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ABSTRACT In this study, the instability behavior of angled pipelines conveying fluid is investigated by using 
three-dimensional finite element method. Several parameters that affect the dynamic characteristic 
have been studied extensively such as pipe lengths ratio, diameters ratio, frame angle, inlet fluid 
velocity, inlet fluid pressure, and pipe thickness. Taking into account the Coriolis force, force that 
conforms fluid to the curvature, and axial tension forces; the natural frequency of an angled pipeline 
fixed in both ends is studied. The derived element matrices include the mass, stiffness, 
contradictory and damping. The study found that increasing the obtuse angle leads to decrease the 
frame critical fluid velocity. For each formed pipeline angle, there was an optimal frame diameters 
ratio that gives maximum inlet critical velocity of flowing fluid. A relatively small increase in frame 
frequency is obtained when increasing the inlet fluid pressure. Besides that, there was a perfect pipe 
thickness for each fluid flow velocity that gives rise to get the extremely dynamic characteristic.  
      
Keywords:  
Angled pipeline; finite element; fluid flow; critical velocity; natural frequency.  
 الداخلية موائععدم الاستقرارية في خط الانابيب ذات الزاوية و الناشئة عن تدفق ال 
 

تم في هذه الدراسة بحث سلوك انعدام الاستقرار لخط الانابيب الناقلة للمائع ذات الزاوية و ذلك بأستخدام طريقة العنصر المحدد   الخلاصة
مثل نسبة اطوال الانابيب،  التي تؤثر على الخواص الديناميكية بارامتراتدراسة العديد من ال على نطاق واسع ثلاثي الابعاد. تم

، كوريوليس قوة الاعتبار مع الأخذ فينسبة الاقطار، زاوية الهيكل، سرعة الدخول للمائع، ضغط الدخول للمائع و سمك الانبوب. 
 .كلا الجانبينمن  مثبت ذا زاوية خط أنابيبل طبيعيالتردد ال دراسة ، تمالمحوري الشد وقوى نحناءللا السائل التي تطُيّع والقوة

يؤدي  الهيكل زاوية انفراج أن زيادة وجدت الدراسة شملت عناصر المصفوفات المشتقة على الكتلة، الجساءة، المتناقضة و التخميد.
ة تعطي اقصى سرعة دخول ، كانت هنالك نسبة اقطار مثاليلكل زاوية خط انابيب مُشكّله له. الحرجة المائع سرعة انخفاض إلى

تم الحصول على زيادة طفيفة نسبياً في تردد الهيكل عند زيادة ضغط المائع الداخل. بالاضافة الى ذلك كان  حرجة للمائع المتدفق.
  هناك سمك مثالي للانبوب و لكل سرعة تدفق للمائع و التي تؤدي الى الحصول على اقصى خواص ديناميكية.

 
 
 
 
 
 
 



Nawras Haider et al, Iraqi Journal of Mechanical and Material Engineering, Vol.12, No.2, 2012 

