1 2 2	Available online at <u>www.joac.info</u> ISSN: 2278-1862
3 4 5	Journal of Applicable Chemistry
6	(International Peer Reviewed Journal)
7	
8 9	Photocatalytic Cracking of P-nitro aniline using coupled $ZnO - Sb_2O_2$
10	Thotocatarytic cracking of T-intro annuc using coupled 2010 50203
11	Nada Y. Fairooz, Hazim Y. Al-gubury*
12 13 14	*Chemistry Department, college of science, Babylon University, Iraq.
14 15 16	Email: h.yahya40@yahoo.com
17	Received on 27 th February and finalized on 07 th March 2013.
18 19	ABSTRACT
21 22 23 24 25 26 27 28 29 30 31 32	oxide($ZnO - Sb_2O_3$), which is done by mixing 1 g of ZnO with 1g of Sb_2O_3 and calcinig in oven at 900C° for five hours. The mixing of semiconductor products was studied by using X-ray diffraction and Infra-red spectrophotometer techniques. The second part includes the study of photo degradation of P-nitro aniline using coupled metal oxides $ZnO - Sb_2O_3$ (first part), which is achieved by the irradiation of suspended solution consists of different weights of P-nitro aniline dissolved in $100cm^3$ of distilled water with 0.13 g of coupled metal oxide $ZnO - Sb_2O_3$ by mercury $lamp(125 \text{ W})$ from external source inside a Pyrex photoreaction cell of $100 cm^3$ at 298 K. In order to study the effect of coupled metal oxide $ZnO - Sb_2O_3$ in photo degradation. These experiments include the effect of hydrogen per oxide, the effect of temperature. The product was studied by using UV-Visible spectrophotometer.
33	
34 35 36 37 38 39 40 41	INTRODUCTION Large number of researches were carried out work on photo catalytic (degradation, oxidation, hydrolysis, cleavage of water, production of amino acid) using different semiconductor oxides with direct excitation by Ultra-Violet irradiation sources. When pure and metalized semiconducting oxide subjected to thermal or photon with energy equal to or greater than the band gap of the oxide, then the electrons are promoted from valence band to conduction band. The photoelectrons and photo holes produced by this process migrate to the surface and interact with adsorbed species [1,2] as in figure (1).
	3.37ev hv V.B. D

D + Fig. 1 Direct excitation of Semiconductor oxide

42 43

Modification of surface of semiconductor (sensitization) by using dyes such as (Crystal violet , 1 2 Roadmen, Methyl red, ...), or by coupling with semiconductor have band gap less than the other 3 semiconductor such as $TiO_2 - CdS$. Many researchers using the coupled semiconductors to photo catalytic 4 degradation of particle systems such as $TiO_2 - SnO_2$ [3], $TiO_2 - MoO_3$ [4]. An ideal photo catalyst should be stable, inexpensive, non-toxic and, highly photoactive. For increasing the efficiency of a photo 5 6 catalytic process we used coupled ZnO-Sb₂O₃ due to increasing the charge separation and extending the 7 energy range of photo excitation up to visible light region for the system. Recently many researchers [5, 6] were succeeded to improve the photo electrochemical processes using two or more semiconductors oxides 8 9 owing large band gap. One of the semiconductor absorbed suitable light quail or greater than band gap of 10 semiconductor and promoted to excited state which leads to inject an photoelectrons into the conduction band of the other semiconductor oxide [7,8]. The activities of such type of semiconductors (mix 11 semiconductors) shown in the degradation of azo aye by using coupled $SnO_2 - TiO_2$ [9] as in fig.2. 12 13 14 15 TiO₂ 16 hk SnO₂ 17 OH 18 19 OH 20 Fig.2: Charge separation in coupled semiconductors 21 22 **MATERIALS AND METHODS** 23 24 25 **A-Chemicals:** 1. Zinc oxide (ZnO): The bang gap is 3.4 ev [10], purity 99%, particle size- 100 mesh, supplied by 26 Fluka AG. 2. Antimony tri oxide (Sb₂O₃): The band gap is 3.74ev [11], purity-98%, supplied by Fluka 27 28 AG. 3. P- nitro aniline, supplied by Fluka A.G. B- Preparation of Coupled semiconductor (ZnO - Sb₂0₃) 29 The coupled semiconductor ZnO- Sb₂O₃ was prepared by using 99.9% pure ZnO and 98% pure Sb₂O₃ 30 31 powders as the starting materials. The starting material was mixed by mortar for one hour, after that calcinate the mixture in an oven at 900C° for five hours. 32 33 **C** - Photo reactor and Procedure Experiments were carried out in glass photochemical reactor. The cylindrical annular - type reactor 34 The first part was an outside thimble: Running water was passed through the 35 consisted of two parts. thimble to cool the reaction solution. Owing to the continues cooling, the temperature of the reaction 36

solution was maintained of room temperature. The second part was an inside thimble and the reaction solution (volume 100 ml) was put in the reaction chamber [12]. Schematic diagram of photochemical reaction is shown in figure 3

D- Irradiation System:

