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Abstract 

he present work deals with the vibrational 
characteristics of a Y-shaped tube conveying 

flowing fluid. The tube is considered to be composed of 3-
stright tube segments mathed at the intermediate junction. 
The governing equation of straight tube conveying fluid is 
used with each of the three segments. This work introduce 
the clamped-pinned and clamped free boundary conditions. 
The coupled effects of the type of boundary conditions, angle 
between the two Y-segments, fluid velocity and length ratio 
of segments on the dynamics of the tube are studied. It seen 
that the Y-tube loses its stability at flow velocity higher than 
that for straight tube of the same characteristics.  
 
1-Introduction:  

One of the main usages of tubes is to convey fluid 
such as fuel lines, heat exchangers and transportation of 
different types of fluids. The analysis of tubes conveying 
fluid has an important theoretical application to prevent these 
tubes from failure. Sometimes the importance of modeling 
tubes conveying fluid because these system suffer from 
instability due to self excitation. 
 The problem was studied since the 1950 when 
Ashly and Haviland [1] attempted to describe the vibration in 
the Trans Arabia pipelines. Housner [2] was corrected the 
governing equation which was derived by Ashly [1]. Long 
[3] was the first who studied the vibration and stability 
problems of simply supported pipes as well as cantilever 
pipes. The effect of fluid pressure on the vibration of pipes 
was studied by Heinrich [4] and Chang & Shia [5]. They 
derived the equation of motion of pipe including the effect of 
fluid pressure. Benjamin, Gregory and Paidoussis [6] studied 
the problem of articulated cantilever tubes conveying fluid. 
They concluded that a cantilever pipe loses its stability by 
flutter at a certain flow velocity. 

 Paidoussis and Laithier [7] and Huang [8] carried 
out two separate investigations to study the effect of rotary 
inertia and shear deformation on the vibration characteristics 
of straight tube conveying fluid. They concluded that these 
forces tend to reduce the natural frequencies with 
insignificant effect of the pipe length and thickness.  

 The in-plane and out-of plane vibrations of 
an intermediately supported U- Bend tubes conveying fluid 
was studied by Lee [9]. He concluded that the out-of plane 
natural frequencies depend on the material properties and the 
shape of the cross section. An exact analysis for the free 
vibration of U-Bend tubes with multi intermediate supports 
was investigated by Gorman [10]. He investigate in detail all 
of the required interface boundary conditions for tube 
possess and that which do not possess geometric symmetry.  

 
Al-Jumaily and Ismaeel [11] studied the effect of 

improper intermediate support mispositioning on the 
vibrations and stability of multispan pipe. They concluded 
that sever vibrations as well as instability might occur if not 
significant attention is focused on the position of the 
intermediate support. 

Al-Rajihy [12] studied the coupled effect of 
improper intermediate support positioning and the thermal 
gradient on the dynamical behavior of a continuous 
multispan pipe convey fluid. He concluded that the pipes 
becomes unstable when the thermal force reachs a critical 
value.    

Al-Maaitah and Kardsheh [13] investigated the out-
of plane vibration of a Y-shaped tube conveying fluid with 
clamped ends condition. They investigate the effect of 
branching angle and geometrical configuration on the natural 
frequency and mode shape. He concludes that increasing the 
flow velocity results in decreasing the natural frequencies for 
the first three modes. 
 In this paper other types of boundary conditions 
such as simply-simply, clamped-simply are investigated. 
 
2-Governing Equation: 
 To derive the governing equation of the tube, the 
following assumptions are considered: 
 
1-The effect of gravity is neglected. 
2-The tube is inextensible. 
3-Small motions. 
4-Small scale details of flow are neglected. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
As illustrated in Fig. (1), the tube system composed 

of three straight tube segments matched at the junction (point 
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Fig. (1) : Coordinates system of the Y-shaped tube 
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B). Three coordinate systems are taken coinciding with each 
of the three segments. The coordinate of the main segment is 
taken as y1(x1,t) while the other two branches are assumed to 
be symmetric and take the coordinates of y2,3(x2,3,t). The 
motion of the tube system is assumed to be out-of-plane of 
the tube system.  

The equation of motion of a straight tube conveying 
fluid in a dimensionless form is [2, 6, & 7]: 
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The dimensionless parameters are defined as: 
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Equation (1) is a partial differential equation can be solved 
as: 
 
 

      i
kkkk eRe,                                                (3) 

 
                                                                 

Where, 1i  , Ω is the nondimensional 
frequency related to the circular frequency of motion  ( ) 
by; 
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Substitute Eq. (4) into Eq. (1) gives the following ordinary 
differential equation; 
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Equation (5) represents three 4th-order differential 

equations governing the motion of each segment of the Y-
shaped tube. The solutions of Eq. (5) are; 

 
 




4

1
,

,

n

i
nkk

nkeC                                                                 (6)                                                                                               

Substitute Eqs. (6) into Eq. (5) results in the following 
characteristic equations; 
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Where, k: represent the index of each branch segment, n:  
number of roots of the characteristic equation (7).  
 
