 works into 
cycles and each cycle consists of j periods. In each period, the sensor captures ρ 
temperature readings. The number of periods j is fixed to 2. For each cycle, the sensor 
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nodes look for the similarity percentage among periods (line 10), then it computes SimPR  
(line 11). Therefore, the sensor node will decide to increase its sampling rate to computed 

SimPR  when it is greater than MINSMP which is determined by the application’s needs. 
Otherwise, it decreases its sampling rate to the MINSMP (lines 12–16). 

Algorithm 5 Adaptive sampling rate algorithm 

Require: j (one cycle = j periods), ρ, MINSMP, a: alphabet, ε: reconstruction error 
Ensure: SMPR  // new sampling rate 
 1 SMPR ← ρ //initialise sampling rate to ρ measures per period 
 2 while ne > 0 do 
 3  for i ← 1 to j do 
 4   Collect temperature readings series (Si)at SMPR speed 
 5   W

iS  ← segments construction using sliding Window (Si, ε) 

 6   AP
iS  ← APCA dimensionality reduction ( )W

iS  

 7   ( ) SAX Frequency Reduction ( , )X AP
iSendToSink RV S a←  

 8  end for 
 9  for each cycle do 
 10   PSim ← Similarity ( , )AP AP

i jS S , // AP
iS  the APCA coefficient set formed 

at period i 
 11   SimPR  ← 100 – PSim 

 12   if SimPR  < < MINSMP then 

 13    SMPR ← (MINSMP/100) × ρ 
 14   else 
 15    SMPR ← ( / 100)SimPR  × ρ 

 16   end if 
 17  end for 
 18 end while 
 19 return SMPR 

4 Method evaluation 

4.1 Simulation framework 

To study and evaluate EADiDaC method, extensive simulations are performed with 
discrete event simulator OMNeT++ (Varga, 2003). In these simulations, we consider N 
sensors deployed in the lab as illustrated in Figure 5. Sensors periodically capture local 
readings (e.g., temperature) at a specified rate. The base station is located at the centre of 
the lab. It receives sensed readings from each sensor node by a single hop. 
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Figure 5 Intel Berkeley lab sensor network (see online version for colours) 

 

Source: Madden (2004) 

EADiDaC method is distributed at each sensor node and it is based on the dataset of Intel 
Berkeley Research Lab (Madden, 2004). PSN in this Lab includes 54 Mica2Dot sensors 
localised as shown in Figure 5. The sensed data of the weather (such as temperature, 
humidity, and light) are periodically collected by these sensors once each  
31 seconds. In our simulation, the sensor nodes use a log file contains about 2.3 million 
readings collected previously by Mica2Dot sensor nodes in the Lab. This article uses only 
one measure of sensor node measurements: temperature1. In Figure 5, every sensor node 
has a yellow sign is not used in our simulation because its data may be missed or 
truncated. Therefore, the temperature readings of 47 sensor nodes are selected and stored. 
The results are the average of 47 sensor nodes. Table 3 gives the selected parameters 
settings. 
Table 3 simulation parameters for PSN initialisation 

Parameter Value 

PSN size 47 nodes 
a 5 and 10 symbols 
ρ 20, 50, 100 and 200 readings 
MINSMP 20, 40 and 60 
ε 0.07, 0.1, 0.2 reconstruction error bound 
j 2 
Eelec 50 nJ/bit 

βamp 100 pJ/bit/m2 

In the experimental simulations, some performance metrics are applied to assess the 
effectiveness of the EADiDaC method such as sampling rate adaptation, number of 
collected temperature readings by a sensor node, number of sent temperature readings, 
energy consumption, accuracy, and lifetime. EADiDaC method uses the same energy 
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consumption model discussed in Harb et al. (2016). Energy consumed by the sensor node 
is just the periodically collected and sent temperature readings to the base station. The 
cost of transmission is calculated for a m – bits message and for a distance d as follow 

2( , ) .TX elec ampE m d E m m d= ∗ + ∗ ∗β  (10) 

The energy consumption required for capturing m – bits by the sensor node is calculated 
as follow 

( , ) ( , ) 7.CX TXE m d E m d=  (11) 

These experiment simulations consider the length of data reading m equal to 64. In the 
case of transmission, 16 bits are added to m – bits message which corresponds to the 
frequency of data reading m. Consequently, energy consumption is defined as the total 
energy dissipated at each sensor node during the collection and transmission of data 
readings and formulated as follow 

( , ) ( , ).Total TX CXE E m d E m d= +  (12) 

4.2 Performance analysis 

In this section, several experiments are achieved to show the performance of EADiDaC 
method. It is distributed at each sensor node in the PSN. Every node reads real 
temperature readings periodically and adapts its rate of sampling after each cycle based 
on the similarity percentage among collected sets of temperature readings. 