223 
 

1. INTRODUCTION The dynamics and stability of pipes conveying fluid have been studied extensively over the past 60 
years, because of its growing importance in aerospace and nuclear fields such as vibrations of heat 
exchangers, liquid-fuel rocket piping, and nuclear reactor coolant channels. Generally, fluid flow 
through a pipe can impose a pressure on the internal wall of the pipe causing to deflect it under 
certain flow conditions. Due to this flow, an internal reaction force is produced that leading to curve 
the pipe and conform the fluid at any instant of motion. Due to acceleration of fluid and pipe 
masses, a gyroscopic effect is also presented. The gyroscopic effect always opposes the accelerated 
motion of the structure. The Coriolis force should be taken into consideration which resulted from 
relative motion between the pipe and fluid through its motion. These accompanying factors lead to 
increase the pipeline instability in different amounts.     
      Housner (1952) studied the flow induced vibration of a straight pipe by using Hamilton’s 
principle. For a simply supported straight pipe, he found that the pipe may buckle, like a column 
subjected to axial loading, at a critical flow velocity. Benjamin (1961) and Gregory and Païdoussis 
(1966) modeled cantilevered pipe as a branch pipe and an elastic continuum pipe, respectively, to 
investigate the dynamic behaviors. Unny et al. (1970) studied the effect of curvature on the 
dynamic behaviors of curved pipes, and Chen (1972, 1973) analyzed curved pipes by investigating 
in-plane and out-of-plane vibrations. The effects of flow velocity and Coriolis force on the natural 
frequency were discussed. Mote (1971) studied the vibration and stability of cantilever pipe by 
finite element method using Ritz method, Hill and Davis (1974) investigated the vibration of the 
pipe with constant curvature by finite element method using Galerkin's method. Kohli and Nakva 
(1984) analyzed the straight and curved tubes conveying fluid by means of straight beam finite 
elements. Koo and Park (1996) investigated the vibration analysis of piping system conveying fluid 
by employing the wave approach. The straight pipe elements conveying fluid were formulated using 
a dynamic stiffness matrix in the frequency domain. The curved pipe sections were treated with a 
single curved pipe element utilizing the mixed methodology of the dynamic stiffness method and 
the transfer matrix method. Lee et al. (1996) presented a transfer matrix formulation for three 
dimensional vibration analysis of straight and curved piping systems containing fluid flow with 
small computer core memory usage. Nadeem (2001) studied the dynamics behavior of pipelines 
using finite element method taking into consideration the dynamics effects of Coriolis force on a 
fluid filled pipeline. His study was limited to in plane vibration of pipeline. Lee and Chung (2002) 
investigated a new non-linear model of a straight pipe conveying fluid where the pipe is fixed at 
both ends. Jung (2008) analyzed the in-plane and out-of-plane motions of a semi-circular pipe 
conveying fluid. Assuming that the centerline of the semi-circular pipe was extensible, nonlinear 
equations of in-plane and out-of-plane motions are derived according to the extended Hamilton's 
principle. The derived equations of motion were discretized by applying the Galerkin method. 
Linearized equations around the equilibrium position were obtained from the discretized equations, 
and then the dynamic characteristics of the pipe were investigated. Rinaldi (2009) investigated the 
dynamics and stability of cantilevered structures subjected to internal, external, or simultaneous 
internal and external axial flows. This was accomplished, in some cases, by deriving the linear 
equations of motion using a Newtonian approach and, in other cases, by making the necessary 
modifications to existing theoretical models. The continuous cantilevered systems were then 
discretized using the Galerkin method in order to determine their complex eigen frequencies. 
Moreover, numerous experiments were performed to compare and validate, or otherwise, the 
theoretical models proposed. Huang et al. (2010) applied the eliminated element-Galerkin method 
to calculate the natural frequency with different boundary conditions on the basis of typical 
transverse vibration model. Then, the relationship between simplified natural frequency of the 
pipeline and that of Euler beam was discussed. In a given boundary condition, the four components 
(mass, stiffness, length and flow velocity) which relate to the natural frequency of pipeline 
conveying fluid were studied in detail and the results indicate that the effect of Coriolis force on 
natural frequency was inappreciable. Meng et al. (2011) investigated the three-dimensional 
nonlinear dynamics of a fluid-conveying pipe undergoing overall motions. The nonlinear 
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differential equations were solved using Ritz method. Ni et al. (2011) analyzed the free vibration 
problem of pipes conveying fluid with several typical boundary conditions using differential 
transformation method. It is demonstrated that the differential transformation method has high 
precision and computational efficiency in the vibration analysis of pipes conveying fluid.   
     In this paper, an angled pipeline composed of two straight pipes connected by an elbow are 
constructed in three-dimensional space and analyzed by finite element method. A fixed-fixed 
pipeline end conditions will be adopted in this study. The mass, stiffness, damping (Coriolis) 
matrices are derived and the eigenvalue analysis is then performed. The forces occur due to 
momentum change and pressure when the fluid pass by the elbow part is considered.  
 
