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Abstract. The aim of this paper is to clarify several important points, including a brief and 

adequate explanation of loving improvement, as well as laying out a number of important 

mathematical formulas that we need, supported with graphs. 

 

 

1. Introduction 

Each sub-field of mathematical optimization can be called a convex optimization and a sub-field gap 

that addresses and studies the problem of reducing convex functions on other convex groups 

alike.Likewise, There are many classes and classes of convex improvement problems accept polynomial 

mathematical algorithms and formulas, [1] while mathematical optimization is generally a problem or 

problem of difficulty to solve, which is one of the difficult NP problems, [1] [2] [3]. The problem of 

these systems can only be solved directly by approximation and finding the result by estimation, 

estimation .It also has a number of applications, including signal processing, communications and 

offices of all kinds, design of private electronic circuits, [3] and its uses also include information 

investigation and demonstrating, self-financing, measurements (ideal test plan), [3] and basic 

improvement, where the idea of approximation has proven its high effectiveness. [2], [3] With late 

advances in figuring calculations and improvement, so curved programming has become nearly as clear 

as straight programming. 

 

2. Some concept and definition: 

 

Figure 1. Optimization problem 

mailto:aljelawy2000@yahoo.com
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Mathematical optimization is the choice of the best segment (concerning a few rules) from a bunch of 

options accessible. [1] Optimization issues of sorts show up in all quantitative orders from software 

engineering constantly to activities examination and financial aspects, and the advancement of 

arrangement strategies has been of revenue in arithmetic for quite a long time. [4] In the most 

straightforward case, the enhancement issue comprises of boosting or limiting a genuine employment 

by deliberately choosing input esteems from inside a passable set and figuring the estimation of the 

work. Summing up streamlining hypothesis and procedures to different recipes establishes an 

enormous zone of applied arithmetic. By and large, streamlining incorporates discovering "best 

accessible" values for some topic positions (or information sources), including an assortment of 

subject positions and various kinds of fields. 

The standard and basic form of a continuous optimization problem is . 

      Min                        𝐺(𝑥) 

     S.t.                         ℎ𝑗(𝑥) ≤ 0, ∀ j∈ {1, … , 𝑙}                                                                (1)   

                                       gj(x) = 0 , ∀ j ∈ {1, … , k} 

whereas 

▪ G0(x)  is the  Is the goal function . 

▪ 𝒉𝒋(𝒙) ≤ 𝟎 we are called inequality constraints. 

▪  𝒈𝒋(𝒙) = 𝟎  we are called equality constraints. 

▪ 𝒙 =  (𝒙𝟏, . . . , 𝒙𝒏): optimization variables 

▪ 𝒍, 𝒌 ≥ 𝟎 

If  𝑙 = 𝑘 =  0 The problem is the unrestricted problem of optimization. By convention, the Standard 

Model defines the problem of miniaturization. The problem of maximization can be addressed by 

eliminating the objective function. 
 

Example1: 

Scaling of the device in electronic circuits 

• Variables: width and lengths 

• Constraints: producing limits, timing prerequisites, most extreme territories 

• Goal: energy utilization 

 
Example 2: 
 

     Min                                    𝑓(𝑥) = 4𝑥2 + 𝑘2 

     S. t.                   2𝑥 + 3𝑘 ≤ 1 

                                           𝑥 − 𝑘 ≤ 2 

                                        For all 𝑥, 𝑘 ≥ 0 

 

2.1. convex optimization: 

Convex optimization is the problem of optimization where the target and each convex set is a feasible 

set.The f function specifies a subset of  ℝn .Intoℝ⋃{∓∞}  if its domain is convex is convex and for 

all τ ∈ [0,1] for all 𝑚, 𝑛 In its field, the following condition is fulfilled: 

      𝑓(𝜏𝑚 + (1 − 𝜏)𝑛) ≤ 𝜏𝑓(𝑚) + (1 − 𝜏)𝑓(𝑛), ∀𝑚, 𝑛 ∈ 𝑆 , 0 ≤ 𝜏 ≤ 1             (2) 

Therefore, we conclude that S is a convex set of all elements , n ∈ S , ∀ 0 ≤ τ ≤ 1 . 

then we get  𝜏𝑚 + (1 − 𝜏)𝑛 ∈ 𝑆 Concretely, The problem of convex optimization is a problem of finding 

some 𝑚∗  ∈ 𝐾 attaining  𝑖𝑛𝑓{𝑓(𝑚): 𝑚 ∈ 𝐾 }. 

