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    Abstract 
      Buckling of the stiffened composite cylinder is a very complex phenomenon that involves complex 

interactions between the skin and the stiffeners. Depending on different parameters, different buckling 

failure modes and failure loads are observed in stiffened composite cylinders. A 3-D finite elements 

model was built using ANSYS, which takes into consideration the exact geometric configuration and 

the orthotropic properties of the stiffeners and the shell. The effects of several parameters such as fiber 

orientation, shell thickness, and elastic material properties were carried out and general conclusions 

were drawn regarding the optimum configurations of the different parameters of the ring-stringer 

stiffened composite cylinder. The study corroborated that global buckling failure mode should be the 

design criteria for the stiffened composite cylinder. 

 الخلاصة:
بلمقرر با بلموررع نة مررا بلمرر بة بلماةبررة ةررلأتاا معقررةا علأتاررة نررا بلتررةب و بلمعقررة برريا بلق رراا   بلمق يررلأ    ةيعتبررا بعبعررلأس بانرر  بع 

بلألانتملأة نلى بعض بلمتغياب  ل حة  أعملأ    أحملأو م تلفة للف و تم بعلأء بلعم ذس ثلاثي بابعلأة بلأنت ةبم  ايقرة بلععلأورا بلمحرةةا 
( , بلررذأ أ ررذ بعةررا بلانتبررلأا بل ررةو بليعةنرري بلحقيقرري   رر ب  بلمررلأةا بلماةبررة للق رراا   ANSYSبلمتمثلررة بلألباعررلأمت بلتحليلرري    

بلمق يررلأ   أاايرر  ةابنررة نلررى بعررض بلمتغيرراب  مثررو لب يررة تررة يا باليررلأو   نررمل بلق رراا ,   م بوررفلأ  بلمررلأةا بلماةبررة نلررى 
 ا عتلأئت تتعلق بأفضو تاتيب ان  بعة موع نة مرا مر بة ماةبرة تحتر أ نلرى مق يرلأ    ليرة بلان  بعة بلمق با   بلتي أة  إلى ةي

   حلقية   أةة  بلةابنة نلى  ا ب بلتوميم ضما ع لأق عم  بلف و بلألاعبعلأس بلعلأم 

 

Nomenclatures 

 

1. Introduction 
     A composite material can be defined as a material that is composed of two or more 

distinct phases, usually a reinforcing material (filament) supported in compatible 

matrix, assembled in prescribed amounts to achieve specific physical and chemical 

properties (Stegman, J. and Lund, L, 2001). A basic ply or lamina of a fiber-

reinforced composite material can be considered from macro-mechanical point of 

view as orthotropic material with two principal material directions or natural axis 

parallel and perpendicular to the direction of the filaments. By bonding these laminas 

together, a multi-laminas composite called laminate is formed.  

      Composite materials are desirable in lightweight structures due to their high 

specific stiffness and strength. Laminated composite materials provide the designer 
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Material coordinate systems 

Nodal coordinate systems 

Global coordinate systems 

Element of elasticity matrix to material axis                                          N/m
2 

Shear correction factor                                                                         -- 

Transformation matrix 

Element of elasticity matrix.                                                                 N/m
2
 

Displacement                                                                                        m 

Nodal displacement in x-direction                                                         m 

Element stiffness matrix                                                                N/m, N.m/rad 

Element displacement vector                                                                 m 

Overall stiffness matrix                                                                 N/m, N.m/rad 

Local coordinate system                                                                                  

Strain vector                                                                                        -- 

Stress vector                                                                                     N/m
2 

Poisson‟s ratio through ij plane                                                             -- 

Elasticity matrix                                                                                 N/m
2 

Elasticity modulus along i
th 

direction                                                   N/m
2
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with freedom to adapt the properties of the structure for given loads to obtain the 

maximum weight efficiency. However, high modulus and strength characteristics of 

composites result in structures with very thin sections that are often prone to buckling. 

Stiffeners are required to increase the bending stiffness of such thin walled members 

(plates, shells). Consequently, stiffened panels are often used in aircraft and launch 

vehicles to obtain lightweight structures with high bending stiffness. Stiffened shells 

are also more tolerant to imperfections and resist catastrophic growth of cracks. 

Cylindrical structures made of composite material are widely used in the above 

mentioned industries. Aircraft fuselage and launch vehicle fuel tanks are some of the 

many applications of these structures in aerospace and aircraft industries (Hatem H. 

