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Abstract 
 

Joint member stiffness in a bolted connection directly influences the safety of a design in regard to both static and fatigue loading, as 

well as in the prevention of separation in the connection. This work provides a new simple model for computing the member stiffness in 

bolted connections for both fully and partially developed stress envelope fields. The new model is built using a stress distribution poly-

nomial of third order. Finite element analysis (FEA) is performed for some joints geometries, and the results are used to estimate the best 

analytical envelope angle in the proposed analytical model that gives suitable convergence between the compared results. An experimen-

tal effort is exerted to validate the accuracy of a suggested model. When analytical results are compared with FEA results and experimen-

tal data, the maximum absolute percentage errors are found to be 2.69 and 14.69, respectively. Also, a good agreement is obtained when 

the analytical results are compared with other researchers’ results.   
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1. Introduction 

Due to the large impact in technology, especially for large 

structures, taking into consideration unit cost and installation, 

there is an increased need to develop high performance un-

damaging joint connections. A bolt represents one of the most 

common methods to connect joints and various parts in struc-

tures. Therefore, bolted-joint connections involve a wide 

range of interest, especially its stiffness. Fig. 1 presents a typi-

cal model of a bolted-joint member. Failure of such a joint 

may cause disastrous failure of the system and can lead to 

economical and human losses. While joining the members by 

a bolted joint, a tensile preload is applied to the bolt such that 

the members are in the state of initial compression. The initial 

compression in the members will help to keep the members in 

contact and share a fraction of the external load acting on the 

joint. Variations in the magnitude of the tensile preload on a 

bolted joint can produce dramatic differences in the cyclic life 

of the connection. Accurate predictions of member stiffnesses 

are essential for determining proper preloads. 

When the external load Pe is applied to the bolted joint un-

der initial preload Fi , the resultant force in the bolt is equal to 
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and that of the connected members is  
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where the stiffness of the bolt kb is given by 
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Fig. 1. Typical model of a bolted-joint member. 
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Similarly, the relation for the member stiffness is given as 
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Several authors have proposed both theoretical and experi-

mental techniques to determine the pressure distribution be-

tween the members of bolted joints and their corresponding 

stiffnesses. Some of these works considered, instead of two 

bolted plates, a thick plate with a symmetric circular or annu-

lar pressure loading. Theoretical solutions suggested by Sned-

don [1] Fernlund [2], Nelson [3], Greenwood [4], and Lardner 

[5], etc. Bradley et al. [6] used a three-dimensional photoelas-

tic analysis to guess the interface pressure distribution be-

tween the members. Gould and Mikic [7] and Tang and Deng 

[8] have used finite element analysis (FEA) to find the pres-

sure distribution between the members. They also noted that 

there was a radius at which flat and smooth members become 

separated. The computations were performed for models of 

steel plates with various thicknesses. In their studies, the bolts 

were replaced by uniformly distributed axisymmetric loads on 

the connected parts of the bolted joint. Osman et al. [9] dis-

cussed a design method for calculating an optimal bolt diame-

ter required for a specific fatigue loading situation. He has 

suggested that a hollow cylinder whose outside diameter is 1.5 

times the bolt diameter be used to determine the area under 

compression and, thus, the member stiffness. Edwards and 

McKee [10] and Bickford [11] cited suggestion of the Asso-

ciation of German Engineers to determine the member stiff-

ness using an equivalent cylindrical area dependent on the size 

of the joint. Ito et al. [12] have used ultrasonic techniques to 

determine the pressure distribution between the members of 

bolted joints for various surface topographies, materials, and 

thicknesses of the members. They suggested the use of a pres-

sure-cone method developed by Rotscher [13] for stiffness 

calculation with variable cone angles that are generally larger 

than the cone angles thus far theoretically calculated by other 

authors. 

Rasmussen et al. [14] expressed an equation for estimating 

the effective area Am based on their finite element analysis. 

