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Abstract 
 

In this paper, a single-phase linearly and continuously controlled synchronous 
reactor is presented. It is a harmonic-free single-phase statcom. The statcom is constructed 
of a full bridge voltage source inverter shunted by a DC capacitor and absorbs reactive 
power from the AC supply through a somewhat small series reactor. The statcom current is 
controlled linearly by its DC capacitor voltage. The controlling process is achieved by 
forcing the capacitor to discharge through a boosted up energy tank when its voltage is 
exceeding the required value and forcing the tank to recharge the capacitor when the 
capacitor voltage starts to decline. The DC capacitor voltage control in this paper is carried 
out without needing to external voltage sources. The compensator design is validated on 
PSpice. 
 
 
Keywords: Controlled Reactor, Reactive Power, Statcom, Static Var Compensator 

 
1.  Introduction 
Static Var compensators are the most potent tools employed in field of power quality improvement. 
They can be used for load balancing of transmission lines, bus-bar voltage control, power factor 
correction, harmonics elimination, and governing power systems parameters [1-5]. In this paper, only 
static Var compensators that can be utilized as continuously controlled reactive power absorbers are 
considered. The thyristor controlled-reactor (TCR) is one of such absorbers, but it releases a wide 
spectrum of odd current harmonics that increase the transmission losses, disturb the power system 
network voltage profile, and affect telecommunication systems [6]. A TCR usually requires installation 
of a harmonic filtering circuitry at it location [7]. Modern static Var compensators are dependent on 
power conversion techniques and are usually denoted by many designations such as statcoms [8-14]. A 
three-phase statcom is either a voltage source inverter (VSI) shunted by a DC capacitor and exchanges 
active and reactive power with the AC supply by small inductors [8-12] or a current source inverter 
(CSI) shunted by a DC inductor and exchanges active and reactive power with the AC supply by small 
inductors [13]. A statcom is usually governed by angle control, thus the inverter output voltage is not 
in phase with the supply input voltage [8, 9]. Generally, the phase currents of power converter-based 
static Var compensators are not pure reactive and usually contain current harmonics running at the 
supply frequency multiples and the pulse with modulation carrier frequency multiples [12, 14]. Many 
techniques were employed to minimize harmonics such as harmonics filtering and utilization of 
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multilevel technologies in power converters design [9-11]. In this paper, a single-phase statcom-based 
synchronous reactor is presented. The reactor current is controlled linearly and continuously by the 
statcom DC capacitor voltage which can be kept at constant profile within its adjusted value. This 
besides somewhat small series suppressing reactor eliminate all the probable ripples in the current 
envelope of the proposed synchronous reactor. 
 
 
2.  The Proposed Synchronous Reactor 
The proposed synchronous reactor is shown in Figure 1. It is a traditional single-phase statcom 
equipped with a controlling technique for adjusting its capacitor voltage. The statcom is built of a full-
bridge voltage source inverter (FB-VSI) shunted by a DC capacitor CDC and absorbs pure reactive 
power from the AC supply vAC through a somewhat small harmonic suppressing reactor LS. Note that 
RS is the self-resistance of LS. The statcom DC voltage controlling circuit is built of a boost up DC-DC 
chopper and a DC recharging technique. The boost up chopper is formed by LBU, RBU, S5, D6, and the 
energy tank CT, whereas the recharging process is controlled by the switch S6. 
 

Figure 1: The proposed synchronous reactor. 
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The FB-VSI is triggered by the sinusoidal pulse width modulation technique shown in Figure 2. 
vMOD is the modulating signal which is an analogue sinusoidal voltage in phase with vAC and running 
with it at the same frequency f. vTR is the carrier signal which is a triangular voltage of frequency fC. 
The instantaneous output voltage of the inverter according to this type of triggering can be given by 

( )315 SS
DC

inv VV
V

v −=  (1) 

Assuming that fC is very much greater than f, the voltage component of vinv at the AC supply 
fundamental frequency can be given by 

1 sinDCv mV tω=  (2) 
Where, m is the inverter modulation index and is defined as the ratio of vMOD to vTR amplitudes 

(AM/AC). If VDC is kept constant within its adjusted value VDCR and the reactor LS is chosen such that it 
can suppress all the harmonic current components running at the multiples of fC, then the compensator 
current iAC will be given by 