Where the target function F: D ⊆ ℝn ⟶ ℝ is convex, as in the feasible combination K [1], [2].As for 

this point, we can call it the best solution; And we call the set of all optimal points as optimum set. Iff 

https://en.wikipedia.org/wiki/Canonical_form
https://en.wikipedia.org/wiki/Continuity_%28mathematics%29
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Constraint_%28mathematics%29
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is not restricted below on K or infimum not reached then optimization issue is said to be unlimited. 

Conversely, if K is the empty set, then we say about the problem as infeasible [2]. 

Here is the basic model to the problem of convex optimization: 

 

      Min                                    𝑓(𝑥) 

     S.t.                            ℎ𝑗(𝑥) ≤ 0, ∀ 𝑗 ∈  {1, … , 𝑙}                                                (3)                                                

                                                        𝑔𝑗(𝑥) = 0 , ∀ 𝑗 ∈ {1, … , 𝑝} 

where 𝒙 ∈ 𝑹𝒏is the optimization variable, the function 𝑭: 𝑫 ⊆ 𝑹𝒏 ⟶ 𝑹 is convex and 𝒈𝒉𝒋: 𝑹𝒏 ⟶

𝑹 𝒋 = 𝟏 … . 𝒍  is convex and    𝒈𝒋: 𝑹𝒏 ⟶ 𝑹  𝒋 = 𝟏 … 𝒑 isAffine[2]. This coding describes the search 

problem 𝒙 ∈ 𝑹𝒏that minimizes  𝒇(𝒙)among all 𝒙 satisfying 𝒉𝒋(𝒙) ≤ 𝟎  , = 𝟏 … . 𝒍 and  𝒈𝒋 (𝒙) =

𝟎 , 𝒋 = 𝟏 … 𝒑. 
▪ Where 𝒇  Is the goal function 

▪ 𝒉𝒋   and 𝒈𝒋 we are called inequality constraints. 

Whereas, the feasible group C for the improvement problem consists of all points x∈ D fulfilling the 

requirements. This set is convex in light of the fact that D is a convex set, and so are the sublevel 

sets of convex functions, relative sets, and convex sets all convex sets.[3] An answer for a convex 

streamlining issue is any point 𝑥 ∈ 𝐾 Investigation  𝑖𝑛𝑓{𝑓(𝑥): 𝑥 ∈ 𝐾}. By and large, a convex 

refinement issue may have zero, one or a few arrangements. Numerous optimization issues can be 

detailed proportionally in this standard structure. For instance, the inward function expansion issue 

can be reworded as the curved function minimization issue − 𝒇. In general, the problem of a convex 

enhancement is a problem of developing a curved function on a convex array. 

 

2.2.  Level set: 

In mathematics, the level set of a function with real value 𝑓 of real variables 𝑚 is a set of the model: 

𝐋𝐤(𝐟) = {(𝐱𝟏, … . . , 𝐱𝐦)|𝐟(𝐱𝟏, … . . , 𝐱𝐦) = 𝐤}                                                        (4) 

Any combination where the function takes a certain constant value 𝒌. 

 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

When the number of variables is two variables, then the level set is generally a curve, the level curve 

is called properties 

The most important properties of convex improvement problems: 

• Generally speaking, every local minimizer is the global minimizer 

• Each set is perfect convex. 

• If the target function is carefully convex, the issue contains all things considered one ideal point 

 
Figure 2.  Points when fixed segments of 𝑥2 = 𝑓(𝑥1) . 

 

https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Constraint_%28mathematics%29
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Remark: any local ideal for a convex problem is global optimal. 

