
 - 1 - 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1-Introduction  

       A dual spin spacecraft consists of two bodies constrained to relative rotation about a 

shaft connecting the bodies but otherwise free to rotate in space. The bodies are in general 

flexible and dissipative, as is the connection between them, and all spacecraft  are subject  to 

environmental torques such as the gravity gradient torque. However, as a first approximation 

it is useful to model dual-spin spacecraft as two rigid bodies connected by a rigid shaft and 
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free for external torques. The first body, referred to as a rotor, spins about the axis of relative 

rotation providing gyroscopic stiffness that helps to maintain the desired spacecraft attitude. 

The second body, referred to as the platform, is inertially nonrotating ; it provides a support 

base for pointing payloads, such as a directional antenna. Such a model is made more 

tractable by further assuming one of the bodies is axisymmetric about the axis of relative 

rotation. This model is called a gyrostat. For the special class of axial gyrostats, where the 

rotor is aligned with the principle axis of the platform. 

       Spacecraft separation from booster, spinup the rotor motor, reorientation maneuver, 

and/or external disturbances can produce transverse angular rates with a  resulting coning 

(free precession) motion of the spin axis about the moment of momentum vector (which is 

constant in magnitude and direction in the absence of external moments). This resulting 

motion is called “wobble” or “free precession”. The wobble motion will be continue 

infinitely in the absence of energy dissipation, unless it is corrected. Damping internal to the 

spacecraft will reduce this motion, so that the final motion approaches a pure spin about the 

axis of rotation. Several methods of reducing the wobble motion have been proposed and 

implemented. Of these, passive devices are appealing in that they eliminate the need for a 

sensor and a power source and also provide a high degree of reliability.  

       Of the various schemes which have been proposed and analyzed the ones, which is 

called the nutation ring dampers, containing fluid in a closed tube are especially desirable 

since they do not involve any moving parts, other than the fluid. This type of damper is 

simply a round tube that is bent into a closed, circular ring, and partially or fully filled with a 

viscous fluid. In this device, kinetic energy is dissipated by converted into heat when 

nutational motion causes the fluid to move through the tube. Dampers of this type have a 

long history, with the mercury ring on the 1958 Pioneer 1 lunar probe being the first nutation 

damper to be flown in space (1).    
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       A partially filled viscous ring damper on a spinning satellite was first analyzed by 

Carrier (2) , then by Carrier and Miles (3). They assumed that the motion of the damper did not 

appreciably affect the precession rate of the satellite but acted only as a source of energy 

dissipation. With this assumption the motion of the fluid on the tube was then treated as a 

fluid mechanics problem. A different approach to the analysis of the mercury ring damper 

was taken by Cartwright et al (4), where the fluid was modeled as a lumped mass in the 

presence of assumed damping forces. They identified two distinct modes of motion, which 

they named, the nutation synchronous and spin synchronous modes. Alfriend (5) treated with 

the fluid, not as a point of mass as Cartwright et al (4), but as a rigid slug of finite length. 

Approximate equations for time constants in the two modes have been developed and 

comparison with numerical integration of the exact equations shows that the approximations 

are good ones. The problems of the fluid separation into several slugs and spreads out on the 

internal wall, which occurs in this dampers,  are avoided by using a fully-filled ring dampers.  

       Hameed (6) analyzed a completely filled viscous ring damper provided with a rigid ball, 

to enhance the damping performance, on dual-spin spacecraft as a passive nutation damping 

system. The ball motion  was experienced to occur in two modes of motion as [4]. He used 

two types of fluids, liquid mixture and neon gas.  

       In this paper, double totally filled viscous ring dampers were used as a passive nutation 

damping system to reduce or eliminate the undesirable attitude motion of an axisymmetric 

dual-spin spacecraft. The dampers are mounted with equal offsets center from the spin axis 

in the rotor section of the spacecraft. The equations of motion are developed in terms of 

dimensionless variables and approximate time constants are obtained in terms of a suitable 

set of dimensionless parameters. These approximate solutions are then compared with those 

obtained from the numerical integration of the exact equations of motion.  
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2-Dual-Spin Spacecraft Model  

       Consider the dual-spin spacecraft of Fig.1 which consists of two symmetrical rigid 

bodies Rr and P constrained to rotate about the axis of symmetry with a relative angular rate 

rα . The rotor section contained the two ring dampers which  fixed, in parallel planes, with 

the same offsets center from the spin axis, at heights h1 and h2, above the center of mass of 

the spacecraft. Let a set of mutually perpendicular axes ouvz  and zvuo ′′′ ,fixed in the center of 

mass of the spacecraft, such that the u and u′  axes passing through the center of mass of a 

portion of the fluid and making an angle α  counterclockwise with respect to the x-axis of 

the local coordinate system xyz, which is fixed in the spacecraft center of mass O. 

