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ABSTRACT

In this research, the vibration analysis and stability of angled pipe has been investigated; two straight pipes made from composite
material connected by elbow; with fixed-fixed ends conveying fluid has been used, using three dimensional finite element model.
The characteristic matrices consisting of stiffness, inertia and damping terms which derived by finite element method and the
effect of the internal flow velocity, axial force and Coriolis force are considered. Some parameters that influence the dynamic
properties have been studied such as pipe angle, diameter ratio and wall pipe thickness. It was found that the composite material
increase the properties of the frame pipes; such as fluid velocity and frame frequency; and this increasing continuously with
increase the volume fraction of composite material, and the increase in frame angle led to decrease the critical flow velocity of the

frame pipes, also the increase in the length pipes ratio decrease the critical velocity of flowing. Finally, the frame frequency
decreases as the frame angle increase.

KEYWORDS: curved pipe, composite materials, conveying fluid, angle of spring location, straight pipe, critical velocity,
coriolis force.

INTRODUCTION

The dynamic behavior of pipes transporting flui¢ lh@en a subject of increasing research interasthé
pipes are used in many application of the industiééds, an analysis of flow-induced vibration ftre pipes
carrying fluid include one of the important subgeat structural dynamics applications, such asearcfields
and aerospace; such as vibrations of heat exchanliguid-fuel rocket piping, and nuclear reactaokant
channels. It is well known that piping systems realgject to variation and flutter types of instahek created
by fluid-structure interaction [1].

Reference [2] used the Generalized differentiadgatare procedure as a numerical technique to ghlse
problem. The differential governing equation was\wat into a discrete system of mathematical exgioes.
The stability of the system was reduced to an eigele problem. The convert of trouble instabilitgrii one
eigenvalue branch to another was investigated &wlissed. The loop mass ratios, at which the trarefrthe
eigenvalue branches related to disturbance, weeifigal. Reference [3] studied the natural freqyeantalysis
of fluid conveying pipeline with different boundacgnditions using eliminated element-Galerkin mdthithey
explained that Galerkin method give good resultdh wieffective error. While reference [4] used Bifntial
Transformation Method (DTM) to analyze the free raiibn problem of pipe conveying fluid. They
demonstrated that the DTM method gave good pretisi® compared with the analytical methods. And
reference [5] studied numerically pinned-clamped elamped-pinned pipes conveying fluid. He founat tio
predict the dynamical behavior of the clamped-pihp&e, even 8 significant-figure accuracy was gotod
enough. The imaginary part of the complex Eigequency seemed to be negative, implying unstablaweh
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for any flow velocity greater than zerBeference [6] analyzed the in-plane and out-of-@lemovements of a
semi-circular pipe conveying fluid. The mathemdtieapressions of in-plane and out-of-plane motiargse
derived according to the extended Hamilton's ppieci The derived equations of motion were describgd
applying the Galerkin procedure. Linearized equmstiaround the equilibrium position were obtained] then
the dynamic characteristics of the pipe were ingagd.

Reference [7] presented a general mathematicaltiegeaof the dynamic behavior of a clamped-pinned
pipeline carrying fluid. The system stability stediby means of the eigenvalues of a Hamiltoniagelirsystem.
From this method, characteristic expressions basethaterial constants had been developed as intesial
and some specific materials were represented dg sases to compare the mathematical descriptiogestied
with the results obtained from specialized softwase ANSYS, in order to support the results. Where a
simulation of the dynamic system using ANSYS fomsodifferent materials used in real cases, sudh\&s,
Polyethylene, Concrete, Steel and Aluminum, in ptdevalidate the results obtained analytically.

It concluded that the dynamic and stability of gipmnveying fluid not only depends on the boundary
conditions, but it is also strongly important thaterial of the pipe and the pressure produced éyitid.

In this paper, it will analyze the dynamic vibratidue to fluid flow in, a fixed —fixed end conditis,
angled pipeline, composed of two straight pipesiected by elbow, considered in three-dimensionats@nd
analyzed by finite element method, also using gfées/epoxy composite material instead of metglepivill
discussed to reduce the vibration.

2. Theoretical Equations:

The differential equation of motion in three dimemsl coordinate's vibration of a pipe conveying a
moving fluid was used to take into account the @nes of motion constraints.

