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In this paper, a bipolar (capacitive and inductive) static VAR compensator is built on the basis of statcom 

fundamentals. The designed compensator exchanges wide range of pure reactive power with the ac supply 

without significance of real power contribution. No harmonic generation is associating the compensation process, 

thus no filtering is required. The compensator is built of two single-phase statcoms connected in parallel. One of 

them represents a static linear synchronous condenser at the ac supply fundamental frequency, while the other 

represents a harmonic-free linearly and continuously controlled reactor. Each statcom is built of a half-bridge 

voltage source inverter shunted by two dc capacitors and exchanges pure reactive power with the ac supply 

through a series reactor. The reactive power of each statcom is controlled linearly by the modulation index of its 

voltage source inverter. A demonstration system for this compensator is designed and tested on PSpice.  
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1. INTRODUCTION 

 

Load balancing requires continuous control of 

static VAR compensators in capacitive and 

inductive modes of operation (Chen, Lee and Chen 

1999; Lee and Wu 2000; Valderrama, Mattavelli 

and Stankovic 2001; Xu et al. 2010). Synchronous 

condensers can be employed as continuously 

controlled reactive power compensators in 

balanced systems, but static VAR compensators 

are superior to them due their fast responses, low 

operating losses, and the possibility of being 

employed in applications requiring unbalanced 

reactive power control (Bimal 2006; Teleke et al. 

2008).  Conventional static VAR compensators 

constructed of fixed or switched capacitors and 

thyristor controlled reactors can be employed as 

bipolar (capacitive and inductive) reactive power 

compensators for load balancing purposes (Best 

and Zelaya-De La Parra1996; Gyugyi 1988; Lee 

and Wu 2000; Morbn, Ziogas and Joos 1993). 

Such kinds of compensators release disturbing 

harmonics and employ natural commutated 

medium speed switching devices (IEEE PES 

Harmonic Working Group 2001). Static 

compensators (statcoms) require forced 

commutation fast switching devices and have fast 

responses compared to conventional static VAR 

compensators.  A statcom is either a voltage source 

converter loaded by a dc capacitor and exchange 

reactive power with the ac supply through a small 

reactor, or a current source converter loaded by a 

dc reactor (Bimal 2006; Tavakoli Bina and Hamill 

2005). 

Statcoms under the above definitions release 

wide spectrums of harmonics and exchange 

unnecessary real power with ac supplies (IEEE 

PES Harmonic Working Group 2001). 

Consequently, the above compensators usually 

require harmonics filtering circuitries installed 

together with them. Harmonics can also be 

minimized by employing multilevel statcoms 

which results in more complicated systems 

(Hadjeri, Ghezal and Zidi 2008). Harmonics 

minimization Techniques cause more no load 

operating losses. 

In this study, a linearly and continuously 

controlled bipolar (capacitive and inductive) static 

VAR compensator built on the basis of single-

phase statcom concept will be presented. The new 

configuration will be capable to exchange pure 

reactive power with the ac supply at its 

fundamental frequency without real power 

contribution or harmonics association. The 

compensator that will be devised requires no 

harmonics filtering and dissipates negligible no 

load operating losses.  

 

2. THE PROPOSED SINGLE-PHASE 

STATCOM  

 

The proposed single-phase statcom is shown in 

Fig. 1a. It is simply a single-phase half-bridge 

voltage source inverter loaded by two dc capacitors 

C1 and C2 and fed by the series reactor L. The 
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resistor r represents the self resistance of the series 

reactor. The statcom configuration in Fig. 1a can 

be modified by dividing the series reactor L into 

two identical reactors and equipping the new 

configuration with a series bandpass filter as 

shown Fig. 1b. The filter is tuned at the carrier 

frequency fC which represents the frequency of the 

triangular signal employed in the generation of the 

sinusoidal pulse width (SPWM) signals required 

for triggering the single-phase half-bridge voltage 

source inverter. This helps to smooth the envelope 

of the statcom current. The ac supply (vs) is a 

sinusoidal voltage having amplitude of Vm and 

angular frequency of ω. The bandpass filter is 

designed such that it draws negligible current from 

the ac supply. 

 
 

Fig. 1: The proposed statcom configurations: (a) simple and (b) modified. 