O., 2002) such as in Figure (1). The advent of new manufacturing techniques in 

filament winding and automated fiber placement techniques as well as new innovative 

tooling concepts have decreased the manufacturing difficulties and hence have 

boosted the application of these composite cylinders (Langly, P. T. ,1989). 

 

 

 

 

 

 

 

 

 

Figure (1): Stiffened panel configuration (Venkataraman, S., 1999  

and Horak,J., et al, 2005). 

     Cylindrical shells are subjected to any combination of in plane, out of plane and 

shear loads during application. Minimizing the mass of shell structures has become a 

more important design consideration as the size of flight structures has increased. 

Large structures are often lightly loaded, and failure is frequently the result of 

buckling rather than of yielding (John, L et al 1972). Buckling failure mode of a 

stiffened cylindrical shell can further be subdivided into global buckling, local skin 

buckling and stiffener crippling. Global buckling is collapse of the whole structure, 

i.e. collapse of the stiffeners and the shell as one unit. Local skin buckling and 

stiffeners crippling on the other hand are localized failure modes involving local 

failure of only the skin in the first case and the stiffener in the second case. A 

stiffened cylinder will fail in any of these failure modes depending on the stiffener 

configuration, skin thickness, shell winding angle and type of applied load. Over the 

past four decades, a lot of research has been focused on the buckling, collapse, and 

post buckling behavior of cylindrical shells (Knight, N., and Stranes, J. 1997). A good 

portion of this work was devoted to the study of stiffened cylinders. The simplest 

stiffened cylinder consists of only axial stiffeners or stringers. A ring structure can be 

added to the stringers to achieve a better stiffened orthogrid configuration. A work by 

Graham ,J. (1993) presents analysis method for determining the buckling loads of ring 

and stringer stiffened cylinders. Another type of stiffener arrangement is the cross 

stiffeners arrangement (diamond shaped pattern). Phillips J.L. and Gurdal Z. (1990), 

discussed a smearing method for determining the global buckling load of this type of 

stiffened panels. Mostafa, N. H. and Waheed, S. O. (2008) studied the buckling 
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phenomenon of a composite cylinder with stringer stiffeners. The effects of shell 

winding angle, skin thickness, and material properties were investigated. Since the 

composite stiffened cylinder has important several applications especially in the 

aeronautical industries, thus it is an important to explore the optimum design (light 

weight with high strength) of such structures. The main object of this research is to 

extend the study that achieved by Mostafa, N. H. and Waheed, S. O. (2008) to 

investigate the effects of several parameters on the buckling load of a more complex 

stiffener construction including ring-stringer stiffened composite cylinder. 

2 Finite Element Discritization 
     At present, the finite element method is the most powerful numerical technique, 

which offers an approximate solution to realistic types of structures. In the present 

study, the 8–nodded isoparametric quadrilateral and 20-noded structural solid  

elements are used for discritization of layered shell and layered stiffener respectively. 

2.1 Element Parameters 

      A quadratic element  named SHELL99 of quadrilateral shape as shown in Figure 

(2) consists of eight nodes, all of which are located on the element boundary have 

been used to define the shell finite element model, while that of rectangle shape 

consists of six nodes. These types of elements are used for plates and shells structure 

applications for membrane and flexural load conditions (Yunus, et al 1989). 

SOLID191 element shown in Figure (2) is a layered version of the 20-node structural 

solid designed to model layered thick shells or solids. The element is defined by 20 

nodes having three degrees of freedom per node: translations in the nodal x, y, and z 

directions. SOLID191 has stress stiffening capabilities. This type of element is used to 

model the stiffeners that connected in the panel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The displacement at any point within the element is written in terms of nodal 

translations and rotations as: 
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Where, n is the number of element nodes. 

Figure(2):Types of Elements geometry (ANSYS 

Element Reference,2004). 

     

SOLID191 

r 

t 

s 

SHELL99 

LN = Layer Number 

NL = Total Number of Layers 

 



 4 

Figure (3): Meshed geometry 

Ni= shape functions.  

iu , iv , iw  =global nodal displacements of node i. 

{a}= unit vector in s direction. 

{b}= unit vector in plane of element and normal to {a}. 

ix, = rotation of node i about vector {a}.   

iy , = rotation of node i about vector {b}.    

ti = nodal thickness. 

r = natural coordinate along thickness direction but normal to the shell surface. 