2. EQUATION OF MOTION The differential equation of motion for three dimensions vibration of a frame pipe carrying a 
moving fluid is given by (Païdoussis, 2004) 
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   Where u, w, and v are the coordinate axes in the directions of x, y, and z respectively, θ is the pipe 
angular displacement, E and G  are the pipe axial and shear moduli of elasticity respectively, Iy and 
Iz are moment of inertia of the pipe in y and z directions respectively, J is the pipe polar moment of 
inertia, m = mass of the pipe per unit length, conveying fluid of mass per unit length (M), U is the 
steady mean flow velocity of fluid with respect to pipe, x = coordinate measured along the pipe 
length, Fx is the tension force in the pipe, Ap, Ai, r are the cross section pipe area, internal pipe area 
(fluid area), and pipe radius of gyration respectively. Fig.(1) shows a simple representation, in three 
dimensional space, of the problem within hand which is consist of two pipe joint at their junction by 
an elbow.   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.(1): Pipeline Model. 
 
3. FINITE ELEMENTS DISCRETIZATION  In Fig.(2), i and j represent the node points of finite element of length (l). Each node point has 6 
degrees of freedom which consist of 3 linear displacements u, w, v and 3 rotational displacements θx , θy , θz. Therefore the finite element has the total 12 degrees of freedom.  
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Fig.(2): Degree of freedom of pipe element. 

 
The element displacement vector for a pipe element in space can be written as 

 222222111111}{ zyxzyx
T vwuvwuq                                                   (2) 

for transverse (flexural) pipe vibration, the shape functions are (Rao, 2004) 
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while, for axial and torsional vibrations the shape functions are 
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The displacement models can be expressed as 
 
-for transverse displacements 
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The kinetic energy of pipe element is equal to 
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After finding the individual mass matrices for each term in the above equation, the total arranged 
mass matrix, according to displacement vector [eq. (2)], of pipe element in space has the following 
form 
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while the potential energy is 
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this will lead to the following symmetry pipe stiffness matrix  
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represented as: 
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    Leading to symmetry matrix (k2), which contains the force per unit length (stiffness unit) that 
conforms the fluid to the pipe (weakening effect) besides the axial tension force (stiffening effect). 
 
 

 
 
 
 
 

                                                 
(12)             

 
    Here, we will call the above matrix as a contradictory matrix because it contains two opposite 
component effects.      
   Where Fx  is an axial tension force that caused by the change in fluid's momentum and pressure in 
a pipe bend (elbow). Fig.(3) shows the induced axial tension forces in the pipe bend. 
 
 
 
 
 
 
 
 
 
 
 

Fig.(3): Tension forces in pipe bend. 
 
 
From Fig.(3), the axial tension forces in pipe bend are equal to (Munson et al., 2002): 
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   From the mathematical formulation presented above, it is clear that the overall stiffness is 
composed of two parts, namely the contradictory and pipe structural stiffness matrices.  
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  ) in eq.(1) is the inertial force associated with the Coriolis 

acceleration arising from the fluid flows with velocity U relative to the pipe. This term has a 
dissipation energy which is equal to  
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This gives a skew-symmetry damping matrix 
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     It can be seen that the 12 * 12 element matrices given in eqs. (8), (10), (12) and (16) are with 
respect to the local xyz coordinate system. Since the nodal displacements for the angled pipe are in 
different local coordinates, thus it must transform the local coordinate to global coordinate system. 
The transformation matrix, λ, can be identified as (Rao, 2004); 
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     Here, lox, mox, and nox denote the direction cosines of the x-axis; loy, moy , and noy represent the 
direction cosines of the y-axis; and loz, moz, and noz indicate the direction cosines of the z-axis with 
respect to the global axes. This leads to the following global element matrices: 
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4. DYNAMIC ANALYSIS The standard equation of motion in the finite element form is 
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  Where koverall =(k1,overall - k2, overall)  
    Since the above equation has a damping term with skew-symmetric characteristic, thus the 
solution of eigenvalues problem should be executed to the characteristic matrix [ ] (Meirovitch, 
1980), which is equal to 
  