From fig. 5- a , different peaks (2) appear in spectrum at 26, 29, 30.5, 33.5, 36.5, 37.5, 49, 51,54, 55, 1 2 56 and 59 represent naked antimony tri oxide. From fig. 5 - b, the peaks $(2\square)$ appear in spectrum at 31.5, 34.5, 36, 47.5 and 56.5 represent naked zinc oxide. From fig. 5 - c, many peaks ($2\Box$) appear in 3 spectrum at 21.5, 23, 24.5, 26, 27, 29, 29.5, 30.5, 31.5, 32.5, 34, 34.5, 36, 37.5, 38.5, 42, 46, 47.5, 49, 51, 4 5 52, 53, 54, 55, 56.5 and 59.5 represent the coupled zinc oxide and antimony tri oxide. The coupled 6 semiconductor ZnO- Sb₂O₃ give new spectrum which indicates a shift in $2\square$ and reduce its intensity .Also 7 the coupled semiconductor gives new peaks $(2\Box)$ in the spectrum which cannot exist in the original 8 spectrum .This may be due to the distortion of the two crystal lattices of ZnO and Sb_2O_3 .

10 **B- F.T.IR Spectrum:**

9

Figure 6-a show F.T. IR spectra of naked antimony tri oxide .The peaks are at 754.19, 646.17, 601.81, 519.75, 472.58 and 437.86. Figure 6 - b show F.T. IR spectra of naked zinc oxide. The peaks are at 488.01 and 445.57. For coupled semiconductor, ZnO- Sb_2O_3 , figure 6 - c show the peaks at 746.48, 669.32, 636.53, 590.24, 489.94 and 435.93 . From this we can see the shift in peaks and reduction in intensity. This means that the coupling occurs between two semiconductors.

A series of experiments performed to study the effect of time on exposure in photocatalytic degradation of p- nitro aniline 5ppm, by using $0.13g 100mL^{-1}$ of coupled semiconductor, ZnO -Sb₂O₃ and mercury lamp (125W), at 25C with air flow=10mL min⁻¹. As indicate in the figure 7, the degradation of p- nitro aniline increase when the time of exposure increase.

- 43 44
- 45
- 46
- 47
- 48
- 49

Fable 1.	The cha	inge of .	A/A0 w	ith ir	radiation	time	on	different	mmoles	of H ₂ O ₂	using
				coup	led ZnO	$-Sb_2$	O ₃ .				

H ₂ O ₂ add mmole	0.01	0.02	0.03	0.04	0.05
Irradiation Time/min		<i>"</i>	A /A0		
0	1	1	1	1	1
10	0.711	0.658	0.459	0.772	0.883
20	0.613	0.511	0.254	0.691	0.799
30	0.447	0.338	0.119	0.563	0.784
40	0.337	0.188	0.081	0.447	0.732
50	0.289	0.146	0.079	0.431	0.711
· · ·					

2 3 4

5

6

7

8 9

10

11 12

From the table 1 and figure 8 it is clear that photocatalytic degradation processes of p – nitro aniline increase with increase in the amount of hydrogen per oxide added to the suspension solution of p-nitro aniline due to the formation of hydroxyl radicals until it reached optimum value of hydrogen per oxide i.e., 0.03 mmole. After this value of H₂O₂ the degradation process decrease because of the presence of access amount of H₂O₂, which leads to produce another species of hydroxyl radicals (•O₂H) .This radical is weaker than hydroxyl radical so that the degradation process decrease [15].

$13 \qquad H_2O_2 + \bullet OH \quad \rightarrow \quad \bullet O_2H \ + H_2O$

14 **3 - Effect of Temperature:**

A series of experiments were carried out to study the effect of temperature on the photo catalytic degradation rate of p- nitro aniline in aqueous coupled ZnO $-Sb_2O_3$ suspension at different temperature ranging from 278.15 – 293.15 K[16,17]. Table 2 shows the effect of temperature on the photo catalytic degradation rate of p- nitro aniline at fixed initial concentration of p- nitro aniline and 0.13 g 100mL⁻¹ of coupled ZnO $-Sb_2O_3$ as catalyst. From the fig. 9, it is clear that the photo catalytic degradation rate of pnitro aniline increases with increase of temperature.

21 **Table 2.** The change of A/A0 with irradiation time at different temperatures using coupled $ZnO -Sb_2O_3$.

Ē	Temperature K	278.15	283.15	288.15	293.15
-	Irradiation time/min			A/A0	
	0	1	1	1	1
	10	0.51	0.391	0.326	0.281
	20	0.352	0.242	0.206	0.13
Ī	30	0.194	0.122	0.086	0.043
Ī	40	0.101	0.071	0.033	0.019
Ī	50	0.063	0.031	0.015	0.008
	60	0.038	0.019	0.007	0.002

22

Fig. 9: Effect of temperature on photocatalytic degradation of p-nitro aniline by using coupled $ZnO - Sb_2O_3$.

Table 3. The change of $\ln A_0/A$ with irradiation time at different temperatures.

