On supra λ -open set in bitopological space

By

Yiezi kadham al-talkany, AMEER A.J AL-SWIDI and Zahir D. AL- Nafie

University of Babylon - College of education for pure science-department of mathematics

Abstract:

in last paper we study a special case of bitopological space consist of T and T^{α} and we define an open set named it λ -open set now we study supra λ -open set in supra topological space and several properties of it.

Keyword : λ -open set, supra topology, supra quotient map, supra λ -open set, supra λ -continuous, supra λ -quotient map, supra λ -quotient map.

Introduction

in 1983 A.S.Mashhour [1] introduced the supra topological spaces .in 1965 Njastad [5] introduced the notion of α -set in topological space and proved that the collection of all α -set in (X,T) is a topology on X .R.Devi and S.Sampathkumar and M.Caldas [3] introduced and studied a class of sets and maps between topological spaces called supra α -open sets and supra α -continuous maps respectively .H.shaheed and S.

Introduced and study the continuity in bitopological space by using the λ -open set . in this paper we study the λ -open set and λ -continuous function and in supra topology and also we define supra λ -open map and supra λ -closed map and quotient map and supra λ -quotient map and study some theorems and property about them .

The closure and interior of asset A in (X,T) denoted by int(A), cl(A) respectively .A subset A is said to be α -set if A \subseteq int(cl(int(A))).a sub collection $\Omega \subset 2^x$ is called supra topological space [4], the element of Ω are said to be supra open set in (X, Ω) and the complement of a supra open set is called supra closed set . The supra closure of asset A denoted by $cl^{\Omega}(A)$ is the intersection of supra closed sets including A. The supra interior of asset A denoted by $int^{\Omega}(A)$ is the union of a supra open sets included in A. The supra topology Ω on X is associated with T if T $\subset \Omega$. A set A is called supra α -open set if A \subseteq int $^{\Omega}(cl^{\Omega}(int^{\Omega}(A)))$ [7].

A subset A in the bitopological space (X,T,T^{α}) is called λ -open set if there exist α -open set U such that A \subset U and A \subset int_T(U)[6].

A mapping from the bitopology (X,T,T^{α}) into (Y,V,V^{α}) is called λ -continuous function iff the inverse image of each open set in Y is λ -open set in X .[2]

1-- Supra $\lambda\text{-open}$ set and supra $\lambda\text{-continuous:}$

1.1. Definition:

let (X,T,T^{α}) be a bitopological space and Ω is a associated supra topology with T then a subset A of X is said to be supra λ -open set iff there exist a supra α -open set U such that $A \subseteq U$ and $A \subseteq int^{\Omega}(U)$.

1.2. Remark:

1-Every open set is λ -open set [4]

2-Every α -open set is supra α -open set [3]

3-every supra open set is supra α -open set [3]

1.3. Theorem:

Let (X,T,T^{α}) be a bitopological space and Ω is supra associated with t then :

- 1- Every λ -open set is supra λ -open set
- 2- Every supra open set is supra λ -open

Proof:

(1) let A is λ -open set then there exist α -open set U such that $A \subseteq U$ and $A \subseteq int_T(U)$, since $T \subset \Omega$ and every α -open set is supra α -open set then $A \subseteq int^{\Omega}(U)$, this mean that A is supra λ -open set. (2) let A is supra open set, since every supra open set is supra α -open set then $A \subseteq A$ and $A \subseteq int^{\Omega}(A)$ and then A is supra λ -open set.

1.4. Example:

Let $\Omega = \{X, \varphi, \{a, b\}, \{a, c\}\}$ Supra λ -open = $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$

The following diagram give us the relation between the above sets:

Open set $\Rightarrow \Rightarrow \alpha$ -open set $\Rightarrow \Rightarrow$ supra α -open set $\downarrow \qquad \uparrow$ $\downarrow \qquad \uparrow$

 λ -open set $\Rightarrow\Rightarrow$ supra λ -open set $\Leftarrow\Leftarrow$ supra open set

1.5. Remark:

1- The intersection of two supra λ -open set is supra λ -open set

2- The union of two supra λ -open set is not necessary supra λ -open set

1.6. Example:

Let $\Omega = \{X, \varphi, \{a\}, \{a,b\}, \{b,c\}\}\$ Supra λ -open = $\{X, \varphi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}\$ clearly that $\{a\}, \{c\}\$ are two supra λ -open set but the union $\{a,c\}\$ is not supra λ -open set.