Globaloverall Cmkm
I 
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   The solution of eigenvalue problem yields complex roots. The imaginary part of these roots 
represents the natural frequencies of damped system. The real part indicates the rate of decay of the 
free vibration. 
 
5. RESULTS AND DISCUSSION  Fig.(4) shows the effect of frame angle on the critical velocity of fluid. It is clear that any increase 
in frame angle will lead to decrease the critical flow velocity, i.e. accelerate the instability of 
structure. This behavior is mainly caused by decreasing the axial tension forces in the pipe bend, 
which play a stiffening role, with increasing the frame angle. The important note is that when the 
frame angle converges to 90o. At this angle, the critical flow velocity goes to reach an infinite value 
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where the contradictory matrix (k2) is vanished. This behavior was confirmed previously by the 
works that done by (Koo et al., 1996 and Lee et al., 1996).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(4): Effect of frame angle on critical velocity of fluid.  
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), thicknesses of pipes are 

(0.001 m), outer diameters of the pipes are (0.03 m), elastic modulus of pipe is (207 GPa).  
    Fig.(5) presents the effect of pipe lengths ratio on the critical flow velocity with different frame 
angles. Any increase in this ratio leads to decrease the critical velocity of flowing. The main reason 
of this behavior is that the fame structure becomes heavier in weight and weaker in its stiffness with 
increasing frame length ratio. Moreover, the curves behave to converge when the value of this ratio 
reaching one and will continue in compactness after this value.   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Fig.(5): Effect of frame lengths ratio on the critical fluid velocity with different frame angles. 
Pipe length L1 is (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), thicknesses of pipes are (0.001 m), 

outer diameters of the pipes are (0.03 m), elastic modulus of pipe is (207 GPa).  
    Figs.(6-a, b and c) show the effect of inlet fluid velocity on the fundamental frame frequency 
with different diameters ratios and different frame angles. In general, increasing the inlet fluid 
velocity leads in turn to weaken the frame frequency. The unexpected behavior is executed by the 
frame with angle equal or larger than 170o for all pipe diameter ratios accept unity. Where in   
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Fig.(6-a) and at relatively low inlet fluid velocity about (11 m/s), the frame frequency tends to 
reduce with increasing the inlet fluid velocity and then after this behavior is reversed. Further 
increasing in inlet fluid velocity leads to dramatic drop in frequency. This behavior can be depicted 
as an alternative one. Where, at relatively low inlet velocity, the force conforms fluid (weakening 
effect) seems to be larger than the axial tension forces (stiffening effect) generated in the pipe 
frame. With further increase in flow velocity, the values of these effects will be reversed i.e. 
stiffening effect becomes larger than weakening effect. The values of axial tension forces 
components are very sensitive to frame angle and pipes sections (pipe diameters ratio).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     (a)                                                                             (b) 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

  
(c)  

Fig.(6): Effect of inlet fluid velocity on the frame frequency with different diameters ratio and 
different frame angles.  

Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), thicknesses of pipes are 
(0.001 m), outer diameter of the inlet pipe is (0.03 m), elastic modulus of pipe is (207 GPa), Inlet fluid pressure is    

(100 kPa).    
    In Fig.(7), the relation between diameters ratio and critical inlet velocity at different frame angles 
is shown. In this figure, the critical inlet velocities will rise continuously with increasing the 
diameters ratio and reaching maximum values, then after it will drops smoothly. It is well known 
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that increasing the second pipe diameter leads to minimize the fluid velocity through this pipe 
(positive effect on the frame dynamic characteristics). At same time, the pipe will be heavier 
(negative effect on frame dynamic characteristics). The combination of these two effects gives a 
complex behavior. Also here, the frame with an angle of 170o exhibits an alternative behavior for 
the reasons that clarified before. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig.(7): Effect of outer diameters ratio on the critical fluid velocity at different frame angles.  
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), thicknesses of pipes are 

(0.001 m), outer diameter of inlet pipe is (0.03 m), elastic modulus of pipe is (207 GPa), inlet fluid pressure is           
(100 kPa).  