 

In Fig. 1a, the capacitor C1 will charge to +Vm 

through the series reactor and the diode D1, 

whereas C2 will charge to –Vm. The insulated gate 

bipolar transistors (IGBTs) S1 and S2 are triggered 

by VS1 and VS2 respectively as shown in Fig. 2a. 

These signals are produced by comparing the 

modulating signal (vmod) with the triangular signal 

(vC). vmod is a sinusoidal voltage proportional to vS 

and in phase with it. If a parameter m is defined as 

the normalised amplitudes ratio of vmod to vC,, then  

 

tmv sinmod      (1) 

 

Here m represents the inverter modulation index. If 

the triangular signal frequency fC is very much 

greater than the modulating signal frequency f 

which is equal to ω/2π, then at any ωt, S1 will 

conduct for a period of time of t1, while S2 will 

conduct for a period of time of t2 as shown in Fig. 

2b. The following can be deduced from this figure 
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Fig. 2: The statcom sinusoidal pulse width modulation (SPWM). (a) Switching devices triggering signals and (b) their 

conduction periods 

 

If the term (msinωt) is positive, then t1 is 

greater than t2 and vice versa. The instantaneous 

voltage (vi) generated by the inverter at any ωt, is 

shown in Fig. 3. The average of vi at any ωt is 

designated by Vi and is calculated as follows 
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Fig. 3: The instantaneous voltage (vi) generated by the inverter at certain ωt. 

 

The envelope scanned by Vi from 0 to 2π, 

represents the inverter voltage fundamental (v1) 

which is synchronized with the ac supply 

instantaneous voltage vS and running at the supply 

fundamental frequency f. The difference between vi 

and v1 is the source of all current harmonics, thus 

the circuit of Fig. 1a can be modelled as shown in 

Fig. 4a. The capacitance CT represents C1//C2.The 

current source iH includes all the possible harmonic 

current components starting from the odd multiples 

of the ac supply fundamental f and ending with the 

multiples of the carrier frequency fC. The current 

source i1 is a pure capacitive current at the ac 

supply fundamental f and is given by 

 

 2/sin1   tCmVi Tm     (6) 

 

The statcom approached in this paper is 

designed such that  
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LCT

25.0                         (8) 

 

The constraint defined by (7) guaranties pure 

reactive current at the ac fundamental, while the 

constraint defined by (8) makes L suppress all 

components of iH starting from third harmonic. 

Consequently, the statcom modeling of Fig.4a can 

be simplified as shown in Fig. 4b. 

 
Fig. 4: The proposed single-phase statcom modeling: (a) exact and (b) simplified 

 

The statcom impedance (ZS) is given by 

 

  TS CLZ /1                                 (9) 

 

Where, φ is the impedance angle. If it is +90
0
, 

then the statcom current iS will be pure inductive, 

whereas for φ=-90
0
, iS will be pure capacitive. The 

current iS can be given by 
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The statcom current can be linearly varied from 

zero to its maximum value by varying the 

modulation index m from unity to zero.  

 

3. THE PROPOSED BIPOLAR STATIC VAR 

COMPENSATOR 

 

Two statcoms of Fig. 1a are connected in parallel 

as shown in Fig. 5, to build a single-phase static 

VAR compensator controllable linearly and 

continuously in capacitive and inductive modes of 

operation. The left statcom formed by L1, S1, S2, 

C1, and C2 is designed such that it can draw pure 

capacitive current from vS, while the right statcom 

is designed to draw pure inductive current. Each of 

the reactors L1 and L2 must be divided into two 

identical reactors as in Fig. 1b. Both statcoms must 

comply with the constraints specified by (7) and 

(8) and must be capable of handling the same 

maximum reactive currents. Consequently, it can 

be written 
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Fig. 5: The proposed single-phase statcom-based static VAR compensator 

 

If the reactive current demand is capacitive, 

then the switching devices S1 and S2 will be 

activated, whereas S3 and S4 will be off. Therefore 

the left statcom will draw pure capacitive current 

(iSC) proportional to the reactive current demand. 

In case of inductive reactive current demand, the 

left statcom will be relaxed and the right statcom 

will satisfy the demand by drawing pure inductive 

current (iSI). 