However, they recommended not using this equation for L/d 

greater than 5. Their equation has the following form: 
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Shigley and Mischke [15] have proposed a simpler method 

by using a fixed standard cone angle of 30
o
 as the best value of 

the joint material stiffness, such as 
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Wileman et al. [16] performed axisymmetric finite element 

analysis (FEA) and proposed an exponential expression for 

member stiffness. In the analysis, the washer diameter was 

assumed to be 1.5 times the diameter of the bolt. They consid-

ered the displacement of the uppermost node located on the 

center line of the washer for stiffness calculation. Finite ele-

ment analysis for various aspect ratios (d/L) was carried out 

and finally an exponential relation for member stiffness evalu-

ation was proposed. Their equation has the following form: 
 

exp( / )m mk dE A bd L= .    (7) 

 

The coefficient (A) and the exponent (b) in the above equa-

tion will vary slightly with Poisson's ratio of the material. 

Wileman et al. [16] caution that the use of their equation 

should be limited to cases with similar geometry and bound-

ary conditions. The distance from the bolt axis to the edge of 

clamped members should be at least several times the bolt 

diameter to avoid the presence of edge effects. 

Lehnhoff et al. [17] proposed an analytical model to calcu-

late the member stiffness and the stress distribution of bolted 

joints with various bolt sizes. They assumed a uniform pres-

sure with conical envelope under the bolt head. Their work 

provides the following equation: 
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Juvinall and Marshek [18] provided an equation for estimat-

ing the effective area of the clamped member, which is given 

by 
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where 1 2 3, 1.5 , 1.5 tan(30)d d d d and d d L≈ = = + .  

Pedersen and Pedersen [19], performed contact finite ele-

ment analysis to evaluate the member stiffness bases on elastic 

energy in the structure. They found the following relations for 

member stiffness: 

for d D d Lγ γ< < +   
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for D d Lγ≥ +   
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Most of the methods presented in the literature review take 

different forms. This difference is mainly due to the assump-

tions made during the model development. The differences 

caused by various assumptions need higher safety factors for 

reliable design. The present study proposes a new analytical 

model for calculating the bolted-joint stiffness. Finite element 

results will be used to find the appropriate envelope cone an-

gle that gives the best fitness of analytical results. Also, an 

experiment is performed for a few bolt-joint geometry cases to 

provide an assurance for the suggested model. 

 

2. Method of approach 

The stress distribution within the material under the bolt has 

a complex geometry. This problem has been studied by a 

number of investigators and an accurate computation of the 

distribution of the stresses volume is quite complicated. The 

compressive stress in the material is highest directly under the 

bolt and falls off as laterally from the bolt centerline as shown 

in Fig. 2. At some lateral distance from this centerline, the 

compressive stress at the joint interface goes to zero, and be-

yond that point the joint tends to separate since it cannot sus-

tain a tensile stress. 

The first step for building the analysis is to guess the pres-

sure distribution through the member as a cone with an enve-

lope angle (α). The third order polynomial in the ξ -direction 

is assumed for stress distribution as shown in Fig. 2. Thus, 

 
3 2( , ) A B C Dσ ξ η ξ ξ ξ= + + +    (11a) 

where the constants , , ,A B C and D are functions of η . 

These constants will be determined by the application of the 

boundary conditions and static equilibrium as follows: 

at ξ ϕ= , setting 0σ σ ξ= ∂ ∂ =  gives the following two 

equations: 
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At 0.5 ,dξ =  setting 0σ ξ∂ ∂ = , gives: 
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Solving Eqs. (11a)-(11e) for the constants , , ,A B C  and D  

will give the following:  
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These constants are substituted in Eq. (11a) to find the stress 

distribution inside the member which caused by the external 

load Pe .  

 

2.1 Elastic joint deflection 

In elastic range, the strain of member material is obtained 

by using Hook's law. The average joint deflection represents 

the average change in disk thickness, taking into account the 

pressure distribution that is represented by Eq. (11a). Thus, it 

is easy to write the following equation: 
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Fig. 2. Stress distribution on element of the bolted joint. 
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This leads to 
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and by taking the advantage of symmetry about η 0.5L= , 

which give us  
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This will lead to the following joint deflection 
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and 
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for ( tan( ) )D L dα γ≥ + . 