    Fig.(8) shows the effect of inlet fluid velocity on the frame frequency with different inlet fluid 
pressures. Here, at same inlet velocity, the frame frequency will increase by little amount when 
increasing the inlet fluid pressure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(8): Effect of inlet fluid velocity on the frame frequency with different inlet fluid pressures. 
Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), thicknesses of pipes are 

(0.001 m), frame angle (150o), outer diameters of pipes are (0.03 m), elastic modulus of pipe is (207 GPa). 
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     Fig.(9) presents the effect of pipe thickness on the frame frequency at different inlet fluid 
velocities. When the pipe thickness is relatively small, the effect of fluid velocity on the frame 
frequency is obvious. Increasing pipe thickness to certain values gives the best ever frame 
frequency for each fluid velocity. After that, the frame frequency will converge and drops smoothly. 
This behavior is mainly caused by increasing pipe stiffness and weight with thickness increasing. 
This means that there is an optimum pipe thickness for each flowing velocity that gives best ever 
frame frequency. The combined effects of these two parameters will control the dynamic behavior 
of the angled pipeline structures.  
  
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.(9): Effect of pipe thickness on the frame frequency at different inlet fluid velocities. 

Pipe lengths L1 and L2 are (2 m), fluid density is (1000 kg/m3), pipe density is (8000 kg/m3), frame angle (150o), outer 
diameters of pipes are (0.05 m), elastic modulus of pipe is (207 GPa).  

 
5. CONCLUSIONS Through the theory and numerical simulations for the fluid conveying angled pipelines, the 
following conclusions are obtained: 

1- Increasing frame angle from 90o up to 180 o will lead to decrease the critical flow velocity of 
fluid. 

2- The pipeline frame is always stable when it constructed with right angle. 
3- In angled pipeline, a contradictory matrix is formed which consist of two opposite effects 

namely weakening and stiffening.  
4- There is an optimum diameters ratio for each frame angle that gives the larger inlet critical 

velocity of fluid. 
5- Increasing the frame inlet fluid pressure leads to relatively slight increase in its frequency. 
6- For each fluid flow velocity, there is an optimum pipe thickness that gives the best dynamic 

characteristics.   
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Nomenclatures 
 

Symbol Definition Basic Unit 
Ai Fluid cross-sectional area m2 
Ap Pipe cross-sectional area m2 
C Damping matrix  - 
E Modulus of elasticity of pipe N/m2 
Fx Tension force in the pipe N 
G Shear modulus of elasticity of pipe N/m2 
I Unity matrix - 

Iy, Iz Pipe second moment of area in y and z directions m4 
J Polar second moment of area  m4 

1k  Stiffness matrix of pipe - 

2k  Contradictory matrix - 
L1 Length of first pipe m 
L2 Length of second pipe m 
l Element length of pipe m 

M Fluid mass per unit length kg/m 
m Pipe mass per unit length kg/m 
m̂  Pipe mass matrix - 
Ni Shape function - 

OD Outer diameter of pipe m 
p Pressure inside the pipe N/m2 
Q Fluid discharge  m3/s 
r Radius of gyration of pipe section  m 
t Time s 
U Fluid velocity relative to the pipe m/s 
q Displacement vector  - 
q  Velocity vector - 
q  Acceleration vector - 

x,y,z Cartesian axes - 
α Frame angle degree 
λ Transformation matrix - 

 