Figure 6 Sampling rate adaptation, (a) ρ = 50 (b) ρ = 100 (see online version for colours) 

 
(a) 
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Figure 6 Sampling rate adaptation, (a) ρ = 50 (b) ρ = 100 (continued) (see online version  
for colours) 

 
(b) 

4.2.1 Sampling rate adaptation 

Figure 6 shows the adaptation of sampling rate and for two sizes of temperature readings 
(50 and 100 respectively), and reconstruction error bound ε is fixed to 0.1. The results 
illustrate the ability of sensor device to modify its rate of sampling dynamically depends 
on the application criticality level. The risk level MINSMP can be determined according to 
the type and requirement of application used to monitor the disaster. 

In this experiment, MINSMP uses two values: 20 for low risk level disaster and 60 for 
high risk level disaster. As shown in Figure 6, the adaptation of sampling rate is dynamic 
and after each cycle based on the application criticality level (i.e., MINSMP = 20 or 60). 
The results in Figures 6(a) and 6(b) validate the good performance of our method. 

4.2.2 Number of collected readings 

Figure 7 shows the number of collected readings by the node at the end of simulation. 
EADiDaC method uses different values for the parameters SMPR, a, MINSMP, and ε. 

As shown in these results, the alphabet size a does not affect the number of collected 
readings because of adaptation of sampling rate depends basically on the similarity 
among periods. EADiDaC method collects as large as possible of temperature readings 
when the MINSMP increases. This can support application requirements. When the risk 
level is high then EADiDaC method collects more readings. It can be seen that the 
increase in the ρ leads to increase the number of collected readings because of the 
decreasing the similarity percentage between collected readings of successive periods. It 
can be seen that when the reconstruction error bound ε increases then the number of 
collected readings decreases due to increasing the similarity among collected readings. 
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Figure 7 Number of collected readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (see online 
version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 7 Number of collected readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (continued) 
(see online version for colours) 

 
(d) 

4.2.3 Number of sent readings 

In this experiment, the number of sent readings by sensor node is evaluated. Another task 
carried out by EADiDaC method is to remove redundant collected readings before send 
them to the base station while maintaining the accuracy of collected readings. Figure 8 
indicates the number of sent readings by the node at the end of the simulation. 

Obviously, the number of sent readings increases with the number of alphabet sizes. 
This is due to the lack of similarity among collected readings. It can be seen that 
EADiDaC method send the larger amount of readings to the base station when the 
MINSMP increases or reconstruction error bound ε decreases. This can support the 
application’s needs by sending a larger number of readings when the risk level of 
application is high. It is obvious that the increase in the SMPR leads to decrease the 
number of sent measures due to the SAX technique that transforms the collected readings 
into fixed number of symbols, each one associated with different frequency. For example, 
suppose a = 5 and SMPR = 50, the collected readings will be represented by five symbols 
(a, b, c, d, and e). Each of these symbols has a different associated frequency (e.g., 5, 4, 
15, 10, 16). If the SMPR increases to 100 for the same five symbols, it leads to represent 
the 100 collected readings by the same five symbols and with different associated 
frequency for each symbol. Therefore, EADiDaC method reduces the number of 
redundant data before send them to the base station to saves more energy and improve 
lifetime. 
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Figure 8 Number of sent readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (see online 
version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 8 Number of sent readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (continued)  
(see online version for colours) 

 
(d) 

4.2.4 Energy consumption 

In this experiment, the energy consumption of the sensor node using EADiDaC method is 
studied. Figure 9 illustrates energy consumption by a sensor node at the end of the 
simulation. As shown in Figure 9, when the a increase, the number of sent readings 
increases (see Figure 8) thus energy consumption by the sensor node using EADiDaC 
method increases. EADiDaC method increases the sent readings when the risk level of 
the application is high. Therefore, the energy consumption by EADiDaC method 
increases when the MINSMP increases. Furthermore, it is obvious that the increase in the 
SMPR or reconstruction error bound ε leads to decrease the number of sent readings thus 
save the energy of sensor node. 