 

If the two plates are made of different thicknesses or differ-

ent materials, the deflection of each plate is given as follows: 
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for 1 2[( ) tan( ) ]D t t dα γ≥ + + , 

and  
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where j=1, 2 for upper and lower plates, and (t) is the thick-

ness of the plate joint. 

It is important to state that Eq. (15) is used when the stress 

envelope is partially developed through the joint thickness. 

This will be happen because the joint size D is not large 

enough to allow the stress envelope to be fully developed 

while Eq. (16) satisfies the condition to create the fully 

stresses envelope. 

2.2 Member stiffness 

The member stiffness km is found from the following linear 

relation as 
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for ( tan( ) )d D L dγ α γ< < + , 

and 
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for ( tan( ) ),D L dα γ≥ +  while the individual member stiff-

ness for different thicknesses or different materials is equal to  
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The overall member stiffness is represented by linear 

springs connected in series manner, which leads to 
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3. Finite element model 

A finite element model is created for a bolt diameter d at 

varying grip lengths L. Fig. 3 shows the finite element mesh 

used to represent the general joint geometry of Fig. 1. Since 

only the stiffness of the members is to be considered, the 

shank of the bolt has been removed from the model. The finite 

element analysis method is used to calculate the member de-

 
 

Fig. 3. The meshed finite element of bolted-joint model.   
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flection in the η-direction, which is taken as the average nodal 

displacement under the bolt head. 

The stiffness of the bolt head is set to be about three orders 

of magnitude greater than the member material, so the bolt 

head would not deflect a significant amount relative to the 

member material stiffness. This will lead to the use of a steel 

bolt with an aluminum member to give the best fit with the 

required accuracy. The member and bolt materials are as-

sumed to be isotropic, homogenous, and linearly elastic for all 

the analyses. Commercial finite element software ANSYS
®
 

[20] is used for modeling and analysis. The model geometry is 

meshed by four-noded axisymmetric quadrilateral elements 

(PLAN42). Contact and target elements (TARGE169 and 

CONTA172), shown in Fig. 4, with a coefficient of static 

friction equal to 0.2 are used to model the contact that occurs 

between the bottom face of the bolt head and the member. 

Uniform pressure distribution is applied to the top of the 

bolt head. Thus, stiffness of the member km is calculated using 

the following simple relation: 

 

e
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average

P
k

δ
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Convergence study is carried out on the initial finite ele-

ment model by decreasing the element size near the bolt. The 

number of elements used in the converged analysis ranges 

from 3000 to 5400. The smallest element size was 0.3 mm by 

0.3 mm and there was no significant improvement in accuracy 

by using smaller elements. Fig. 5 shows some results of using 

ANSYS software for equivalent elastic stress and strain fields. 

 

4. Experimental test 

The universal test machine (UTM), shown in Fig. 6, is used 

to measure the load-deflection data of the bolted joint member, 

where the slope of load-deflection curve represents the joint 

stiffness. The tested samples are made from standard alumi-

num material. Four different joint sizes are used in the test. 

The maximum applied compressive load is equal to 15 kN. 

For trustworthy test data, ten tests were performed for each 

specimen size and the average data for each case is considered. 

 

5. Results and discussion 

As the ultimate goal of the study is a simple general expres-

sion to be used in routine design problems, it is necessary to 

generalize the data obtained from the specific models for 

 

 
 

Fig. 4. Element characteristics (ANSYS [20]). 

 

 

(a) 

 

 

(b) 
 

Fig. 5. Finite element results: (a) equivalent stress; (b) equivalent 

strain. 

 

 

 
 

 
 

Fig. 6. Cylindrical specimen with different sizes and grip lengths under 

test. 
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which the new member stiffness expression and finite element 

solutions were performed.  