 

Proof: 

Let  h is local optimal, then we have ∃ a feasible k such that 

𝑔0(𝑘) < 𝑔0(ℎ) 
ℎ local optimal means there is an ℛ > 0 such that 

𝑤 feasible, ‖𝑤 − ℎ‖2≤  ℛ  ⇒ 𝑔0(𝑤) ≥ 𝑔0(ℎ) 
Considered 

𝑤 =  𝜇𝑘 +  (1 –  𝜇)ℎ with 𝜇 =  ℛ 
(2‖𝑘 − ℎ‖2)⁄  

• ‖𝑘 − ℎ‖2 >  ℛ , 𝑠𝑜 𝜇 ∈ [0,
1

2
] 

• w It is a convex combination made up of two possible points and thus also possible 

• ‖𝑤 − ℎ‖2= ℛ 
2⁄   and  

𝑓0(𝑤) ≤ 𝜇𝑓0(𝑘) + (1 − 𝜇)𝑓0(ℎ) < 𝑓0(ℎ) 
 

This is a contradiction to the assumption ℎ is local optimal    
 

3. Linear programming (optimization) (LP): 

It is a strategy for accomplishing the best outcome, (as, maximum benefit or most minimal expense) 

in a mathematical model whose necessities are addressed by straight associations. Straight composing 

PC programs is an unprecedented example of mathematical programming (in any case called 

mathematical improvement). Even more authoritatively, straight composing PC programs is a 

procedure for improving direct target function, subject to straight balance and constraints of direct 

imbalance. Its feasible area is a convex polytope, a gathering characterized as the convergence of 

numerous half spaces, every one of which is characterized by straight disparities. Its target function is 

a relative (direct) function of genuine worth characterized in this polyhedron. The immediate 

programming figuring finds a point in a polytope where this capacity contains the tiniest (or greatest) 

regard if that point is accessible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  The linear programming problem. 
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4. Least squares : 
The least squares strategy is a standard methodology in relapse examination to approximate the 

arrangement of exceptionally explicit frameworks (sets of conditions in which there are a larger 

number of conditions than the obscure) by diminishing the amount of the squares of the excess 

qualities in the outcomes from each single condition." The main application in information blend. 

Better fit in the feeling of least squares lessens the amount of the squared residuals (lingering object: 

the contrast between the noticed worth and the fit worth gave by the model).When the issue contains 

critical vulnerabilities about the autonomous variable (the variable x), at that point the straightforward 

relapse and least squares technique experiences issues; In such cases, the philosophy needed for fitting 

blunder models into factors rather than that of least squares might be thought of. Least squares issues 

fall into two classifications: straight or normal least squares and nonlinear least squares, contingent 

upon whether the lingering esteems are direct in all questions or not. The issue of direct least squares 

happens in factual relapse investigation; It has a shut shape arrangement"[3]. The nonlinear issue is 

normally explained by iterative refinement; In every emphasis, the framework is approximated by two 

straight one, so the essential computation is comparative in the two cases. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Quadratic programming (QP): 

It is a cycle of explaining an exceptional kind of mathematical optimization problem - explicitly, the 

quadratic optimization problem (linearly compelled), that is, the problem of upgrading (minimizing 

or maximizing) a quadratic capacity of numerous factors that are dependent upon the linear constraints 

of these factors. Quadratic programming is a unique kind of nonlinear programming. 

Min          (1
2⁄ )𝑥𝑇𝑀𝑥 + 𝑘𝑇𝑥 + 𝑐                                                  (5) 

S.t.          𝐺𝑥 ≼ ℎ 

                  𝐴𝑥 = 𝑏 

             𝑀 ∈  𝑆+
𝑛 and 𝑥 ≥ 0 

 

 

 

 

 
Figure 4.   Regression analysis 
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6. A second-order cone program (SOCP) : 

It is a convex problem of optimization the form and its general form: 

 

Min        𝑓𝑇𝑥 

S.t.          ‖𝐵𝑗𝑥 + 𝑏𝑗‖
2

≤ 𝑘𝑗
𝑇𝑥 + 𝑑𝑗  , 𝑗 = 1, … . , 𝑚                                                  (6) 

              𝐹𝑥 = 𝑔 

Where the problem parameters are 𝑓 ∈ 𝑅𝑛, 𝐵𝑖 ∈ 𝑅𝑛𝑗×𝑛  , 𝑏𝑗, 𝑘𝑗 ∈ 𝑅𝑛 , 𝑑𝑗 ∈ 𝑅 , 𝐹 ∈ 𝑅𝑝×𝑛 𝑎𝑛𝑑  𝑔 ∈

𝑅𝑝 , 𝑥 ∈ 𝑅𝑛 . is the optimization variable ‖𝑥‖2. The "second-order cone" in SOCP emerges from the 

constraints, which are identical to requiring the relative function (𝐵𝑥 + 𝑏, 𝑘𝑇𝑥 + 𝑑) to lie in the 

second-order cone in  𝑅𝑛𝑗+1 .[1]  

SOCPs It can also be solved in several ways, including the internal point method [2]. All in all, it tends 

to be comprehended preferable and more proficiently over semi-explicit programming problems 

(SDP). [3] Some of the designing uses of SOCP incorporate channel plan, reception apparatus cluster 

weight configuration, bracket plan, and ideal force absorption in mechanical technology [4]. 