Figure 9 Energy consumption by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200  
(see online version for colours) 

 
(a) 
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Figure 9 Energy consumption by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 
(continued) (see online version for colours) 

 
(b) 

 
(c) 

 
(d) 
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4.2.5 Data accuracy 

Another important metric to evaluate the quality of EADiDaC method is the accuracy of 
collected data. It represents a measure of data loss rate. In order to evaluate the data 
accuracy, the lost data readings are counted in a periodic way after sampling rate 
adaptation of every sensor using our method. The data reading is considered as lost data 
reading if it collected by the sensor without adaptive sampling during the period p and it 
is not collected by the same sensor using our adaptive sampling technique for the same 
period. However, the data accuracy is computed at the end of the experiment by 
subtracting the lost data readings rate from the total number of data readings collected by 
the sensor without adaptive sampling. Figure 10 shows the data accuracy of EADiDaC 
method. The obtained results show that the EADiDaC method provides good 
performance regarding the data accuracy. It produces at least 95% of data readings 
accuracy. Therefore, the decision at the base station will be not influenced. Accordingly, 
EADiDaC method can be considered as an energy saving way to adapt the sampling rate 
of the sensor node while maintaining a high level of accuracy of the collected data 
readings. 

Figure 10 Data accuracy of collected data readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 10 Data accuracy of collected data readings, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 
(continued) (see online version for colours) 

 
(c) 

 
(d) 

4.3 Comparison results 

Depending on the conducted results in the Sub-section 4.2, EADiDaC method, with a = 5 
seem to give the best results to be compared with the best results of other two existing 
techniques. The first scheme is called PFF that proposed by Bahi et al. (2014). The 
second approach is called Harb et al. that introduced in Harb et al. (2016). 

4.3.1 Number of collected readings 

Figure 11 illustrates the number of collected readings at the end of simulation by every 
sensor node using EADiDaC method compared with other two approaches. EADiDaC 
method decreases the number of collected readings by a sensor node from 13% to 65% 
compared to PFF. The PFF does not allow to the sensor node to adapt its sampling rate 
therefore, it always collects the same number of readings. EADiDaC method decreases 
the collected readings from 1% to 35% in comparison with Harb et al. approach which 
allows the sensor node to adapt its rate of sampling based on the similarity between the 
periods of one cycle. 
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Figure 11 Number of collected readings by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100  
(d) ρ = 200 (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 



   

 

   

   
 

   

   

 

   

   30 A.K.M. Al-Qurabat and A.K. Idrees    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 Number of collected readings by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100  
(d) ρ = 200 (continued) (see online version for colours) 

 
(d) 

The results illustrate that EADiDaC method has the ability to get rid of the redundant 
collected readings efficiently so as to decrease the overhead of transmitted readings to the 
base station thus improve the network lifetime. It can be seen that EADiDaC method 
increases the volume of collected readings when the MINSMP is increased. This increment 
in the collected readings is to meet the application’s requirements when the risk level is 
high. 

4.3.2 Number of sent readings 

After collecting the data readings at each period, EADiDaC method at the sensor node 
able to decrease the number of sent readings to the base station by using SAX method. 
Therefore, EADiDaC method finds the redundant symbols in the word of each period and 
allocates for every symbol its frequency. Figure 12 demonstrates the number of sent 
readings by a sensor node to the base station at the end of simulation for EADiDaC 
method compared with the PFF and Harb et al. methods. 

The results illustrate that EADiDaC method at each sensor node decreases up to 62% 
and 65% of the number of sent readings to the base station comparing to the PFF and 
57% and 61% comparing to the Harb et al. methods respectively. Therefore, EADiDaC 
method removes the redundant collected readings successfully and the number of sent 
readings to the base station is reduced. We can also see that the volume of sent readings 
from the sensor node to the base station decreases when ρ increases or reconstruction 
error bound ε increases. This is due to the number of sent readings rely on the number of 
collected readings, ε, the identical function, and the risk level of application. 
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Figure 12 Number of sent readings by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100  
(d) ρ = 200 (see online version for colours) 
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Figure 12 Number of sent readings by a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100  
(d) ρ = 200 (continued) (see online version for colours) 

 
(d) 

4.3.3 Energy consumption 

Figure 13 shows the energy consuming by EADiDaC method at the sensor node 
compared with PFF and Harb et al. approaches. 