Table 1 presents the member stiffness for different values 

of joint size, bolt diameter, and grip length. After getting the 

member stiffness by performing finite element analysis, the 

best envelope angle decision is nearly equal to 36
o
 which 

gives the minimum compared percentage error. The maximum 

experiment percentage error is about 14.69. This error value is 

practically acceptable, if we consider the difficulty of control-

ling the contact frictions between the bolt head and member 

part and also between the joint member assembly and test 

machine jaws. 

Table 2 lists the results of the present study beside other re-

searchers' formulas. From this table, it is very clear that con-

vergence in the results between the present study and Shig-

ley’s formula is inspiring in cases of fully developed pressure 

envelopes. While for partially developed cases, the studies that 

have been done by Pederson [19] and by Rasmussen [14] give 

the best results fitness. In standard bolts, increasing bolt di-

ameter leads to larger bolt heads which in turn increases the 

contact area under the head, i.e. increasing the member stiff-

ness. Furthermore, the member deflection increases with in-

creasing the member grip length under application of constant 

external load. Thus, any increase in grip length leads to de-

crease in member stiffness. An alternative way to present and 

compare the present work with other researchers is executed 

in Figs. 7 and 8 for cases of fully and partially developed pres-

sure envelopes respectively. In Fig. 7, the ratio of grip length 

(L) to bolt diameter (d) is held constant, which is numerically 

equal to 4. This substitution will make the denominator part 

(the nonlinear part) in Eq. (21) constant. Thus, the curves are 

linearized to give the best results comparison. In Fig. 8, the 

same procedure has been performed for a partially developed 

case with holding the ratios (L/d) and (D/d), in Eq. (20), equal 

to 4 and 2, respectively. It is important to indicate that Shig-

ley’s, Juvinall’s, and Wileman’s studies did not take into ac-

count the joint size (D) in their formulas, i.e. their studies are 

restricted to fully developed cases and disregard partially de-

veloped ones.       

Table 3 lists the member stiffnesses when different plate 

materials and thickness ratios (t1 and t2) are used. Good 

agreement is obtained when the present study results are com-

pared with FEA and Lehnhoff's results. 

 

Table 1. Analytical versus experiment and FEA results of member stiffness in (MN/m). 
 

Geometry Member stiffness (MN/m) 

d 

(mm) 
D  (mm) 

L 

(mm) 

α 

(deg.) 

Present 

study 
FEA Exp. 

ErorrFEA 

% 

ErorrExp 

% 

8 25 20 36 556 554 590 -0.36 5.76 

8 25 30 36 453 445 485 -1.79 6.59 

8 25 40 36 383 380 443 -0.79 13.54 

8 25 50 36 331 325 388 -1.84 14.69 

12 30 20 36 995 991 927 -0.40 -7.33 

12 30 30 36 772 766 811 -0.78 4.81 

12 30 40 36 630 618 666 -1.94 5.40 

12 30 50 36 533 519 511 -2.69 -4.30 

 

 

 
 

Fig. 7. Comparison of present study's member stiffness with other 

studies for fully developed case. 

 

 

 
 

Fig. 8. Comparison of present study's member stiffness with other 

studies for partially developed case. 
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Table 3. Comparison of member stiffness in (MN/m) for different 

material plates. 
 

Aluminum /Steel 
d 

(mm) 

D 

(mm) 
t1/t2 Present 

study 
FEA Lehnhoff 

8 50 12/20 733 712 868 

 16/20 683 675 801 

12 50 12/20 1283 1271 1297 

 16/20 1175 1160 1185 

16 50 12/20 1947 1944 1977 

 16/20 1763 1755 1784 

6. Conclusions 

The new suggested member stiffness model is a simplified 

expression that gives best guessed results for both fully and 

partially developed pressure envelope fields. The proposed 

third order polynomial of pressure field gives member stiff-

ness results that fit very well with FEA and existing research-

ers' results. Also, an experiment for a few bolted joint geome-

tries is performed. The validated data and the verified results 

indicated that the presently suggested bolted-joint stiffness 

model is reliable. 