2.2 Mesh Generation 

       Figure (3) shows the proposed finite element model (stiffened cylinder), created 

using isoparametric shell elements of quadrilateral shapes. ANSYS
*
 finite element 

program is used as a mathematical tool in the analysis of this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Stress Strain Relationship 
           Because of the linearly elastic behavior (assumption), the generalized Hooke‟s law 

is used for relating the stresses to strains. A material coordinate system is x-y-z, as 

shown in Figure (4) which introduced for the unidirectional reinforced lamina. Hook‟s 

law gives the general anisotropic constitutive relation with respect to a material 

coordinate system 1–2–3 as follows (Barbero E.J, 1999)  

 

 

 

 

 

 

 

 

 

Figure (4): In-plane and Interlaminar Shear Stresses 

(Barbero E.J., 1999) 

 
* 

 ANSYS is highest quality engineering tools used to analyze the design with multiple applications    
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    The stress–strain relations in coordinates aligned with principal material directions 

are given by, (Yunus, S.M, Khonke, P.C.,1989): 
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or  

      E                                                                         … (4)                                                       

where 

c11 = A E1,j c33 =E3,j B   

c12 =E1,j  c66=G12,j 

c22 = A E2,j c44 =fG23   c55=f G13 

A=E2,j / (E2,j -j E1,j ) , B=10
-6

 

1/ f  

     To obtain the stress–strain relations for the lamina of arbitrary orientation, the 

transformation equations are used for expressing stresses in x-y-z coordinate system in 

terms of stresses in 1-2-3 coordinate system (Calcote L.R., 1969): 
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In which, c = cos , s = sin and   is the fiber orientation angle in degrees. 

Using the above transformations, the stress–strain relations for arbitrary 

lamina orientation can be written as: 
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where: 

Q1j = c
2
 F1j + s

2
 F2j - 2sc F4j                           ( j =1, 2, 4) 

Q21 =  c
2
 F2j + s

2
 F1j + 2sc F4j                    ( j =1, 2, 4) 

Q33 = F33 

Q4j = sc F1j - sc F2j + (c
2
-s

2
) F4j                  ( j =1, 2, 4) 

Q5j = c F5j + s F6j                                       ( j =5, 6) 

Q6j = -s F5j + c F6j                                      ( j =2, 6) 

F11 = C11 c
2 

+ C12 s
2 

                                  F12 = C11 s
2
 +C12 c

2 

F14 = sc (C11 - C12)
 
                                   F21 = C12 c

2 
+ C22 s

2 

F22 = C12 s
2
 +C22 c

2
                                   F24 = sc (C12 – C22) 

F33 = C33                                                   F41 = -2sc C44 

F42 = 2sc C44                                             F44 = C44 (c
2 

-s
2
) 

F55 = cf C55                                               F56 = -sf C55 

F65 = sf C66                                                F66 = cf C66 

A generally orthotropic composite lamina is an orthotropic lamina in which the 

principal material axes are not aligned with the structural axes and the constitutive 

matrix (Q) is as defined above in Equation (7).  

2.4 Strain Displacement Relationship 
       The strain-displacement relationship can be written with its dependence explicitly 

expressed as: 

    iuB                                                                                                           … (8) 

All elements of the strain–displacement matrix,  B , are derived in terms of the shape 

function derivatives and the Jacobian matrix. 
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2.5 Element Stiffness Matrix 

      In general, the basic concept of the finite elements method is to discrete the 

continuum into a definite numbers of small elements connected together at their 

common nodes. The strain-displacement matrix, B , as shown previously is given 

by: 

    iuB     , and therefore; the element stiffness matrix can be written as: 

   

 


V

TTe dtdsdrJdVk
1

1

1

1

1

1
det]B][E[]B[ ]B][E[]B[][                      … (9) 

in which, 

[K]
e
: is the element stiffness matrix, 

J : is the determinant of the Jacobian matrix. 

For layered element, equation (9) can be written as (Yunus, et al 1989): 

    

 


1

1 1

1

1
det]B[]E[]B[

1

tp
j

bt
j

r

r
j

T
N

j

e
dtdsJdrK                                           … (10) 

where, 

N1= number of layers. 

rj
tp

 and rj
bt

 =coordinates of the top and bottom of the layer j, respectively. 

2.6 Buckling Analysis 

      Linear buckling analysis in ANSYS finite-elements software is performed in two 

steps. The first step a static solution to the structure is obtained. In this analysis the 

prebuckling stress of the structure is calculated. The second step involves solving the 

eigenvalue problem given in form of Equation (11). This equation takes into 

consideration the prebuckling stress effect matrix [S] calculated in the first step 

(ANSYS
®
, 2004). 