( )
sin

2
m DCR

AC
S

V mV
i t

L

π
ω

ω

−
= −  (3) 

Where, Vm is the amplitude of vAC and  is its angular frequency. 
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Figure 2: The unipolar sinusoidal pulse width modulation triggering signals. 
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Initially, the capacitors CDC and CT started charging from the full-bridge rectifier (D1D4-D3D2). 
If at a certain time t=t0, VDC becomes slightly greater than VDCR, then S5 will be turned on causing D6 to 
be turned off due to the declination of VDC below the value of VT. Assuming that S5 and S6 are triggered 
as shown in Figure 3, at the period defined by t0 t t1, the following can be written 

( )
( )tiR

dt

tdi
LV BUBUDCR 1

1 +=  (4) 

Solving (4) for i1(t) gives 

( ) ( ) ( ) ( ) ( )1 2 0 1 0 01 exp expDCR BU BU

BU BU BU

V R R
i t i t t t i t t t

R L L
= = − − − + − −  (5) 

Since at t=t1 S5 is turned off, the energy stored in the inductor LS is directed toward CT. The 
charging of CT at the period defined by t1 t t2, will be governed according to Kirchhoff Voltage Law, 
by the below differential equation 

( ) ( )
( )tV

dt

tdV
CR

dt

tVd
CLV T

T
TBU

T
TBUDCR ++=

2

2

 (6) 

Solving (6) for the homogeneous solution VTH(t) gives 

( )
( ) ( )1 12 2

1 2
4 4

exp exp
2 2

BU BU
TH BU BU BU BU

BU T BU T

t t t tL L
V t k R R k R R

L C L C

− −
= − − − + − + −  (7) 

Where, k1 and k2 are constants. For this compensator RBU
2 is usually smaller than 4LBU/CT, thus 

VTH(t) represents an under damped case and the solution can be given by 

( ) ( )( ) ( ) ( )( ) ( )1 1
1 1 2 1cos sint t t t

TH d dV t A t t e A t t eα α
ω ω

− − − −
= − + −  (8) 

Where A1 and A2 are also constants and can be obtained from the initial conditions.  and d are 
defined by 

BUBU LR 2=α  (9) 

21 αω −= TBUd CL  (10) 
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Figure 3: S5 and S6 triggering technique. 
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The complete solution of (6) is the homogeneous solution VTH(t) plus the particular solution 
VTP(t) which is represented by VDCR. Consequently, the complete solution of (6) can be given by 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )1 1
1 1 2 1cos sint t t t

T TH TP d d DCRV t V t V t A t t e A t t e Vα α
ω ω

− − − −
= + = − + − +   (11) 

The current i1(t) can be defined by 

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( ) ( )1 1
1 3 1 2 1 1 2 1cos sint t t tT

T T d T d

dV t
i t i t C C A A d t t e C A A d t t e

t
− − − −

= − = = − + − − + −  (12) 

Where, A1 and A2 are determined from initial conditions as follows 
( ) DCRT VtVA −= 11  (13) 

( ) ( )

Td

DCRTTT

C

tiVCtVC
A

ω

αα 111
2

+−
=  (14) 

If VDC is less than VDCR at t=t2, then the switch S6 will conduct. In a procedure similar to that 
done in the period t1 t t2, the voltage VT(t) and the current i1(t) in the period t2 t t3 can be given by 

( ) ( )( ) ( ) ( )( ) ( )2 2
3 2 4 2cos sint t t t

T d DCRd
V t A t t e A t t e Vα α

ω ω
− − − −

= − + − +  (15) 

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( ) ( )2 2
1 3 3 4 2 3 4 2cos sint t t tT

T T d d T d d

dV t
i t i t C C A A t t e C A A t t e

t
− − − −

= − = = − + − − + −  (16) 

Where, A3 and A4 are constants and can be obtained from the initial conditions as follows 
( )3 2T DCRA V t V= −  (17) 

( ) ( )