 

7. Semidefinite programming (SDP): 

It is a convex optimization subfield stressed over improving the straight objective work (a limit that 

the customer needs to restrict or augment) through the assembly of a cone of semi-determinant positive 

grids with a relative space, i.e., a semidefinite programming is a moderately new territory of progress 

and is of expanding revenue for a few reasons. "Many practical problems can be modeled in operations 

research and harmonic optimization or approximated as semi- definite programming problems. In 

automatic control theory, SDPs are used in the context of linear matrix inequality.SDPs are actually a 

special case of conical programming and can be efficiently solved by endpoint methods. All linear 

programs can be expressed as SDPs, and it is through hierarchies of SDPs that solutions to polynomial 

optimization problems can be approximated. Semi- definite programming has been used to improve 

complex systems. In recent years, some quantitative query complexity problems have been formulated 

in terms of semi- definite programs".[3] 

 

8. Conic Optimizations:  

It is that subfield of convex optimization that reviews most problems comprising of minimizing a 

convex capacity across the convergence of an affine subspace and a convex cone. Whereas, the 

category of convex refinement problems incorporates probably the most notable categories of convex 

optimization problems, and they are also known for linear and semi-unequivocal programming. 

 

 

 

 
 

Fig (5). Quadratic programming 

https://en.wikipedia.org/wiki/Second-order_cone_programming#cite_note-boyd-1
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Then we get  𝐿𝑃 ⊆ 𝑄𝑃 ⊆ 𝑆𝑂𝐶𝑃 ⊆ 𝑆𝐷𝑃 ⊆ 𝐶𝑃 

 

9. Lagrange complications: 
Consider that it is a convex decrease problem introduced in standard form by the cost work f (a) and 

the inequality constraints𝑔𝑗(𝑎) ≤ 0 for 1≤ 𝑗 ≤ 𝑛. Then the domain  𝜧is:  

𝜧 = {𝒂 ∈ 𝑿: 𝒈𝟏(𝒂), … . . , 𝒈𝒏(𝒂) ≤ 𝟎} 

The formula Lagrangian function for the problem is : 

𝐿(𝑎, 𝜏0, … . , 𝜏𝑛) = 𝜏0𝑓(𝑎) + 𝜏1𝑔1(𝑎) +   … … … … + 𝜏𝑛𝑔𝑛(𝑎)                            (7) 

For each point 𝑎 ∈ 𝑋 that limits f over , there exist genuine numbers 𝜏0, 𝜏1 … . , 𝜏𝑛   called Lagrange 

multipliers, that fulfil these conditions all the while: 

1. 𝑥 minimizes 𝐿(𝑦, 𝜏0, … . , 𝜏𝑛)over all 𝑦 ∈ 𝑋.  

2. 𝜏0, 𝜏1 … . , 𝜏𝑛 ≥ 0with at least one 𝜏𝑘 > 0 . 
3. 𝜏1𝑔1(𝒂) =  … … … … = 𝜏𝑛𝑔𝑛(𝒂) = 0 (reciprocal slackness). 

4. If there exists a "strictly feasible point", that is, a point  𝑤 satisfying 

𝑔1(𝑤), … , 𝑔𝑛(𝑤) < 0 

at that point the assertion above can be strengthened to require that 𝜏0 = 1 

Conversely, if some 𝒂 ∈ 𝑋 satisfies from(1)to(3) for scalars  𝜏0, 𝜏𝟏 … . , 𝜏𝑛with 𝜏0 = 1 then  𝑎 is 

certain to minimize  𝑓 over 𝑋 . 

10. Conclusion 

In this paper, the following points are made: 

• We clarified several important definitions of convex enhancement 

• Give a brief explanation of the Lagrange Method and its basic form 

• We also used the diagrams provided in the Big Mac Library to evaluate methods. Also, these shapes 

contained various features and characteristics. 

 

 

 

 

 

 

 

 
 

Fig (6). Quadratic programming 

https://en.wikipedia.org/wiki/Scalar_%28mathematics%29
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