 

       0)(  ii SK                                                                                            ….(11) 

where  k stiffness matrix 

 

 S Stress stiffness matrix 

i = ith eigenvalue (used to multiply the loads which generated [S]) 

 i   =  ith eigenvector of displacements. 

      The „Block Lanczos‟ method was used to extract the eigenvalue resulting from 

Equation (11). The buckling analysis was done to obtain the cylinder failure behavior 

under which give an idea on the ability of use of the composite cylinder in different 

application in different load manner. In addition to define the region of failure to deal 
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it carefully. The critical buckling load of the model presents the more important index 

in the buckling analysis. 

 

3. The flow-chart of the Computer Program. 
The flow-chart of the computer program ANSYS V9.0 that is used in this 

research will be summarized in Figure (5) below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5): The flow-chart of the computer program. 

4. Results and Discussion 
     Effect of several parameters are investigated for a six layers, eight stringer 

stiffeners and six ring stiffeners with cross section (6*3 mm
2
 ) stiffened composite 

cylinder of 180 mm in length and 146 mm in diameter for a style of stacking sequence 

( 90/- /+ ). 

 

Table 1: Macromechanical Properties of Stiffened Layers in a Laminate glass/ epoxy 

(Jones, R.M, 1999) 

 

4.1 Effect of Shell Thickness 
         The effect of shell thickness on buckling load was investigated using the finite 

elements model. Ten analyses were performed to smoothly increase the skin thickness 

from 0.5 mm to 7 mm. Figure (6) shows plot of the results obtained from these 

analyses for winding angle sequence of 90/-15/+15. 

 

    It is observed that the buckling resistance of the stiffened cylinder steadily 

increases with increase in shell thickness. Even though a steady increase in buckling 

load is observed with skin thickness increase, the gain per mass added reaches a 

E1 

GPa 

E2=E3 

GPa 

v12 G12 

GPa 

G23=G13 

GPa 

v13= v23 

 

Density,   

kg/m
3 

54 18 0.25 9 11.5 0.083 1940 

   Start 

Building the model which includes the definitions of geometry, element types, 

material properties, boundary conditions including the load and mesh generation. 

 

Obtain the static solution with activate the prestress effect 

Obtain the eigenvalue buckling solution using 'Block Lanczos' method 

Expand the solution 

Review the results 

   End 



 9 

maximum and then declines after a certain point (Figure (7)) because the increase in 

mass is larger than the increase in the strength of the cylinder as depicted. The gain 

per mass measures the efficiency of the mass added, i.e., the additional load carried by 

the added mass. 

 

        For the analysis performed on the stiffened cylinder, the optimum skin thickness 

at which the specific load (load per mass) reaches maximum is found to be 2.48 mm 

(Figure 7). It can be observed from the same figure that the optimum skin thickness 

lies in the global buckling failure mode region. This result is very significant as it 

confirms the observation of other researchers, (Brian, F. T. (1998),
 
and Mostafa, N. 

H., Waheed, S. O. (2008)) that only global buckling failure mode results in the 

maximum specific buckling load, and consequently leads to the conclusion that the 

global buckling failure mode should be the design criteria for a stiffened cylinder and 

it must be taken in the considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  The cylinder with the thinnest shell thickness of 0.5 mm up to 1.53 mm was 

observed to fail purely due to local skin buckling Figure (8a) where the stiffness is 

largely depends on the thickness value. When the skin thickness was increased, the 

failure mode gradually changed to global buckling at about 1.85 mm skin thickness. 

At this point in addition to local buckling of the skin, the adjacent stiffeners started to 

buckle as well. With further skin thickening of the shell, the localized skin and 

stiffener failure spread to adjacent cells and gradually transformed to a more global 

buckled failure mode Figure (8b). At about a skin thickness of 3.23 mm, the shell was 

observed to be relatively stronger than the stiffeners and hence localized stiffener 

crippling started to occur. For any skin thickness more than 3.23 mm the local 

stiffener crippling failure mode prevailed Figure (8c). 