 

3-Equations of Motion  

       For the spacecraft system under consideration (Fig.1), the equations of motion which 

describe its rotational behavior about the center of mass O in a torque free environment are 

obtained by using the conservation of angular momentum and Lagrange’s equations for the 

motion of the fluid inside the tubes. The angular momentum of the system about the 

spacecraft center of mass is   

                   ( ) vvvvvvuzzuuuzuzuuu eIIAeIIIIAh )()()( ωωωαωωαωωω ′′′′ ++++−++−+= 



 

                                                  ( ) zPzPzzuzuzzuuzz eCIIIIC ωαωωαωωω +++−++−+ ′′′ )()(          (1)   

Application of the conservation of angular momentum equation 0=h


, the equations of 

motion become  

                   [ ] vvvzzzuuzuuu IIAIIIIA ωαωαωω )()())(()( ′′′′ +++−++−++   

                                                          [ ] 0)()(2 =++−+++ ′′ vppuzuuzzzz CIIIC ωωωαωω               (2) 

                  [ ]))(()()()( αωωαωω  ++−++++++ ′′′′ zzuuzuuuzvvv IIIIAIIA   

                                                         [ ] 0)()(2 =++−++− ′′ upzpuzuuzzzz CIIIC ωωωαωω               (3) 

                  [ ]))(()()()(2 αωωωωαωω  ++−++−+−++ ′′′′′ zzuuzuuuvuzuuzzzz IIIIAIIIC  

                                                                                                [ ] 0)( =+++ ′ vvvu IIA ωω              (4) 
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Lagrange’s equation expressed in terms of quasi-coordinates α  is  
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where αQ  is the generalized moment associated with the quasi-coordinates α , and it is given 

by:  

                   αα 

22 RCQ f=  

fC  is the coefficient of the viscous friction between the viscous fluid and the ring wall. 

After substitution the derivatives, Eq.(5) becomes  

                   vzzuuzuuuuzuuzzz IIIIAIII ωαωωωαω )])(()[()()(2  ++−++−+−+ ′′′′′  

                                                                                αωω 

22])[( RCIIA fuvvv −=+++ ′                 (6) 

It is advantageous in this problem to express the all equations in suitable dimensionless 

variables and parameters, thus the equations of motion, Eqs.(2,3,4,6), become  (see 

Appendix A):  
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4-Approximate Analysis (Zero Order Approximation method)  

       The equations of motion are strongly coupled nonlinear differential equations, an 

approximate solution is found depended on the zero order approximation method, which is 

based on the fact that the mass of the fluid is much smaller than that of the spacecraft, or in 

other wards, the moment of inertia of the fluid is very small compared with that of the 

spacecraft. The ratio of the fluid moment of inertia ( 2mR ) to the transverse moment of inertia 
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of the spacecraft is called (ε). Therefore, dependent on the basis of zero order approximation 

method any term containing the inertia ratio (ε), it is neglected.  

       Before developing the solution for the motion of the fluid, the equation for the nutation 

angle will be developed. The nutation angle θ  is given by  

                   
z

t

h
h

=θtan                                                                                                             (11) 

where th  is the transverse component of the angular momentum, 222
vut hhh +=  and zh  is the 

spin axis component of the angular momentum, differentiation of Eq.(11) gives  
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Substitution of Eq.(1) for uh and vh  gives  
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where )(εf  represents the term containing the parameter ε . 

Now applying the zero order approximation method, by neglecting the terms containing the 

parameter ε , thus the equations of motion become  

                    1=r                                                                                                                    (14) 

                   0)( =′−+′ qp n αλ                                                                                                 (15) 

                   0)( =′−−′ pq n αλ                                                                                                  (16) 
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where sn λσλ +−= 1  is the nutation frequency. The solution for p  and q  is  

                   )cos( ατλω −= ntp                                                                                                (18)                                                                                           

                   )sin( ατλω −= ntq                                                                                                  (19)                                                                                           

where tω  is the total transverse angular velocity component. 
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The equation for θ  becomes  

                   [ ] )sin()1)(()cos(2 21
2 ατλεαατλωθ −′+++−=′ nnt bbGG                                      (20) 
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where sn λσσ += , it can use Eq.(21) to substitute for tω . Now, it is need to obtain the 

solution for α . 