  

4. COMPENSATOR CIRCUIT DESIGN 

 

A single-phase power system of 220V (RMS 

value) and 50Hz was chosen as the ac supply vS of 

the proposed compensator. The amplitude Vm of 

the system voltage is 311V. The compensator is 

designed such it can handle maximum peak 

reactive current of 200A for capacitive and 

inductive modes of operation. The reactors L1 and 

L2 were chosen to have resistance to inductance 

ratio of 0.01(Ω/mH). Choosing ω
2
L1(C1+C2) =0.51 

and applying (11), the following basic design 

parameters were obtained: C1=C2=500µF, 

L1=5.2mH, C3=C4=1000µF, and L2=10mH. A 

complete system was designed on the computer 

program PSpice using aiding literatures (Bimal 

2006; Miller 1982; Skvarenina 2002) and 

datasheets of electronic parts employed in 

electronic circuitries. The circuit diagram of the 

designed compensator is shown in Fig. 6. Each of 

the reactors L1 and L2 of Fig. 5 are divided into two 

identical reactors in Fig. 6. A triangular waveform 

of amplitude of 2V and fC of 2.5 KHz was chosen 

as the carrier of the SPWM circuit. The 

compensator was equipped with two bandpass 

filters having the parameters LF=723.7µH, 

rF=0.02Ω, and CF=5µF. The controlling voltage of 

this system is the voltage Vd which is proportional 

to the reactive current demand. The range of Vd is -

4V to +4V. Its negative sign means that the 

reactive current demand is inductive, while 

positive sign means capacitive current demand. 

The polarity of this voltage (VP) will be invested in 

the triggering circuit to determine which statcom 

should be activated, whereas its absolute value (Va) 

will determine the output voltage vmod of the linear 

gain-controlled amplifier which was designed by 

investing the most linear portion of the 

characteristics of a fast junction field effect 

transistor. The amplitude of vmod can be controlled 

linearly from zero to 2V by varying Va from 0 to 

4V. Consequently, the modulation index m of the 

activated statcom can be varied linearly from unity 

to zero as the absolute of Vd varies from 0 to 4V. 

 

5. RESULTS AND DISCUSSION 
 

The compensator was tested on PSpice for zero 

reactive current demand. Fig. 7a shows the results 

of that test which corresponded to Vd=0 and m=1. 

Many tests were preceded during reactive current 

demand variations from 0 to compensator 

maximum rating (200A peak value) in capacitive 

and inductive modes of operation. In Fig. 7b, the 

measured values of the compensator current are 

plotted against reactive current demand in 

capacitive and inductive modes of operation. This 

figure obviously reflects the linearity of the 

proposed compensator. Note that the minus sign of 

current in Fig. 7b means inductive, while positive 

sign means capacitive. 
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Fig. 6:  PSpice design of statcom-based bipolar (capacitive and inductive) static VAR compensator 
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(a) 

 

 

 
(b) 

Fig. 7: Compensator response to: (a) zero reactive current demand and (b) reactive current demand variations of -200A 

to +200A (peak values). 

 

The compensator instantaneous voltage vS and 

current iS in capacitive and inductive modes of 

operation are shown in Fig. 8a and Fig. 8b 

respectively. It is obvious that absolute values of 

the voltage Vd in Fig. 6, control the modulation 

index m which determines the absolute value of the 

compensator current, while the polarity of Vd 

determines the compensator current phase angle φ 

which is +90
0
 for positive sign and -90

0
 for 

negative sign. 

 

6. CONCLUSION 

 

In this paper, a bipolar (capacitive and inductive) 

static VAR compensator is designed on the basis of 

statcom concept. The current of this compensator 

is pure reactive and its waveform is pure sinusoid 

running at the ac supply fundamental frequency 

without any sort of harmonics association and real 

power contribution. The configuration and the 

control strategy adopted in this paper, present 

satisfactory replacements of technologies requiring 

the building of multilevel converters and high 

power harmonic filters. The proposed compensator 

can be represented by a bipolar linear susceptance 

that offers the possibility of delta connection which 

can be employed in load balancing techniques. 

Overall, the proposed compensator can be 

considered as a parallel combination of static 

synchronous condenser and reactor having 

equivalent reactive ratings and offering the 

possibility of wide zone of linear and continuous 

control. 
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Fig. 8: The compensator voltage and current waveforms in: (a) capacitive mode and (b) inductive mode of operation. 
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