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Insulated-Gate Bipolar Transistor Controlled Reactor
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Abstract — [n this paper a controlled reactor using insulated-gate bipolar transistor (IGBT) is
presented. Conirolled reactors are usuaily implemented by using thyristors since the mid-1970's
and they are usually referred to as thyristor-controlled reactors. A thyristor-controlled reactor
(TCR) is simply two anti-parallel thyristors connected in series with a fixed inductor or reactor. In
TCR, it is only required to specify the instants at which its thyristors must start conduction. Once a
thyristor conducts, its current keeps on flowing as long as its magnitude is above holding limit and
hence no trigger is required after starting of conduction. In addition, a thyristor will be naturally
commutated as soon as its current decays below holding limit. For IGBT, the instant at which the
device must start conduction and the conduction period must be both identified because
maintaining conduction requires keeping on activating the device gate as long its current is still
greater than zero. The problem is how long should the IGBT conduct and when it will be turned
off? In this paper a reliable control strategy is adopted for presenting the IGBT as a good
replacement of thyristor in controlled reactors. A demonstrating system is designed and
implemented on the computer program PSpice. Copyright © 2011 Praise Worthy Prize S.r.1 - All

rights reserved.
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Nomenclature
TCR  Thyristor controlled reactor
IGBT Insulated gate bipolar transistor capacitor bank

14 The ac supply voltage
Vin Ac voltage amplitude

w Ac voltage angular frequency

L TCR or IGBT reactor

ircr The TCR actual current

o Thyristor controlled reactor firing angle
IGCR The IGBT controlled reactor

iser . 1GCR actual current

5 TCR fundamental current component

I TCR kth harmonic current component
in The actual current of the thyristor T'1
in The actual current of the thyristor T2

in The actual current of the IGBT (Z1)
in The actual current of the IGBT Z2

Vin An analog voltage proportional to the inductive
reactive current demand

7 Conduction angle of the IGBT Z1

72 Conduction angleof the IGBT Z2

T1&T, The TCR thyristors

Z1&7, The IGCR switching devices (IGBTs)

Ve The IGCR function circuit output

I Introduction

Thyristor-controlled reactors (TCRs) are productive
tools amongst reactive power control techniques
employed for power factor correction, power system
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voltage control, and load balancing purposes [1]-[8]. The
TCR is constructed of two anti-parallel thyristors
connected in series with a fixed reactor, The fundamental
component of the TCR current can be controlled
continuously by varying the conduction angles of its
thyristors symmetrically [1].

The TCR releases odd harmonics in the power system
network. These harmonics depend upon the TCR firing
angle and are directly proportional to its rating [9]-[12].
They are usually treated by using harmonic filtering
techniques in order to avoid disturbance in the power
system network voltage profile and transmission losses.
The TCR can also be employed in applications different
from those dealing with static VAR compensation.
Basing on its fast switching behavior, the TCR can be
used as a current limiter.

This property presents the TCR as a good protector
during fault conditions [13]. The thyristor controlled
reactors as its name indicates, employs thyristors only -in
its construction since it appeared to existence in the mid-
1970’s. Here is in this paper, the insulated-gate bipolar
transistor (IGBT) is presented as a good and reliable
replacement of thyristor in TCR design circuitry. The
new configuration is referred to as IGBT-controlled
reactor (IGCR).

II. The TCR Concept

The conventional TCR is shown in Fig. 1(a). When
the TCR is fired at a certain angle o, its current will be as
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shown in Fig. 1(b). Each thyristor will be naturally
commutated as its current approaches zero. The TCR
current (izc) fundamental component (/;) is given by

[i:
I =22 (7-20-sin(20)) M)
' rwL

where ¢ is the TCR firing angle in radians, V), is the
amplitude of the ac applied voltage (¥) in volis, w is the
ac supply angular frequency in radians per seconds, and
L is the reactor inductances in Henries. ¢ varies in the
range 0<g <n/2. Note that =0 at wr=n/2 and c=n/2 at
WIER.

The thyristor T, starts conduction at w=(n/2+c) and
turns off naturally at wr=(3w/2-6), while T, starts
conduction at w=(3n/2+c) and turns off naturally at
wr=(5n/2-0). Note that each thyristor conducts for an
angle of (n-20).

When o is set zero, the TCR current will be a pure
sinusoid. The TCR current contains odd harmonics only.
The 4y, order harmonic is given by [1]:

V(4 sin(c)cos (ko) - keos(o)sin(ko)
L _mL(_:rJ k(kz—l) =

where £ is a positive odd integer greater than unity.
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Figs. 1. The TCR, (a) configuration, (b) current waveforms
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III. The IGBT-Controlled Reactor

The configuration of the IGBT-controlled reactor
(IGCR) is shown in Fig. 2. It is similar to the TCR
configuration except that thyristors are replaced by
IGBTs.
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Fig. 2. The insulated-gate bipolar transistor
controlled reactor configuration

To make the TCR conducts according to Fig. 1(b), a
suitable technique must be devised to determine its firing
angle & as shown in Fig. 3(a).
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Figs. 3. (a) The TCR firing angle determination technique,
(b) the IGCR firing and conduction angles determination technique
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The above technique complies with Equation (1)
which consists of the constant part (V,/mwl) and the
variable part (7-20-sin20). If the latter is analogously
simulated in the range (z2-+km)<wt(1+k)x, where
=0,1.2, 3, .., then the TCR or IGCR firing angle will be
easily determined by comparing the simulated function
with an analogue voltage (F;,) proportional to the
inductive reactive current demand as shown in Fig. 3(a).
Determining the instants at which firing must be started
is sufficient for thyristors due to their properties of
conduction, but this is not sufficient for IGBTs since
they stop conduction as soon as their triggers disappear.
Note that the IGBT conducts when its anode-to-cathode
voltage is positive and its gate-to-cathode capacitance is
positively charged to a value depending on its type.