 

Table 2. Present study versus other researchers' results of member stiffness in (MN/m). 
 

d (mm) L/d D/d 
Present 

study* FEA Shigley Pedersen Wileman Rasmussen Juvinall 

6 2 2 367.66 365.37 466.04 331.48 460.38 302.32 546.81 

6 2 4 460.38 458.15 466.04 364.87 460.38 372.02 546.81 

6 2 6 460.38 458.03 466.04 364.87 460.38 381.27 546.81 

6 4 2 197.95 196.28 355.22 193.19 392.49 187.24 498.71 

6 4 4 352.20 350.43 355.22 281.00 392.49 287.03 498.71 

6 4 6 353.88 351.26 355.22 287.43 392.49 300.07 498.71 

6 6 2 135.43 135.44 317.01 135.82 372.16 137.03 519.32 

6 6 4 296.63 292.72 317.01 238.87 372.16 255.29 519.32 

6 6 6 316.48 314.36 317.01 257.51 372.16 273.37 519.32 

10 2 2 612.78 609.31 776.73 552.47 767.30 503.87 911.36 

10 2 4 767.30 765.03 776.73 608.12 767.30 620.04 911.36 

10 2 6 767.30 764.66 776.73 608.12 767.30 635.45 911.36 

10 4 2 329.91 324.46 592.03 321.99 654.15 312.06 831.18 

10 4 4 587.00 583.07 592.03 468.33 654.15 478.38 831.18 

10 4 6 589.80 585.61 592.03 479.06 654.15 500.12 831.18 

10 6 2 225.72 222.34 528.36 226.37 620.27 228.39 865.54 

10 6 4 494.39 490.33 528.36 398.12 620.27 425.48 865.54 

10 6 6 527.47 525.53 528.36 429.18 620.27 455.62 865.54 

14 2 2 857.89 851.80 1087.4 773.46 1074.2 705.41 1275.9 

14 2 4 1074.20 1072.0 1087.4 851.37 1074.2 868.06 1275.9 

14 2 6 1074.20 1071.7 1087.4 851.37 1074.2 889.63 1275.9 

14 4 2 461.88 458.05 828.85 450.78 915.81 436.89 1163.7 

14 4 4 821.81 818.71 828.85 655.67 915.81 669.74 1163.7 

14 4 6 825.72 823.48 828.85 670.68 915.81 700.16 1163.7 

14 6 2 316.01 314.34 739.70 316.92 868.38 319.75 1211.8 

14 6 4 692.15 689.02 739.70 557.36 868.38 595.68 1211.8 

14 6 6 738.46 736.27 739.70 600.85 868.38 637.87 1211.8 

18 2 2 1103.03 1098.6 1398.1 994.45 1381.1 906.96 1640.5 

18 2 4 1381.10 1378.3 1398.1 1094.6 1381.1 1116.1 1640.5 

18 2 6 1381.10 1377.9 1398.1 1094.6 1381.1 1143.8 1640.5 

18 4 2 593.85 590.12 1065.7 579.58 1177.5 561.72 1496.1 

18 4 4 1056.60 1054.4 1065.7 843.00 1177.5 861.09 1496.1 

18 4 6 1061.60 1060.0 1065.7 862.31 1177.5 900.21 1496.1 

18 6 2 406.29 404.42 951.04 407.47 1116.5 411.11 1558.0 

18 6 4 889.91 885.33 951.04 716.61 1116.5 765.87 1558.0 

18 6 6 949.44 947.18 951.04 772.53 1116.5 820.11 1558.0 

* The underlined bolded numbers in this column means that a cone pressure envelope is partially developed else that it is fully developed. 
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Nomenclature------------------------------------------------------------------------ 

D  : Joint diameter 

d  : Bolt diameter 

dδ : Differential element of joint deflection 

Em : Young's modulus of elasticity 

km : Member (Joint) stiffness 

L : Member grip length 

Pe : External applied load 

t : Plate thickness 

α  : Envelope pressure angle 

η : Coordinate in axial direction of bolted joint 

ξ : Coordinate in radial direction of bolted joint 

γ : Contact radii ratio 

φ : Distance from bolt axis to the farthest surface of stress 

envelope field 

σ : Stress 

δ  : Joint deflection 
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