As shown in Figure 13, EADiDaC method outperforms the other approaches in term 
of energy consumption. It saves energy because it reduces both collected and sent 
readings at the sensor node. The consumed energy of a sensor node using EADiDaC 
method is minimised up to 57% and 27% compared to PFF and 43% and 15% compared 
to Harb et al. techniques respectively. It can be observed that EADiDaC method is 
effective in terms of reducing energy consumption for the applications with high and low 
risk level. It saves more energy when MINSMP is decreased. 

Figure 13 Energy consumption, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (see online version 
for colours) 
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Figure 13 Energy consumption, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (continued)  
(see online version for colours) 
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4.3.4 Lifetime of sensor node 

Finally, we study the influence of the number of collected and sent readings on the PSN 
lifetime. As exhibited by Figure 14, EADiDaC method gives a longer network lifetime 
compared with other approaches. Every sensor node initiated its energy to 40 mJ for the 
whole approaches in this comparison. 

EADiDaC method enhances the lifetime of sensor node up to 55% compared to Harb  
et al. technique. These results are obtained due to the efficiency of EADiDaC method in 
conserving the energy of the sensor thus increases the PSN lifetime for both high and low 
risk level applications, whilst maintaining the quality of the gathered readings. 

Figure 14 Lifetime of a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (see online 
version for colours) 
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Figure 14 Lifetime of a sensor node, (a) ρ = 20 (b) ρ = 50 (c) ρ = 100 (d) ρ = 200 (continued)  
(see online version for colours) 

 
(c) 

 
(d) 

4.3.5 Algorithmic complexity and t-test 

As an analytical study, every sensor node ni constructs sequence of sensed data Si of ρ 
temperature readings. The time complexity of the Algorithm 1 is O(ρ × log2(ρ)). The time 
complexity of the Algorithm 2 is O(m|SG|), where m is the number of segments and |SG| 
is the length of the segment. Algorithm 3 has O(m) as a computation complexity. The 
time complexity of the Algorithm 4 is O(|Q| × |T|), where |Q| and |T| are the number of 
segments for data series Q and T respectively. Therefore, the time complexity of our 
proposed EADiDaC method in the worst case is O(|Q| × |T|) and it will save at most  
(2 × ρ) measures at the memory of the sensor node in each period. Therefore, the storage 
(space) complexity of EADiDaC method is O(ρ). The time complexity of Harb et al. 
algorithm takes O(ρ2). Finally, the time complexity of PFF is O(ρ × log2(ρ)). In addition, 
the complexity of the message in EADiDaC method depends mainly on the number of 
collected data (ρ) in the period, which is fixed by the application. If it is required a large 
value for ρ, several solutions can be used such as data packet division. The space 
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complexity depends on the sensor node memory size as well as ρ, which can be handled 
in a similar way to the complexity of the message. 

In addition, we use the statistical analysis such as t-test to show that our results are 
significant. Therefore, the t-test is applied on the comparison result of the energy 
consumption between our proposed EADiDaC method and the two existing methods 
(Harb et al. and PFF). The t-test (with p-value) between EADiDaC and Harb et al. is 
equal to 1.18254E-10, whilst the t-test (with p-value) between EADiDaC and PFF is 
equal to 9.89085E20. Hence, the t-test (with p-value < 0.05) shows that our result is 
significant and the energy consumption is significantly reduced. 

5 Conclusions and future works 

This paper presents a method, called distributed adaptive data collection method 
(EADiDaC), which collects periodically sensor readings and improves the PSN lifetime. 
EADiDaC method works into cycles and consists of four phases. First, collecting the data 
readings. Second, the sensor converts the collected temperature readings into APCA 
representation in order to reduce its dimensionality. Third, the redundant collected 
readings are reduced using SAX approach. Fourth, sampling resolution to adapt the rate 
of sampling at the sensor node in accordance with the dynamic changing of observed 
environment. EADiDaC method considers the risk level of an application by fixing the 
minimum sampling rate that permits to sensor node to collect readings at a minimum rate 
while maintaining a good quality of the collected readings. To assess the effectiveness of 
EADiDaC method, we compared it with two other methods using several performance 
metrics like a number of collected and sent readings, energy consumption, and PSN 
lifetime. Simulation results show the efficiency of EADiDaC method to conserve the 
energy at the sensor nodes thus prolong the PSN lifetime. 

In future, we plan to improve our work to consider the sensing overlap among sensor 
nodes at the aggregator level to optimise both the aggregated readings and lifetime while 
maintaining a good accuracy. 
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