The differential equation of motion for three dirs@ms vibration of a frame pipe carrying a movihgd
is [8]:

4 2 2
Elya—\:V+E av 0w 6v] MU o0°w av]
0Xx NG oxot axat )
6 w, 0%v d%u 0°6 6 u. 0°6
+EA, — +Gl— +(M+M)[——+r? =0
0t2 P ox? ox? ( )[ ot

Where u, w, and v are the coordinate axes in trextibns of x, y, and z respectlveﬁ/is the pipe angular
displacement, E and G are the pipe axial and shealuli of elasticity respectively, bnd |, are moment of
inertia of the pipe in y and z directions respeslify J is the pipe polar moment of inertia, m = snakthe pipe
per unit length, conveying fluid of mass per uendth (M), U is the steady mean flow velocity afidl with
respect to pipe, x is the coordinate measured aloa@ipe length, Fx is the tension force in theepid, Ai, r
are the cross section pipe area, internal pipe @ingd area), and pipe radius of gyration respeaii. Fig. 1
shows a simple representation, in three dimensigpate, of the problem within hand which is consfsiwo
pipe joint at their junction by an elbow.

Fig. 1: Angled Pipeline Model.

3. Finite Element Description:

In Fig. 2, i and j represent the node points of finite eletra length (L). Each node point has 6 degrees of
freedom which consist of 3 transitional displacetsem, w, v and 3 rotational displacemefis, 6, , 6,.
Therefore the finite element has the total 12 degod freedom.
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Fig. 2: Degree of freedom of pipe element.

The element displacement vector for a pipe eleimespace can be written as:

T _

{q} _{ul W, vy Hxl 9y1 Hzl u W, Vv, sz 9y2 922} 2

For transverse (flexural) pipe vibration, the shapetions are [9]

— 1 3 2 3
N, —|—3(2x =3x° +1°)
N, = (x2 - 202 417 ®)

2= IT(X X X)

N, = Ilg (BIx* - 2x3)

N, :Iiz(xs ~1X?)

While, for axial and torsional vibrations the shdipections are
X
N.=(@1--)
! (4)
X
Ng = (I_)

The displacement models can be expressed as [8]:
-For transverse displacements

W) =v00 =3 N, (g, ®
-For axial z:r:;l torsional displacements

U= 6,00= 3N, (9, ©
The kinetic ;:r?ergy of pipe element is equal to

1I aWZ 1I aVZ 1| auz 1I zaaxz
KE =3 (e M) [ me M) "o [ (me MG e [ meMyr (i o @)

transverse  y—dir. transverse  z—dir. axial torsional

After finding the individual mass matrices for eaelnm in the above equation, the total arrangedsmas
matrix, according to displacement vector [eq. 2hipe element in space has the following form
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(140 o© 0 0 0 0 70 0 0 0 0 0 |
o 15 0 o0 o0 22 0o 5 o o o -13| ®
0 0 156 0 -222 0 0 0 54 13 0
0 0 0 140% 0O 0 0 0 0 702 0 0
0 0 -222 0 42 0 0 o -19 0 -3 0
sz (MM 0 22 0 0 0 42 0 13 0 0 0 -32
420 | 70 0 0 0 0 0 140 0 0 0 0 0
0 54 0 0 0 13 0 156 0 0 0 -22
0 0 54 o -13 0 0 0 156 0 22 0
0 0 0 702 0 0 0 0 0 140% 0 0
0 0 13 0 -32 o0 0 0 22 0 42 0
| 0o -1d 0 0 0 -32 0 =-22 0 0 0 a7 |
While the potential energy is
| 2 | 2 | |
PE=1[El FeaLLr +1[E LYy 1 EA, (M2 +%IGJ(%)2dx ©)
5 ox 0 ox 0 ox 5 ox
transverse,  y-—dir. transverse,  z—dir. axial torsional