 

5-The Fluid Motion   

       The fluid inside the ring is subjected to two kinds of forces: centripetal forces and 

viscous forces. For small nutation angles the viscous forces predominate and the fluid has 

only a small oscillatory motion about an equilibrium position with respect to the ring. This is 

referred to as the spin synchronous mode. If the nutation angle is greater than a specific 

transition angle, the centripetal force predominate and the fluid rotates around at a constant 

rate with respect to the spacecraft. The fluid is then in a nutation synchronous mode, and 

dissipates energy at a high rate.             

       The purpose now is to determine the fluid motion α  and consequently θ  in these two 

modes of motion as a function of dimensionless parameters. 

 

5.1-Nutation Synchronous Mode  

       Let φ  measure the position of the center of a portion of the fluid with respect to the 

nutation plane. Assuming that at τ =0, α =0, then  

                   τλαφ n−=                                                                                                           (22)                                                                                                               

Eq.(17) becomes  
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As mentioned in pervious section, that in the nutation synchronous mode the fluid moves at 

a constant rate with respect to the spacecraft, the relative position φ  is constant. 

Accordingly, the particular solution of Eq. (23), is sφφ = . Therefore, substitution of sφ  into 

Eq. (23), and taking into account that 0=′′=′ φφ , then 

                   [ ] nstnst bbGG ηλφωλφω 2)sin()1)(()cos(2 21
2 =+++                                                   (24)                              

and the nutation rate equation, Eq.(20), becomes  

                   [ ] )sin()1)((cos2 21
2

snstn bbGG φελφωθ +++−=′                                                        (25) 

then substituting the left hand side of Eq. (24) into Eq. (25), get: 
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where θσω tannt =  has been used, thus the solution  
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where nη  is the damping constant in nutation-synchronous mode.  

Thus in the nutation synchronous mode the cosine of the nutation angle not the nutation 

angle exhibits exponential behavior. No small angle approximation has been made, hence 

Eq.(27) is valid for 0<θ <
2
π . For small θ  the nutation angle time history can be 

approximated by  

                   
nτ
τθθ −= 2



                                                                                                      (29) 
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At the end of the nutation-synchronous mode, the system goes into the spin-synchronous 

mode and the nutation angle nθ  has minimum value in this mode. So, to satisfy the condition 

of minimum value of the nutation angle, the angle sφ  should be equal to 
2
π

± , substitute this 

value into Eq. (24), then the transition angle from one mode to other is  

                   2
21 )(

2
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5.2-Spin Synchronous Mode  

Substitution the solution for p  and q into Eq.(17), gives  
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since the spin synchronous mode occurs for the smaller nutation angle tω  <<1, also 2G <<1, 

thus the last term within the brackets in Eq.(31) will be dropped.  

As it is mentioned previously that the fluid, in this mode, moves with a small variation in its 

speed, then  

                   ααα ~+=


                                                                                                           (32)   

where 


α  is the initial value of α  and α~  represent the small change occurs in α  such that 



α >>α~ . The basis of this assumption is that the change in α  is small compared with τλn . An 

approximate steady state solution of Eq. (31), may be given by    

                   [ ])sin()cos(tan~ τλαζλτλαηθα nnnsK −−−=
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where sθ  referred to the nutation angle in the spin-synchronous mode, and the constant K is 

given by 
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the nutation angle equation is  

                   [ ] )sin()1)(()cos(2 21
2 τλαεατλαωθ nnt bbGG −′+++−−=′                                        (34) 

Assuming that sθ  is small enough, so that the terms of 2
sθ  can be neglected and as 

mentioned above that the change in α  is small, so that )()sin(


αααα −=−  and 

1)cos( =−


αα , then Eq. (34) can be reduced to   
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where 1E  and 2E  are constants and the time constant in spin-synchronous mode csτ  is given 

by 
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where sη  is the damping constant in the spin-synchronous mode. 

The 1E  and 2E  terms contribute nothing to the exponential decay of the solution, so that the 

important part of the solution of Eq.(35) is  
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6-Calculation of the Damping Constant η  

       For a given system all of the required dimensionless parameters are well defined except 

for the damping constant η or fC . η  is related to the kinematic viscosity, thus a 

consideration of the fluid dynamics of the problem is necessary. Since the motion of the  

fluid is different in the two modes. In nutation-synchronous mode the velocity of the fluid is 

constant with respect of the spacecraft or tube. One of the approaches suggested, that is to 

model the motion of the fluid as steady laminar flow in a pipe.  

       Solution of the Navier-Stokes equations with a flux of 

                   απ RrQflux
2=                                                                                                       (38) 

where αR  is the velocity of the fluid relative to the ring and r  is the ring radius, gives  
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where ir  is the distance from the center of the pipe.  