In order that the IGCR responds like the TCR in Fig.
1(b), the conduction angles of the IGBTs (Z; and Z;)
must be identified. The technique stated in Fig. 3(b) is
devised to solve this problem. In this technique, the
expression (7-2¢-sin2¢) and its mirror are analogously
simulated. The conduction angle for each IGBT is easily
determined by comparing the simulated waveform with

Vin which is directly proportional to the inductive
reactive current demand. In Fig. 3(b), y; and p, are the
conduction angles of Z; and Z, respectively.
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Insulated-gate bipolar transitor controlled reactor function circuit

IV. The IGCR Circuit Design

The electronic circuit of this system is implemented
using the computer program PSpice. The datasheets of
electronic parts and relating supportive literatures were
taken into account during design process [14]-[16]. Fig.
4 shows the circuit diagram of this system. It consists of
the IGCR function, triggering, driving, and power
circuits.

The IGCR function circuit in Fig. 4 generates the
waveform that represents the analogue simulation of the
expression (7-2¢-sin2c) and its mirror. The sequential
stages of simulation process are shown in Fig. 5. The
IGCR triggering circuit compares an analogue input
voltage ¥}, (proportional the inductive reactive current
demand) with the output of the function circuit to
determine the conduction angles for Z; and Z; as shown
in Fig. 3(b).

The driving circuit offers the suitable context for the
operation of Z; and Z,. During the conduction period of
each IGBT, the gate-to-cathode capacitance is charged to
about +15 volts. At the end of conduction period, the
gate-to-cathode capacitance of each IGBT discharges to
zero rapidly.
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Fig. 4. The IGCR circuit diagram
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Fig. 5. The IGBT-controlled reactor function circuit waveforms
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V. Results and Discussion

The circuit of Fig. 4 was tested on PSpice using an ac
voltage of 240 volts at a frequency of 50Hz. The IGCR
firing angle o was varied from 0° to 90° by adjusting V.
Figs. 6 to 11 shows tests at which ¢=0°, 18°, 27°, 36°
45°, and 81°. It is obvious that the fundamental
component (/,) of IGCR current is varied from 100% to
20% of its rated value as ¢ varies from 0° to 45°
respectively. Table I presents a comparison between the
theoretical values of /; obtained from Equation (1) and
the practical results obtained by tests. It is obvious that
theoretical and practical results are almost coinciding
with each other. Fig. 12 and Fig. 13 show the variations
of the IGCR current fundamental component and its most
significant odd harmonic contents respectively as the
firing angle o varies from 0° to 90° with a step of 9°, The
third, fifth, seventh, and ninth harmonics are the most
significant harmonics in TCR and IGCR currents.
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Fig. 6. The IGCR current and its frequency spectrum at 6=0°
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Fig, 7. The IGCR current and its frequency spectrum at o—18°
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Fig. 8 The IGCR current and its frequency spectrum at c=27°
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Fig. 9. The IGCR current and its frequency spectrum at 6=36°
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Fig. 10. The IGCR current and its frequency spectrum at 6=45°

Copyright © 2011 Praise Worthy Prize S.r.L - All rights reserved

2.0
IGCR
current,
hiGer
(€)%
(A)
—Z.OAr T
20ms 40ms 60ms
Time
300mA - 1 T
. 200mA -+ ] i
Spectrum H B
100mA-+—=f+% Ny & .
Onpll i b . .
OHz 125Hz 250Hz 375Hz

Frequency
Fig. 11. The IGCR current and its frequency spectrum at 6=81°

TABLEI
THEORETICAL AND PRACTICAL IGCR FUNDAMENTAL CURRENT
AS T VARIES FROM 0° T0 90° WiTH A STEP OF 9°

s{fcarees)- Vini(voles) Prl;gilcnaliwvr:-fm Th;::?eﬁ :?:ua

0 5 329 338
9 46 26.625 26.645
18 3.57 2075 2072
27 245 145 14.95
36 1.8 1035 10.06
45 11 6.11 6.16
54 06 325 33
63 02 15 1.44
72 0.06 0.55 0.436
81 0.02 02 0.06
9% 0 0 0
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Fig. 12. The IGCR fundamental current as its firing angle (o) varies
from 0° to 90° with a step of 9°
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Fig. 13. The IGCR harmonic current components as its firing angle (o)
varics from 0° to 90° with a step of 9°

VI. Conclusion

The IGBT is demonstrated as a good and reliable
replacement of thyristor in controlled reactors. The
IGCR operation coincides with controlled reactor
criterion specified by Equation (1). Since the IGBT can
be easily turned on and off, the IGCR offers the
feasibility of being conditioned for reducing or
eliminating harmonics released throughout its operation.
The IGBT has large safe operating area than thyristor so
it will be more reliable. The switching losses of the
IGBT can be optimized by using suitable gate drive
techniques. In addition most IGBTs are equipped with an
additional terminal used for detecting its current for
protection purposes.
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