This will lead to the following symmetry pipe stifss matrix

ElA’ 0 0 0 0 0 —lﬂ 0 0 0 0 0
0 12E1, 0 0 0 6El, P 0 0 6El,
B 12 B 12
12E| 6E 12E| 6E
0 0 |3y - |2y 0 0 0o - |3y 0 - |2y 0 (10)
0 0 0 % 0 0 0 0 0 —% 0 0
6E 4El 6E 2El
0 - 0 - 0 0 0 = 0 - 0
0 6:52'2 0 0 0 4||5|z 0 6:52'2 0 0 0 2||5|Z
k1:
—lﬂ 0 0 0 0 0 lﬂ 0 0 0 0 0
12E1, 6El, 12E1, 6El,
0 =5 0 0 -3 0 = 0 0 0 -3
1281, 6El, 1281, 6El,
0 -5 = 0 0 0 5 0 = 0
0 0 0 —% 0 0 0 0 0 % 0 0
6E 2El 6E 4El
0 0o - 0 - 0 0 0 T 0 -
0 6:52' z 0 0 0 ZT' z 0o - 6|EZ'Z 0 0 0 4? z
Th 2 0w, 0%V, . . _
e term ((MU ? +(pA — Fx)}( )+(=—)]) ineq.1 has a potential energy that can be septed as [9]:
x>’ ox?
| |
ow, 0w ov, ov
PE = [{MU* +(pA =FX)}()( Jdx+3 [{MU* +(pA =P} )( ) (11)
X" 0X X" 0X

0 0
Leading to symmetry matrix {k which contains the force per unit length (s&fs unit) that conforms
the fluid to the pipe (weakening effect) besidesakial tension force (stiffening effect).
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o o 0O 0O O O O O O 0 0 O
o 3 0 0 O0O 3 o0 -3 0 0 0 3
o 0O 3 O 3 o0 0 0 -3 0 3 0O 12)
o o 0O O O O O O O 0 0 o
o o 3 o0 4> 0o 0 0 -3 0 -1* o0
( _MU’+pA-Fxj O 3 0 O O 4* 0 -3 0 0 0 -I
2 301 o o 0 0O O O O O O 0 0 O
o -3 0 0 O -3 0 3 0O 0 0 -3
O O -3 0 -3 0o O O0 3 0 -3 o0
o o 0O O O O O O O 0 0 O
0 o0 o -1° 0 0 0 -3 0 4° o0
lo 3 o 0 0 -2 0 -3 0 0 0 42

Here, we will call the above matrix as a contraatigtmatrix because it contains two opposite compbne
effects. Where § is an axial tension force that caused by the gham fluid's momentum and pressure in a pipe
bend (elbow) [10]Fig.(3) shows the induced axial tension forces in the pigred.

P, AU, Q,

e 4

pl’Aﬁ.’Ul'Ql

Fig. 3: Tension forces in pipe bend.

FromFig.(3), the axial tension forces in pipe bend are equfl1]:

Fx, = p,A + p,A,cos(a)+ p Q[U, +U, cos(a)] (13)
and
Fx, = R{ S{n(l//)} (14)
sin(a)
Where
1
2

R=[Fx,” +Fy?]
Fy = p,A,sin(a) +p 44U ,Qsin(a)
Q=U,A =U,A,

Uz-uU?
P, = p1+pfluid{¥}
_ tan-1p SiN(a)
W =tan {1+cos(a)

From the mathematical formulation presented abibve clear that the overall stiffness is composétivo
parts, namely the contradictory and pipe structstiéfhess matrices.



421 Dr. Essam Zuheir Fadhel et al, 2016/ Advances in Natural and Applied Sciences. 10(4) April 2016, Pages: 416-428

2 2
oW +ﬂ] ) in eq.(1) is the inertial force associated witle Coriolis acceleration
Oxot  oxot
arising from the fluid flows with velocity U relat to the pipe. This term has a dissipation enevhich is

equal to

The term @MU[

| |
ow, , 0w ov, ov

DE =1 | 2MU () (—)dx + 1 | 2MU (=) (—)dx (15)
2! (ax)(at) 2{ (ax)(at)