The shear stress at any point is 

                   
i

shear r
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where µ  is the fluid viscosity. Thus the total viscous force is  

                   δαπµτδπ 

28))(2( RRrF
rrshearv

i
==
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                                                                       (41) 

where δ  is the fullness of the ring and its equal to (2π), (the ring is totally filled).  

The damping force from dynamical analysis is 

                       αηα  RmRCVCF fffv Ω===                                                                                (42)                                                                   

After equating this equation with Eq. (41), the damping constant is given by 

                   
Ω

= 2

8
rn
νη                                                                                                             (43) 

where ν  is the kinematic viscosity of the fluid.  
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       In the present study a mixture of glycerin oil with water [(75%) glycerin and (25%) 

water] is used as a viscous liquid because it gives minimum weight of the damper and 

maximum energy dissipation [6].  

       In the spin-synchronous mode the velocity of the fluid is not constant but oscillatory 

with respect to the ring, so that the approach is used to calculate the damping constant in the 

nutation-synchronous mode is not available, therefore, the experimental approach is 

dependent by many researches [5,6]. Hameed (6) calculated the damping constant in this 

mode by empirical relation and it is found to be equal (0.15) which is adopted in this 

research.  

 

7-Results & Comparisons       

       From Fig.(3), it can be seen that the general trend of the nutation angle time history is 

well predicted in comparison with that given experimentally by [5], Fig.(2). Also, there is a 

satisfactory agreement between numerical and analytical solutions, in other words, the 

approximate equations were developed for the nutation angle behavior and corresponding 

time constant are good.  

       The effect of the second ring damper can be shown in Fig.(4), where it can be seen        

that the nutation angle decay in nutation-synchronous mode is decreased by (50%) compared 

with using only one ring damper as a  passive nutation damping system. Analytically, this 

indicates to the fact that   the number of ring damper is equal to the number of times of the 

time constant which it will contract. 

       A comparison of the time constant in nutation-synchronous mode given by Eq.(27) and 

an “exact” time constant is given in Figs.(5-8). The “exact” time constant is obtained by 

assuming exponential behavior of θcos  for the solution obtained by numerical integration of 

Eqs.(7-10) and calculating the time constant. The figures (5-8) show that the approximate 

solutions given by Eqs.(27) and (28) are good. 

 



 - 13 - 

       In the spin-synchronous mode, a comparison of the time constant given by Eq.(36) and 

an “exact” time constant is given in Figs.(9-14). The “exact” time constant was obtained by 

numerically integrating the exact equations of motion, assuming exponential behavior for 

maximum values of θ  during each oscillation and calculating the time constant. Again, the 

approximate solution developed is a good one. 

       Finally, the time history of the p, q, r components of the spacecraft angular velocity with 

time are shown in Figs.(15-17). The three dimensional phase diagram with inertia ratio (1.2) 

is shown in Fig.(18), with initial conditions for the angular velocity components                

(po, qo, ro)T = (0.1, 0.32, 0.98)T respectively.  

 
 parameters value 

 

Satellite 

Parameters 

A 

C 

Cp
 

Ω  

PΩ  

σ  

36  kg.m2 

43.2  kg.m2 

0.2  kg.m2 

10.5  rad/sec 

0.00007272  rad/sec 

1.2 

 

Rings 

Parameters 

R 

r 

d 

ε  

250 mm 

9.5 mm 

50 mm 

0.0009 

 

Fluid 

Parameters 

m  

fρ  

µ  

ν  

0.5186  kg 

1164.5  kg/m3 

67.9 





 × −3

2 10sec.
m

N
 

58.31 mm2/sec 

Table (1) Design parameters of the system. 
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8-Conclutions 

       In this paper, the effect of addition of double fully filled viscous ring dampers on the 

rotor section of a dual-spin axisymmetric spacecraft is investigated to eliminate the attitude 

(nutational) motion. Comparison with the results from numerical integration of the exact 

equations of motion has shown that the approximate equations developed are good. The 

agreement between the analytical results and the numerical results indicates that the 

proposed configuration of nutation dampers is an acceptable one as a passive nutation 

damping system. Also, the results show that the addition of second nutation ring damper on 

the spacecraft is greatly affecting the dynamic characteristics of the nutation damping 

system. In other words, the time constant specially for nutation-synchronous mode decrease 

by the half compare with using unique nutation ring damper. Also, the problems of the 

spreading out on the internal wall, separation into several slugs, and sloshing of the viscous 

fluid which occur in the partially filled viscous ring nutation dampers are avoided in the 

fully filled with offset center dampers.  