Temperature K	278.15	283.15	288.15	293.15
Irradiation time/min			In A0/ A	
0	0	0	0	0
10	0.673	0.94	1.12	1.27
20	1.045	1.42	1.58	2.04
30	1.64	2.1	2.45	3.14
40	2.29	2.64	3.4	3.98
50	2.77	3.46	4.2	4.8
60	3.28	3.97	4.91	5.82

- Fig. 10 : Effect of temperature on photocatalytic degradation of p-nitro aniline by using coupled $ZnO -Sb_2O_3$.

			100	0/T			
		0 3.4 3.45	3.5	3.55	3.6	3.65	
	-0	.5 -	0.0	0.00	0.0	0.00	
	_	-1 -					
	i <u>i</u> 1 E	.5 -					
	Ч. Ч	-2 -		y =	-3.1482x + 8.4288		
	-2	.5 -			R ² = 0.9991		
		-3 -					<i>.</i>
	-3	.5]					\bigvee
1 2							
3		Fig.	. 11: lnK mir	n ⁻¹ against 10	00/T		
4		8		0			
5 From	m the fig. 11	we can calculate the	he activation	n energy of	the reaction	E _a , when plo	ottec
6 agai	inst(lnKmin ⁻¹) (Arrhenius relationsh	hip).The act	ivation energ	gy for photo	catalytic degra	datio
7 p- n	itro aniline is equ	to 26 kJ.mol^{-1} .					
3			acus				
)			CONCI	LUSIONS			
) 1 1 7	The Compound h	as not been degrade	d in the abov	ance of entry	et	V	
гі. 77	The compound ha	s been successfully (deoraded wh	nee used the	or. Patalyst with	the light	
2 2. T 3 3. T	The optimum cond	dition for the photoc	atalytic deg	radation of p .	-nitro aniline	is $0.13 ext{ g 100n}$	nL-1
- 2	$ZnO - Sb_2O_3$ and	5ppm concentration	of p-nitro a	niline		6	
5 4. T	The activation ene	argy = 26 KJ/mole.					
5		A	ACKOWL	EDGMEN	ГS		
7 	1 /1 1 /1		1	с · 1•	.1		1
5 IS11	ncerely thank the	e present head of th	ie chemistry	, for providi	ng the neces	sary infrastruct	ural
/ uuri	ing my research.						
)			REFE	RENCES			
ı [1]	I I Jumi F F	Fan and A I Bard	I Phys Chen	1981 85 2	18		
[2]	E.Evgenido	u, K.Futianos and L	Poulios. Inte	rnational Co	nference of e	nvironmental S	cien
3	Technology,	LemnosIsland, Gre	ece, 8 -10, 2	2003.			
4 [3]	X.Z., Li. F.E	s., Yang.C.L., Ge.W	, K.,J.Photo	chem . Photo	obiol. A: Che	m. 2001 , 209. 1	41
5 [4]	K.Y.Song,K	.M. Park,Y.T. Kwor	n,H.W.Lee.,	, ,W.J.Chung	., I.W.Lee.,	Chem.Mater, 20)01,
6	2349.			C C I		1 1 2007	102
/ [5] o [21	S.H.Leong	D.N. Park, S.B.Lee at the state of the sta	nd J.H.BOO,	Surface and	Coatings Tee	cnnology, 2005,	,193,
9 [0] 9 [7]	H M Sungae	ub I R Choi H I Hat	$S M K_{00} $	nd Y C Bae	I of photo Ch	• emistry and ph	otoh
) (1	Chemistry .2	2004 ,163,37.	1,511111100 a			enasity and ph	
1 [8]	C.Tang and	V.Chen, Water Rese	earch, 2004 ,	38, 2775.			
2 [9]	N.Y.Fairooz	"Doctor of philosop	ohy in Chem	istry'Thesis,	College of Se	cience Babylon	Uni
3	2005.		a				
4 [10]	M.S.Seyed-I	Jorrajl, N.Daneshva	S.Aber, Gle	obal Nest Joi	ırnal, 2009 , 1	1(4), 535-545.	
5 [11] 6 [12]	N.11gau, Ro. S E Chen M	m.journ, 2006 , 51,64 (X Zhao X W Tao '	41-647. Taiavanana	na ruphan 10	005 16 231 2	30	
7 [12]	F.G.Gassim	A.N.Alkhateeb F F	Hussein <i>I</i>	Desalination	2007 , 209 34	2-349.	
8 [14]	S.A.Abo- <i>Fa</i>	rah, researcher, 201	10, 2(7).		-007,207,39		
r .1		,,					

1	[15]	B.Pare, P.Singhand S.B. Jonnalgadda, Journal of Scientific & Industrial Research, 2009, 68,724 –
2		729.
2	[17]	

- 3 [16] F.H.Hussein, International Journal of Photoenergy, 2012.
- 4 [17] K.Byrappa, A.K.subramani,S.ananda, K.M.lokanatha ARI, R.Dinesh, and M.Yoshimura.*Bull.,Matter* 5 .*Sci.*, **2006**,29, 433-438.
- 6