This gives a skew-symmetry damping matrix

o 0 o O o O O O 0 o0 0 o0
0o -30 0 0 O -6 0 -30 0 0 0 6
o O -30 0 -66 0 0O 0 -30 0 6 O
o o O O O O O O o0 o0 o0 O
o o 6 O O O O 0 -6 0 1I? (16)
c.Mujo e 0o o o o o0 -4 0 0 o0 I
30/o o O O O O O O 0 o0 o0 O
O 30 o0 o0 O 6 0 30 0 0 o0 -6l
o O 30 0 6 0 0 0 30 0 -6 0
0O 0 0O 0 O O 0 O O O0 O
o o -6 0 -1> 0 0 0 6 0 0 O
0o -6 0 0 O -1? o 6 0 0 0 O]

It can be seen that the 12 * 12 element matricesngin egs. (8), (10), (12) and (16) are with respe the
local xyz coordinate system. Since the nodal desptzents for the angled pipe are in different l@cairdinates,
thus it must transform the local coordinate to glotoordinate system. The transformation matixcan be
identified as [9]

luy, m, n, O O O O O 0O O 0 O
ly m, n, 0O 0 O O O O 0 0 O
l,b, m n, O O O O O O 0O 0 O
o o o0 I, mn O O O 0 0 O
o o o0 I, m n, O O O 0O O O
o o o I, myn O O O O O O an
o 0 0 0o o0 o l, m, n, 0O 0 O
o o o o O O I, m n, O 0O O
o o o o o O I, m,n O 0 O
o o 0o 0O O O o0 O O I, m n,
o 0 0 0O 0O O O 0 0 I, m n,
o o 0 0O O O o0 O O0 I, m, n,

Here,l,y, m,,, andn,,denote the direction cosines of the x-akig;, ml,,,, andn,, represent the direction
cosines of the y-axis; ang,, m,,, andn,,indicate the direction cosines of the z-axis wehpect to the global

~ —_ T ~
axes. This leads to the following (global element trives [8]:[m]Global =[AL [M[A]
(18)

[koveraJI]GIobaJ :[)\]T[koverall][)\] (19)
[Claiosa =N TCIIA] (20)
Dynamic Analysis:

The standard equation of motion in the finite elatrferm is [8]:
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[M]gopal G +[Claipal @ * [Koveran Jaional G ={0}

Where kovera]l = (kl,overajl - k2, overall)
Since the above equation has a damping term wighwvslymmetric characteristic, thus the solution of

eigenvalues problem should be executed to the cteaistic matrix [Q ], which is equal to [11]
_ [0] [1]
[Q]= £9-1 ~3-1 (22)
_[m] [koverall] _[rr] [C] Global

The solution of eigenvalue problem yields compleats. The imaginary part of these roots represthiets
natural frequencies of damped system. The realipdidates the rate of decay of the free vibrafRJn

112

Composite material properties:

The mechanical properties (Young's modulus, Shemtuins, Poisson's ratio and density) of the conteosi
system used in this study are theoretically deteeshidepending on the rule of mixture.

To define the fiber volume fractiot and the matrix volume fractiow, consider a composite consisting of
fiber and matrix so.[12]

v
v =B @) and v, 4V, =1...0) 23)
u. Ac
The mass fraction (weight fraction) of the fibelg)(and the matrixNl,,) are defined as:
— Wi _ Wh —
M{=— .., M, =—" ..0)and M, +M_ =1...(c) (24)
WC WC
From the definition of the density of a single nmiztiein terms of the fiber and matrix volume frauts:
P
M, =Py @ and M, =21V, .. (25)
Cc Cc
In terms of individual constituent properties, thass fractions and volume fractions are related by:
y Y@ v M ©) o
= ..(a), =
Ry +Pmi-v,) f M, +(1-M )’0f
f f f £t
P m

The density of the compositg in terms of the constituents’ weight fractions atehsities can be defined
as:[13,14]

o= T
R VINVE (27)
M
Iof IOm
To define elastic properties of composite materdal$ollows:
GmG
Gec = (29)
Gt Vi Gf Vi)
= +
Vc Vf & Vme (30)

In this study, E-Glass fiber is used; it was ol#dim the form of chopped strand mats, with epoxlymper
as matrix.

Different values of volume fraction (30, 40 and%) are used, as listed in the table (1).