1.7. Definition:

let (X,T,T^{α}) and (Y,V,V^{α}) are two bitopological spaces and Ω is a supra topology such that $T \subseteq \Omega$ then a function f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is supra λ -continuous iff the inverse image of each open set is supra λ -open set.

1.8. Theorem:

if the function f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is supra continuous then f is supra λ -continuous **Proof:**

International Journal of Advancements in Research & Technology, Volume 3, Issue 3, March-2014 ISSN 2278-7763

Let H is open set, since f is supra continuous then $f^{1}(H)$ is supra open set and then it is supra λ -open set, Therefore f is supra λ -continuous.

1.9. Theorem:

If the function f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is continuous then f is supra λ -continuous

Proof:

Let H is open set in Y and since f is continuous then $f^{1}(H)$ is open set in X and then it is supra λ -open set .there for f is supra λ -continuous

1.10. Theorem:

Let f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is λ -continuous then it is supra λ -continuous.

Proof:

By theorem (1-3) No. 1 clearly that f is supra λ - continuous

2--Supra λ -open mapping and supra λ -closed mapping:

2.1. Definition:

a mapping f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is said to be supra λ -open mapping if f(G) is supra λ -open set for each open set G in X.

2.2. Definition:

a mapping f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is said to be supra λ -closed map if f(H) is supra λ -closed set for each closed set H in X.

2.3. Theorem:

let f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is a bijective function then each of the following are equivalent :

- 1- F is supra λ -continuous
- 2- F is supra λ -closed map
- 3- F is supra λ open map

Proof:

(1) \Rightarrow (2), let B is closed set in X, then X-B is open set and f(X-B) is supra λ -open set in Y, since f is bijective then f(X-B)=Y-f(B) and then f(B) is supra λ -closed set and therefor f is supra λ -closed map.

(2) \Rightarrow (3) let B is closed set in X, since f is bijective then $(f^1)^{-1}(B)=f(B)$ which is supra closed set and then it is supra λ -closed set in Y. therefor f^1 is supra λ -continuous.

(3) \Rightarrow (1) let B is open set in X, since f^1 is supra λ -continuous then

 $(f^{1})^{-1}(B) = f(B)$ is supra λ -open set in Y and therefor f is supra λ -open map.

2.4. Theorem:

Let (X,T,T^{α}) , (Y,V,V^{α})) are two topological spaces and Ω , μ be the associated supra topologies with T, V respectively then

f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is supra λ -continuous map if one of the following exist : Copyright © 2014 SciResPub. IJOART

- 1- $f^{1}(int^{\mu}(A)) \subseteq int(f^{1}(A))$ foe every A in Y
- 2- $Cl(f^{1}(A)) \subseteq f^{1}(cl^{\mu}(A))$ for every A in Y
- 3- $f(cl(A)) \subset cl^{\Omega}(f(A))$ for every A in X

Proof:

(1) Let A is open set in Y, by assume

 $f^{1}(int^{\mu}(A)) \subseteq int(f^{1}(A))$ and then $f^{1}(A) \subseteq int((f^{1}(A)))$

Therefor $f^{1}(A)$ is open set and then it is supra λ -open set .f is supra λ -continuous.

(2) Let A is closed set in Y, by assume $Cl(f^{1}(A)) \subseteq f^{1}(cl^{\mu}(A))$ we get that

 $Cl(f^{1}(A)) \subseteq f^{1}(A)$, therefor $f^{1}(A)$ is closed set in X and then it is supra λ -closed set in X. f is supra λ -continuous.

(3) let A is open set in Y, then $f^{1}(A)$ is asset in X, By assume $F(cl(f^{1}(A)) \subseteq cl^{\mu}(f(f^{1}(A)))$ then $F(cl(f^{1}(A)) \subseteq cl^{\mu}(A)) \subseteq cl^{\mu}(A)$ by (2) we get that f is supra λ -continuous.

2.5. Theorem:

a mapping f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is supra λ open mapping iff $f(int(A)) \subseteq int^{\mu}(f(A))$.