 

Appendix A: Equations of Motion 

Let the dimensionless time variable τ be defined as:  

                   tΩ=τ                                                                                                                (A.1)        

so that, the time derivative with respect to τ is given by: 

                   ( ) ( ) ( )′Ω=Ω=
τd

d
dt
d ,    dtd Ω=τ                                                                      (A.2) 

where Ω  is the initial spin rate of the rotor, and primes, ( )′ , denotes the differentiation with 

respect to the dimensionless time variable τ. Also, let the dimensionless angular velocity 

components p , q and r  are defined as:  

                   
Ω

= up ω  ,     
Ω

= vq ω    ,    
Ω

= zr ω                                                                          (A.3) 
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Let the following dimensionless parameters be defined as:  

A
C

=σ : ratio of the rotor spin axis principal moment of inertia to the total transverse 

             principal  moment of inertia of the spacecraft.  

R
hb 1

1 = : ratio of the first ring height above the spacecraft center of mass to the  

             ring mean radius.  

R
hb 2

2 = : ratio of the second ring height above the spacecraft center of mass to 

              the ring mean radius. 

Ω
=

m
C fη : dimensionless damping constant.  

A
mR2

=ε : ratio of the inertia of the fluid to the total transverse principal moment of  

                inertia of the spacecraft. 

R
dG = : ratio of the ring center offset to the ring mean radius.   

2

2

1
R
d

+=ζ        

The moments of inertia of the fluid are given by: 
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The equations of motion are 

                   [ ] vvvzzzuuzuuu IIAIIIIA ωαωαωω )()())(()( ′′′′ +++−++−++   

                                                          [ ] 0)()(2 =++−+++ ′′ vppuzuuzzzz CIIIC ωωωαωω           (A.5) 
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                    [ ]))(()()()( αωωαωω  ++−++++++ ′′′′ zzuuzuuuzvvv IIIIAIIA  

                                                                    [ ] 0)()(2 =++−++− ′′ upzpuzuuzzzz CIIIC ωωωαωω          (A.6) 

                   [ ]))(()()()(2 αωωωωαωω  ++−++−+−++ ′′′′′ zzuuzuuuvuzuuzzzz IIIIAIIIC  

                                                                                                   [ ] 0)( =+++ ′ vvvu IIA ωω       (A.7) 
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Subtracting Eq. (A.8) from Eq. (A.7), to give: 
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22 RCC fz =                                                                                                 (A.9) 

Re-arrenging Eq. (A.9) to obtian 
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Substituting Eq. (A.10) into Eq. (A.8), and results in: 

                   0))((321 =′−′+++′+′′ pqrCpqCC ααα                                                              (A.11) 

using α ′′  from Eq. (A.13), then Eqs. (A.5) and (A.6) become 
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By the same way Eq. (A.10) will be 
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Figure (1) Dual-Spin Spacecraft Containing Nutation Dampers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(deg
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Figure (2).The typical nutation angle 
 decay of Ref. [5]. 

Figure (3). Comparison between analytical and numerical 
                        solutions of the nutation angle time history. 
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Figure (4). Comparison of nutation angle time history of  nutation-synchronous mode 
                            using single and double nutation dampers. 

Figure (6). The variation of the time constant with the damping 
                       Constant for nutation-synchronous mode .          

Figure (5). The variation of the time constant of nutation  
                   synchronous  mode with the inertia ratio (σ).         

             Double Ring  Dampers  
--------- Single Ring Damper  



 - 20 - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7). The variation of the time constant of nutation 
                  synchronous  mode with the Ring radius.          

Figure (8). The variation of the time constant of nutation 
                   synchronous  mode with the Ring mean radius.          

Figure (9). The variation of the time constant of spin 
                   synchronous  mode with the inertia ratio (σ).                 

Figure (10). The variation of the time constant with  
                    the damping  Constant for spin-synchronous mode.          
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Figure (11). The variation of the time constant of spin 
                     synchronous mode with the Ring radius.          

Figure (12). The variation of the time constant of spin 
                    synchronous  mode with the Ring mean radius.          

Figure (13). The variation of the time constant of  
                    spin-synchronous mode with 
                    the Ring height to the ring mean radius ratio (b1).          

Figure (14). The variation of the time constant of  
                    spin synchronous mode with  
                     the center offset distance  (d).          
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Figure (15). The time history of the  p  component  
                    of the spacecraft angular  velocity.          

Figure (16). The time history of the  q  component  
                    of the spacecraft angular  velocity.          

Figure (17). The time history of the  r  component  
                        of the spacecraft angular  velocity.          

Figure (18). Three dimensional phase diagram. 

 