 

 

 

 

Figure (6): Buckling load due to increase 

the skin thickness 

Figure (7):  Specific buckling load under 

 different buckled regions 
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    Figures (9) and (10) that found by Mostafa, N. H. and Waheed, S. O. (2008) used a 

composite cylinder with only stringer stiffeners. Kidane, S., (2002) used finite 

elements method to find the critical buckling load and the specific load with thickness 

for a composite cylinder with grid stiffeners as shown in Figure (11). It should be 

noted that the problem dimensions and material properties that used by, N. H. and 

Waheed, S. O. (2008) and Kidane, S., (2002) were different from the present research, 

but the behavior of the results are the same when they compared with present study.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(10): Buckling load under different  

buckled regions Mostafa, N. H. and  

Waheed, S. O. (2008)  
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Figure (9): Buckling load due to increase 

 the skin thickness Mostafa, N. H. 

 and Waheed, S. O. (2008)  

Figure(8): Buckling failure modes :(a) local skin buckling,  

(b) global buckling ,(c) local stiffener crippling. 
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4.2 Effect of Shell Winding Angle 
      Shell winding angle is one of more important design variables that can be easily 

varied using the finite-elements model. The shell winding angle can be varied by just 

changing the inputs of the real constants table, without changing the model. The effect 

of shell winding angle was investigated for the three types of buckling failure modes. 

The analysis was performed on models having skin thickness of 0.5 mm, 2.4 mm and 

4.5 mm. These three skin thicknesses correspond to local skin buckling, global 

buckling and stiffener crippling failure modes respectively. The analyses results are 

presented in Figure (12) below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       It can be observed that the variation in shell winding angle has different effects on 

each type of failure modes. For local skin buckling failure mode, which corresponds 

to 0.5 mm skin thickness curve, it is clear that buckling load seems insensitive to 

changes in shell winding angle and show almost flat curves for buckling load versus 

   Figure (12): Effect of shell winding angle on buckling load 
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Figure (11): Buckling load and specific buckling 

load with thickness, Kidane, S., (2002). 
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mat orientation. While, the optimum shell winding angle for a stiffened cylinder 

failing in stiffener crippling failure mode is about 30
o
. The buckling load resistance 

increases steadily with winding angle increment. On the other hand, for global 

buckling failure mode (2.4 mm skin thickness), with increase in shell winding angle 

the load resistance of the structure first increases and then goes down after reaching a 

maximum. Hence, it was concluded that there exists an optimum shell winding angle 

for a stiffened cylinder failing in global buckling failure mode. The optimum shell 

winding angle for a stiffened cylinder having a skin thickness of 2.4 mm is found to 

be about 45
o
. 

  

4.3 Effect of Modulus 
       The effect of modulus on the buckling load of a stiffened composite cylinder was 

investigated using ANSYS package. The analysis was performed for a wide range of 

skin thickness. It has been shown in Section 4.1 that buckling failure mode highly 

depends on the skin thickness. 

     The longitudinal modulus of the composite system was varied from 54 GPa to 100 

GPa depending on the temperature and volume fraction (Valery, V., Evgeny, V., 

2001). The effect of modulus was studied on stiffened cylinders having shell thickness 

varying from 0.5 mm to 3.5 mm with shell winding angle equal to 15°. Figure (13) 

below summarizes the results obtained. The buckling load was observed to increases 

linearly with increase in longitudinal modulus for all skin thickness. It appears from 

the plot that the gain in buckling resistance increases as the skin thickness increases. 

But a close look at Table (2), which tabulates the percentage gain in the buckling load 

with increase in modulus, shows a higher gain in buckling load is obtained for a skin 

thickness 2 mm (global buckling mode) .Hence it can be concluded that a better gain 

in buckling load resistance is achieved if the longitudinal modulus is increased for a 

stiffened cylinder failing in global buckling failure mode than for a stiffened cylinder 

failing in a stiffener crippling failure mode or in local skin buckling failure mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (13): Effect of longitudinal modulus on buckling loads. 
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…(12)      
 

 

Table (2): Gain in buckling load with thickness increases 

 

3.5 mm 3mm 2.5 mm 2 mm 1.5 mm 1 mm 0.5 mm Skin thickness 

19.2 19.32 26.21 33.12 29.76 29.74 21.97 % Load gain 

                
Conclusions 
    In the buckling analysis of stiffened composite cylinders, a number of important 

problems remain to be resolved. In this paper, attention has been paid to include 

several parameter that affect the buckling behavior of the problem within hand such as 

fiber orientation, shell thickness, and elastic material properties. Three different 

failure modes named global buckling, local skin buckling, and stiffener crippling were 

studied with different parameters. Each failure mode gave different results of the other 

mode, and the results were compared to find optimum design of the stiffened 

composite cylinder. The numerical results presented herein show that global buckling 

failure mode was the optimum design criteria of the stiffened composite cylinder.      
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