Proof:

suppose that f is supra λ -open map and let A is open set in X, int(A) \subseteq A, then f(int(A)) \subseteq f(A),

since f is supra λ -open mapping then $f(A)=int^{\Omega}(f(A))$ and then $f(int(A))\subseteq int^{\Omega}(f(A))$.

Now let A is open set in X, by assume $f(int(A)) \subseteq int^{\Omega}(f(A))$, then

 $f(A) \subseteq int^{\Omega}(f(A))$ and since $int^{\Omega}(f(A)) \subseteq f(A)$ this mean that f(A) is supra open set and then it is supra λ -open set.

2.6. Theorem:

let (X,T,T^{α}) , (Y,V,V^{α}) , (Z,W,W^{α}) are three bitopological space and $f:(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ and $g:(Y,V,V^{\alpha}) \rightarrow (Z,W,W^{\alpha})$ are two maps then:

- 1- if gof is open map and g is continuous and injective then f is supra λ -open mapping
- 2- if gof is supra λ -open map and f is continuous and surjective then g is supra λ open map.
- 3- If gof is open map and g is supra λ-continuous and injective then f is supra λ open map
 Proof:
 - 1- let A is open set in X, since gof is open map then g(f(A)) is open set in Z and since g is continuous and injective the $g^{-1}(g(f(A)))=f(A)$ is open set in Y and then it is supra λ -open set there for f is supra λ -open map.
 - 2- Let A is open set in Y ,since f is continuous ,then $f^{1}(A)$ is open set in X since gof is supra λ -open map and f is surjective then $(gof(f^{1}(A)))=g(A)$ is supra λ -open set in Z , there for g is supra λ -open map .
 - 3- Since every continuous function is supra λ -continuous function then the result exist by (1)

3--Supra λ -quotient map

3.1. Definition:

3.2. Definition:

let (X,T,T^{α}) , (Y,V,V^{α}) are two topological spaces and Ω , μ are two associated supra topological space with T, V respectively and f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is subjective mapping then f is said to be supra λ - quotient map if f is supra λ -continuous and $f^{1}(V)$ is supra open set in X implies V is supra λ -open set in Y

3.3. Theorem:

Let (X,T,T^{α}) , (Y,V,V^{α}) are two topological spaces and Ω , μ are two associated supra topological space with T, V respectively and

f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is subjective mapping if f is supra quotient map then it is supra λ -quotient map

Proof:

Let A is supra open set in Y, since f is supra quotient then

 $f^{1}(A)$ is supra open set and then it is supra λ -open set, then f is supra λ -continuous. Suppose $f^{1}(A)$ is supra open set, since f is supra quotient map then A is supra open set in Y and then it is supra λ -open set therefor f is supra λ -quotient map.

3.4. Theorem:

let (X,T,T^{α}) , (Y,V,V^{α}) are two topological spaces and Ω , μ are two associated supra topological space with T, V respectively and f: $(X,T,T^{\alpha}) \rightarrow (Y,V,V^{\alpha})$ is subjective mapping then every supra λ quotient then f is supra λ -contiguous

Proof:

Exist by definition.

Acknowledgments

The authors would like to thank the Iraqi ministry of higher education for support me.

References:

[1]-A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On

Supra topological spaces, Indian J. Pure and Appl. Math. no.4, 14(1983),

502-510.

[2]-H.shaheed and S. Kadham, "continuity in bitopological space", (accepted in 2006), journal of Babylon university.

[3]- R. Devi, S. Sampathkumar and M. Caldas "On supra α - open sets and S α -continuous functions", General Mathematics, Vol. 16, Nr. 2 (2008), 77–84.

[4]-O. R. Sayed1_ and Takashi Noiri, " On supra b-open sets and supra b-continuity on topological space ",EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, Vol. 3, No. 2, 2010, 295-302.

[5]-Olav Njastad, "on some classes of nearly open sets", Pacific journal of mathematics, Vol. 15, No. 3, 1965.

[6]-Y.Al-taslkany, "study special case of bitopological space", babylon journal, vol.14.No.1,2007, issn:1992-0652.

[7]- M. Kamaraj, G. Ramkumar and O. Ravi "ON SUPRA QUOTIENT MAPPINGS", international journal of mathematical archive -3(1), 2012.