Td

DCRTTT

C

tiVCtVC
A

ω

αα 212
4

+−
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3.  PSpice Validation System 
Figure 4 shows a PSpice system demonstrating the design methodology and the objective of the proposed 
synchronous reactor. A power system of 220V, 50Hz was chosen as the AC supply vAC for the proposed 
system. The carrier frequency fC was chosen to be 2.5KHz, thus an inductance of 3mH was sufficient for 
LS to suppress all the current harmonics running at the multiples of that frequency. The amplitude of vAC 
was 311V. The FB-VSI was operated at a modulation index of 0.9. A linear adjustment of VDC from 
345V to 220V, was required to operate the synchronous reactor in a current range of 0 to 120A (peak 
values). CDC and CT were chosen to have equal capacitances of 500μF. The rectangular waveform 
voltage VS was chosen to have a frequency of 6.25 KHz with TON=120μs and TOFF=40μs. 
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Figure 4: The PSpice validation system of the proposed synchronous reactor. 
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4.  Results 
Fig. 5 shows the synchronous reactor performance at four different values of VDCR. The capacitor 
voltage VDC can be adjusted linearly by varying the reference voltage VREF in Figure 4. Note that the 
electronic circuit was designed such that VREF=kVDCR=0.01VDCR. The minimum VDCR determines the 
maximum current rating of the reactor. VDCR values of 345V, 303V, 262V, and 220V in Figure 5 are 
corresponding to source current iAC of 0, 40A, 80A, and 120A respectively. 
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Figure 5: The AC voltage vAC, reactor current iAC, VDC, and tank voltage VT at VDCR of: (a) 345V. (b) 303V. (c) 
262V. (d) 220V. 
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To obtain the initial conditions and the time periods required for MATLAB simulation of (5), 
(11), (12), (15), and (16), a PSpice period defined by "24.16ms t 24.32ms" was extracted from Figure 
5d. Figure 6 shows PSpice and MATLAB results. 
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Figure 6: (a) Switching status of S5 and S6. (b) Pspice profiles of VT(t), i1(t), and i3(t). (c) MATLAB profiles of 
VT(t), i1(t), and i3(t). 
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The switching status of S5 and S6 and the profiles of VT(t), i1(t), and i3(t) within that period are 
shown in Figure 6a and Figure 6b. From these figures, the following were obtained: t0=24.16ms, 
t1=24.258ms, t2=24.28ms, t3=24.32ms, VDCR=220V, VT(t0)=532V, and i1(t0)=-80A. Figure 6c shows the 
MATLAB simulation results of (5), (11), (12), (15), and (16). 

The linearity of the reactor current iAC versus VDCR is shown in Figure 7. Note that VDCR is the 
average value of VDC and the compensator in this paper was designed such that the maximum deviation 
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of VDC from VDCR never exceeds 2% of the minimum VDCR. The Schmitt comparator is designed such 
that the switch S5 is not allowed to conduct more than once within one cycle of VS. As the difference 
between VDCR and the AC supply amplitude Vm increases, the swing of VDC from VDCR increases too. 
The swing of VDC from a VDCR of 220V is within ±4.4V as shown in Figure 6a. 

The coinciding of PSpice and MATLAB profiles of VT(t), i1(t), and i3(t) in Figure 6 validates 
the analysis carried out in this paper. The reactor represented by LBU and RBU was chosen such that its 
time constant is very much greater than the repetition time of the rectangular waveform VS. 
 

Figure 7: The synchronous reactor current iAC versus CDC voltage. 
 

 
 
 
5.  Summary and Concluding Remarks 
The PSpice and MATLAB results have demonstrated the theoretical analysis of the proposed 
synchronous reactor. In addition, they reflect the linearity, harmonic absence, non-real power 
contribution, and pure reactive power absorption of the proposed compensator. The pure inductive 
current drawn by the proposed reactor from the AC supply ensures that the fundamental voltage 
component generated by the voltage source inverter is synchronized with the AC supply voltage. The 
proposed technique offers the possibility of using small series reactors without harmonic filtering or 
multilevel technology in inverter design. This is because of the precision regulation of the DC 
capacitor voltage, which is carried out without using external DC voltage sources. The technique offers 
the possibility of delta or star connections for reactive power absorption purposes. This reactor is 
characterized by very fast response (less than one cycle of the power system network fundamental) for 
satisfying the reactive current demand and negligible no load operating losses. 
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