Table 1: Mechanical properties of epoxy reinforced by ctexpglass fiber:

Volume fraction % E (GPa) G (GPa) Density (gfxm Poisson ratio
Vfl 30 23.7 9.38 1.673 0.365

Vf2 40 30.6 12.04 1.808 0.348

Vi3 50 375 14.7 1.944 0.34
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RESULTSAND DISCUSSION

Fig. (4)shows the effect of frame angle on the criticabe#l of fluid. It is clear that any increase iafne
angle will lead to decrease the critical flow vétpci.e. accelerate the instability of structutfdis behavior is
mainly caused by decreasing the axial tension fotinethe pipe bend, which play a stiffening rolethw
increasing the frame angle.

Critical velocity of fluid (m/sec)

20 T T T T T T T T T

100 140
0 40 80 120 160 200
frame angle (deg)

Fig. 4: Effect of frame angle on critical velocity of fthi Pipe lengths {= L,= 1m, fluid density is (1000
kg/m3), thicknesses of pipes are (0.001 m) andraliteneters of the pipes are (0.03 m).

Fig. (5) presents the effect of pipe lengths ratio on titecal flow velocity with different frame angle$he
increase of the pipe lengths ratio leads to deese#ise critical velocity of flowing. The main reasof this
behavior is that the fame structure becomes heavieeight and weaker in its stiffness with incriegsframe
length ratio. Moreover, the curves behave to caywewhen the value of this ratio reaching one anldl wi
continue in compactness after this value. Also, Bighows that as the volume fraction (Vf) of tlenposite
material of the pipe increase the critical velodifythe fluid will increase too, this is attributénl the increasing
the modulus of the elasticity as the volume fratiimcrease, as shown in table (1).

400

400

Frame angle= 5 deg.

a0 350 — Frame angle= 60 deg.

300 —| 300 —

250 - 250 —

200 —| 200 —

150 — 150

Critical velocity of fluid (m/sec)
Critical velocity of fluid (m/sec)

100 — 100 —

0 T ‘ T I T I T I T 0 T ‘ T ‘ T ‘ T ‘ T
0.2 0.6 10 14 18 0.2 0.6 1.0 14 18

0.0 0.4 12 16 20 0.0 0.4 0.8 12 16 2.0

0.8
Length ratio (L2/L1) Length ratio (L2/L1)

a) frame angle of {5 b) frame angle of 0
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300
275 o Frame angle= 85 deg.
250 —
225
200 —
175
150 —

125 4

Critical velocity of fluid (m/sec)

100 —

75 -

50 T ‘ T ‘ T ‘ T ‘ T
0.2 0.6 10 14 18
0.0 0.4 0.8 1.2 1.6 2.0

Length ratio (L2/L1)
) frame angle of (89.

Fig. 5: Effect of frame lengths ratio on the critical Buielocity with different frame angles. Pipe lendgtis (1
m), fluid density is (1000 kg/m3), thicknesses ipigs are (0.008 m) and outer diameters of the @pes
(0.05 m).

Fig. (6), shows the relation between diameters ratio aitidalrinlet velocity at different frame angles. In
this figure, the critical inlet velocities will scontinuously with increasing diameters ratioisltvell known
that decreasing the inlet pipe diameter leads twinmiae the fluid velocity through the pipe (poséieffect on
the frame dynamic characteristics).

240 250

220 — Frame angle= 50 deg Frame angle= 20 deg

225 4

200 —|
200 —

180 —

175
160 —

140 o 150 —

120 —

125 —

100 —

Critical velocity of fluid (m/sec)
Critical velocity of fluid (m/sec)

100 —
80 —

40 \ ‘ \ ‘ \ R A ‘ \ ‘ \
1.0 14 18 22 1.0 14 18 22
1.2 1.6 2.0 1.2 1.6 2.0
Diameter ratio of the pipe (OD/ID) Diameter ratio of the pipe (OD/ID)
a) frame angle of (2. b) frame angle of {0
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200

180 — Frame angle= 80 deg

160 —

140 —

120 —

100 —

80 —

Critical velocity of fluid (m/sec)

0 \ ‘ \ ‘ \
1.0 14 18 2.2
1.2 1.6 2.0

Diameter ratio of the pipe (OD/ID)
c) frame angle of (80

Fig. 6: Effect of diameters ratio on the critical fluidloeity at different frame angles. Pipe lengths IL,= 1 m,
fluid density is (1000 kg/m3) and outer diameterpipes are (0.03 m).