3-Boundary Conditions: 
 The more practical boundary conditions are the 
clamped-clamped, clamped-free, and clamped-hinged. In this 
work only the clamped-hinged and clamped-free boundary 
conditions will be investigated because the clamped-clamped 
were studied by [13]. 
I- for clamped-hinged; 
a- at the clamped end (point A); 
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b- at the junction between the three segments (point B), the 

following conditions are imposed to fulfill the 
requirements of continuity of displacement, slope, 
bending moment, and shear force respectively; 
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c- at the hinged end (points D&E); 
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II- for clamped-free end; 

The free end can be at the end of segment 1 (main 
segment) or at the ends of the branched segments; 
a-when the free end is the end of the main segment 
(point A); 
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b-when the free end is the ends of the branched 
segments (points D, E); 
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4-Free Vibration: 
 The free vibration of the Y-shaped tube system can 
be evaluated by substituting Eqs. (6) into any set of the 
boundary conditions defined by Eqs. (8) to (12). The 
resulting equation may take the following form; 
 
                                                                                    
   0jij ca                                                                          (13) 

 
 
Where, 12,......3,2,1, ji . 

     The frequency equation is a function of natural frequency, 
fluid velocity, mass ratio, angle between the Y-shape 
branches and length ratio, which can be written in an 
equation form as: 
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 Therefore the natural frequency    is calculated 

from Eq. (14) by setting the determinant of Eq. (13) equal to 
zero; i.e. 
 
 
                         0ija                                                       (15)                                                                                    

 
 
The procedure is executed by assigning an initial value for 
  then varying this value until reach a value which makes 
the determinant (Eq. (15)) to vanish. The value of   which 
vanishes the determinant represents the natural frequency. 

 
5-Results and Discussion 
     The effect of flow velocity on natural frequency of a Y-
shaped tube for the first two modes of vibration is given in 
Fig. (2). This figure compares the present results with those 
for straight tube and for Y-shaped tube presented by [13]. 
The general behavior of the results was elaborated by [1, 2, 
3, 7, &12]. Figure (3) shows the variation of the 
dimensionless natural frequency with the angle between 
branches of a clamped-clamped Y-shaped tube conveying 
fluid.  It seen that the first mode of vibration increased with 
increasing the angle between the Y branches then it begins to 
decrease. This behavior is attributed to the increase in 
stiffness of tube in the range of the angle between 0-40o 
which gives high impedance to stresses then it decreased 
after 40o. This behavior is no longer for the second mode 
because that the node of the second mode is at the junction 
between segments and in which the effect of bending 
components at this point will be minimum. 
     For simply supported Y-tube, the angle between the tube 
branches has the effect of decreasing the natural frequency as 
shown in Fig. (4). This behavior is due to the decrease in 
tube stiffness over all the range of the angle between the tube 
segments. The relation between dimensionless natural 
frequency of the Y-shaped tube simply supported at both 
ends with flow velocity is shown in Fig. (5). It is seen that 
the flow velocity has the effect of damping to the natural 
frequency. Figure (6) shows the effect of dimensionless mass 
ratio on dimensionless natural frequency for the first two 
modes. It is shown that the natural frequency increased with 
increasing the mass ratio for the first mode while it decreased 
for the second mode. 

From the above results it can be concluded that the 
Y-shaped tube loses its stability at flow velocity higher than 
that for straight tube of the same characteristics.    
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Fig. (6): Effect of dimensionless mass ratio on natural 
frequency of simply supported Y-shaped tube. 
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Fig. (3): Effect of angle between branches on dimensionless    
natural frequency of clamped-clamped Y-shaped tube. 
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Fig. (2): Effect of dimensionless fluid velocity on natural 
frequency of clamped-clamped Y-shaped tube. 

 

0.0 2.0 4.0 6.0 8.0

0.0

20.0

40.0

60.0

80.0

 

  

2nd mode 

Dimensionless fluid velocity, ν 

D
im

en
si

on
le

ss
 n

at
ur

al
 f

re
qu

en
cy

, Ω
 

                   Present work 
                   Straight tube 
                   Al-Maaitah [13] 

1st mode 

Fig. (5): Effect of dimensionless fluid velocity on natural 
frequency of simply supported Y-shaped tube (simply 

supported at both ends), θ = 0, β = 0.25. 
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Fig. (4): Effect of angle between branches on dimensionless 
natural frequency of simply supported Y-shaped tube. 
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