Fig. (7) presents the effect of diameters ratio on the drémequency at different inlet fluid velocities. \&n
the pipe thickness is relatively increase the feaapy of the frame will increase. Increasing pipiekhess to
certain values gives the best ever frame frequéocygach fluid velocity. This behavior is mainlyused by
increasing pipe stiffness and weight with thickn@ssreasing. This means that there is an optimupe pi
thickness for each of the flowing velocity that ggvbest ever frame frequency. The combined effifctisese
two parameters will control the dynamic behaviothaf angled pipeline structures. In other wordg, Fishows
that the natural frequency of the frame increasetha volume fraction of the composite materiathaf pipe
increase, this is due to the increasing of thetielasodulus.

180

200

170 —

180 —

160 —
160 —

150 —f

=
8
1

140 —
120 —

130 —
100 —

120 —
80 —

110 ‘: Fluid velocity= 0 misec 0 - Fluid velocity= 60 m/sec
i —— i1
40 —| + V2

i . 7*7 .

Natural frequency of frame (rad/sec)

Natural frequency of frame (rad/sec)

100 —

08 12 “ 16 e 20 ' 24 08 2 1 M 20 24
Diameter ratio of the pipe (OD/ID) Diameter ratio of the pipe (OD/ID)

a) fluid velocity of (0 mtse b) fluid velocity of (60 m/sec).
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160

140 —| * - +

Fluid velocity= 100 m/sec

Natural frequency of frame (rad/sec)

0.8 ’ 12 a 1.6 e 2.0 ’ 2.4
Diameter ratio of the pipe (OD/ID)

¢) fluid velocity of (100 m/sec).

Fig. 7: Effect of diameters ratio on the frame frequentcglitierent inlet fluid velocities. Pipe lengths=%L,= 1
m, fluid density is (1000 kg/m3), frame angle {4a@nd outer diameter of pipes are (0.03 m).

Fig. (8) shows the effect of inlet fluid velocity on thenflamental frame frequency with different frame
angles. In general, the increasing of the inleidfivelocity leads to decreasing the frame frequemayther
increasing in inlet fluid velocity leads to dropfarequency. This behavior can be depicted as annative one.
Where, at relatively low inlet velocity, the forcenforms fluid (weakening effect) seems to be latpan the
axial tension forces (stiffening effect) generatedthe pipe frame. The values of axial tension dsrc
components are very sensitive to frame angle apespsections (pipe diameters ratio). Also it isvaidrom
Fig. 8, as the frame angle increase the frame &gy will decrease, this because that the pip&neté will
decrease.

200

160

180 —
140

160 —
120 —

100 — 120 —

100

80 —|

60 —

Frame angle= 10 deg

—— i

Frame frequency (rad/sec)
*
Frame frequency (rad/sec)

Frame angle= 45 deg

40 —

P H 0
v T

10 30 50 70 % 10 30 50 70 90
0 20 40 60 80 100 0 20 40 60 80 100

Inlet fluid velocity (m/sec) Inlet fluid velocity (m/sec)

a) frame angle of 10 b) frame angle of (45
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Frame frequency (rad/sec)

T T
50 70 90
0 20 40 60 80 100

Inlet fluid velocity (m/sec)
c) frame angle of {¥5

Fig. 8: Effect of inlet fluid velocity on the frame frequey at different frame angles.

Pipe lengths {= L,= 1 m, fluid density is (1000 kg/m3), thicknessdspipes are (0.001 m) and outer

diameter of pipes are (0.03 m).

Conclusions:

The following conclusions are obtained:
1) The composite material will increase the propeniethe frame pipes; such as fluid velocity andrfea

frequency; and this increasing continuously wittrégase the volume fraction of composite material.

10.

2) The increase in frame angle will lead to decrehsectitical flow velocity of the frame pipes.

3) The increase in the length pipes ratio leads toedese the critical velocity of flowing.

4) The critical inlet velocities will rise continuoysWith increasing the diameters ratio of the pipe.
5) When the pipe thickness is relatively increase fitbguency of the frame pipe will increase.

6) The frame frequency tends to reduce with increagiagnlet fluid velocity.

7) The frame frequency decreases as the frame argykaige.
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